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Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids.
II. Sinusoidally driven shear and multisinusoidal inhomogeneity
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We use molecular-dynamics computer simulations to investigate the density, strain-rate, and shear-pressure
responses of a simple model atomic fluid to transverse and longitudinal external forces. We have previously
introduced a response function formalism for describing the density, strain-rate, and shear-pressure profiles in
an atomic fluid when it is perturbed by a combination of longitudinal and transverse external forces that are
independent of time and have a simple sinusoidal spatial variation. In this paper, we extend the application of
the previously introduced formalism to consider the case of a longitudinal force composed of multiple sinusoidal
components in combination with a single-component sinusoidal transverse force. We find that additional
harmonics are excited in the density, strain-rate, and shear-pressure profiles due to couplings between the
force components. By analyzing the density, strain-rate, and shear-pressure profiles in Fourier space, we are able
to evaluate the Fourier coefficients of the response functions, which now have additional components describing
the coupling relationships. Having evaluated the Fourier coefficients of the response functions, we are then able
to accurately predict the density, velocity, and shear-pressure profiles for fluids that are under the influence of a
longitudinal force composed of two or three sinusoidal components combined with a single-component sinusoidal
transverse force. We also find that in the case of a multisinusoidal longitudinal force, it is sufficient to include
only pairwise couplings between different longitudinal force components. This means that it is unnecessary to
include couplings between three or more force components in the case of a longitudinal force composed of many
Fourier components, and this paves the way for a highly accurate but tractable treatment of nonlocal transport
phenomena in fluids with density and strain-rate inhomogeneities on the molecular length scale.
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I. INTRODUCTION

Nanofluidic flow has recently been the subject of intense
interest because of its importance for emerging applications
in biomolecular analysis, separation science, and energy
conversion [1]. An important conclusion that has emerged
from recent work in this field is that for a variety of reasons, the
usual Navier-Stokes description of hydrodynamics begins to
break down when it is applied to fluid flow through channels of
width less than about 10 molecular diameters (3–5 nm). When
Poisson-Boltzmann theory and the Navier-Stokes equations
of hydrodynamics are used to predict the velocity profile for
electrokinetic flow, poor agreement with simulation results is
obtained for channels that are less than 3 nm wide [2,3]. This
poor agreement has been attributed to the neglect of ionic and
solvent packing effects in the interfacial region, and density-
functional theory improves the agreement [3]. However, there
are several other effects that may be equally significant and
may also need to be included in an accurate theory of
nanofluidic transport. These include the nonlocal relationship
between the velocity and shear pressure [4], nonlocal coupling
between the velocity field and the density profile [5], and
coupling between the translational and rotational velocity
fields for molecular fluids [6]. Considering the complex
interplay of these different factors, it seems prudent to consider
simpler cases in which each of the different effects can be
studied in isolation.

It is well known that a dense fluid near a fluid-solid interface
will exhibit a density profile with strong spatial oscillations
within the region directly neighboring the solid wall. These
effects have been well investigated using molecular-dynamics
(MD) and Monte Carlo (MC) computer simulations [5,7–12],
and they are present in all dense fluids, including aqueous
systems [3]. The oscillations, which can be attributed to the
effects of atomic and molecular planar packing parallel to
the wall, decay in the direction normal to the wall. The
spatial period of the density oscillations is of the order
of a single atomic diameter, and the decay length of the
oscillations is typically less than 5 atomic diameters. In the
case of nanoconfinement where the channel width is less than
10 atomic diameters, these strong fluid density oscillations
can extend across the entire channel. When a fluid is driven to
flow along a nanochannel, it is known that these strong density
oscillations influence the flow profiles [5,7,12]. This was most
clearly illustrated by Travis and Gubbins [13], who showed
that the streaming velocity profiles exhibit large oscillations,
which are clearly aligned with the oscillations in the density
profile. A theory of transport in strongly inhomogeneous fluids
based on the generalized Enskog-like theory has been proposed
by Pozhar and Gubbins [14]. This microscopic theory is, in
principle, capable of predicting many features of transport in
highly inhomogeneous fluids. However, it does not display
the coupling of density, strain rate, and shear pressure in a
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physically transparent way. From this point of view, a more
phenomenological, mesoscopic approach may be useful.

It is difficult to use a nanoconfined system to investigate
the coupling relationships between the strong density inho-
mogeneities and flow profiles because of the complexity of
the density profiles, which are a natural fluid response to
the presence of the confining walls. In previous work, we
have introduced a framework that allows us to investigate
the coupling relationships between strong density inhomo-
geneities and flow profiles that avoids the introduction of
fluid-solid interfaces [15,16]. Instead of confining the fluid in
a nanochannel, we apply periodic external forces to an uncon-
fined system to produce both periodic density inhomogeneity
and periodic flow. We showed that we could reproduce many
of the relevant characteristics of nanoconfined flow, such as
the spatially oscillating velocity profiles due to density and
velocity coupling. In these periodic systems, we have a high
level of control over the shape, amplitude, and wavelength
of the perturbations, and we can exploit the advantages of
Fourier analysis. Although these simplified systems are highly
idealized, they provide an excellent tool for investigating the
coupling between density and velocity gradients.

In our most recent work [17], we introduced a formalism
for describing shearing inhomogeneous fluids in terms of
a truncated functional expansion, where the density, veloc-
ity gradients, and shearing pressure are represented as the
response of a fluid to transverse and longitudinal external
forces. We expressed the response formalism in terms of the
external forces because the external forces are the independent
input functions. The density and velocity, and hence the strain
rate, are strongly coupled and thus they are not independent
input functions. At lowest order, the effects of the transverse
and longitudinal forces are independent. However, for larger
values of the forces, the transverse force can generate density
variations in addition to a velocity field, and likewise the
longitudinal force can couple with the transverse force and
modify the velocity field. We also described how we might
evaluate inhomogeneous density-dependent viscosities that
could be used in a local average density model. In this
current work, we do not consider this model or other similar
constitutive equations, but rather we continue our investigation
with the external force response function formalism. We will
return to discuss the local average density model in future
work.

In our previous work [17], we introduced composite exter-
nal forces consisting of a sinusoidal transverse force (STF)
that produces shearing flow, and a sinusoidal longitudinal
force (SLF) that produces density inhomogeneity. We only
considered the case in which these forces were each composed
of single Fourier components. In this paper, we investigate
the effects of using multiple Fourier component SLFs in
superposition. The reason for doing this is that the density
inhomogeneity due to packing at the solid wall in real systems,
such as the nanoconfined fluid, cannot be reproduced by only
a single Fourier component external force. By superimposing
two and three Fourier components in our SLFs, we can
directly observe the effects of each component on the density
profile and clearly isolate any coupling between the combined
components. We will find that there is indeed very significant
coupling between each pair of Fourier components of the

longitudinal force, but we also see that triplet and higher-order
couplings can be neglected. It is the major attraction of this
periodic external force method that we are able to isolate such
effects, which would otherwise be indiscernible. We can also
isolate the effects of coupling between the multiple compo-
nents of the SLF on the velocity and shear-pressure profiles.
We will see that these effects are also significant, but the
coupling is limited and manageable. The ability to isolate and
observe the effects of multiple-component SLF superposition
on the density, velocity, and shear-pressure profile will be
very helpful in understanding strongly inhomogeneous flow
in nanoconfined fluids where the density profiles are far more
complex than those produced by single Fourier component
longitudinal forces.

II. THEORETICAL BACKGROUND

A. Nonlocal response functions

In a previous publication [17], we showed that we can
express the density, strain rate, and shear pressure as a response
to an external body force F(y) = (Fx(y), Fy(y)), where Fx(y)
is a transverse force that produces shearing flow and Fy(y) is
a longitudinal force that produces density inhomogeneities. It
will be assumed that the transverse force remains weak, while
the longitudinal force may be moderately strong. We showed
that if the density response to this force is truncated at the
second order, it can be written as

ρ(y) = ρ0 +
∫

χ (1)
y (y − y ′)Fy(y ′)dy ′

+ 1

2

∫
χ (2)

yy (y − y ′,y − y ′′)Fy(y ′)Fy(y ′′)dy ′dy ′′

+ 1

2

∫
χ (2)

xx (y − y ′,y − y ′′)Fx(y ′)Fx(y ′′)dy ′dy ′′,

(1)

where ρ0 is the density of the homogeneous fluid, χ (1)
y and

χ (2)
yy are the first- and second-order response functions relating

density perturbations to the longitudinal force, and χ (2)
xx is the

second-order response function relating density perturbations
to the transverse force.

We also showed that the strain rate can be written as

γ̇ (y) =
∫

ξ (1)
x (y − y ′) Fx(y ′) dy ′

+
∫

ξ (2)
xy (y − y ′,y − y ′′) Fx(y ′)Fy(y ′′) dy ′dy ′′

+
∫

ξ (3)
xyy(y − y ′,y − y ′′,y − y ′′′) Fx(y ′)Fy(y ′′)

×Fy(y ′′′) dy ′dy ′′dy ′′′, (2)

where ξ (1)
x , ξ (2)

xy , and ξ (3)
xyy are first-, second-, and third-order

strain-rate response functions. The strain rate is usually the
property of interest when discussing shear flow. However, we
will often present our results in terms of the velocity profiles,
which are easier to visualize. The strain rate is given by the
derivative of the steaming velocity γ̇ (y) = du(y)/dy. The
shear pressure can be written in the same form as the strain
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rate, defining π (1)
x , π (2)

xy , and π (3)
xyy as the first-, second-, and

third-order shear-pressure response functions.
The truncated functional expansion for the density given

by Eq. (1) is a reformulation of the highly successful
density-functional theory of inhomogeneous liquid structure.
In our formulation, we empirically determine the response
functions instead of postulating their approximate form [15].
The functional expansion of the strain rate, Eq. (2), and the
corresponding one for the shear pressure are generalizations
of the linear nonlocal constitutive equation that we previously
used to successfully describe shear flow with short-wavelength
oscillations in the strain rate [4]. These relations could also
be expressed as gradient expansions, leading to a van der
Waals–type theory of inhomogeneous fluids in the case of the
density, and a Chapman-Enskog-type theory of transport. The
integral formulations that we present here have the advantage
that they do not require the summation of high-order gradient
expansions that these approaches would require for strongly
inhomogeneous fluids.

In this paper, we are concerned with the density, strain-rate,
and shear-pressure response when the external body force is
given by a single-component sinusoidal transverse force (STF)
and a multicomponent sinusoidal longitudinal force (SLF). We
will begin with the case of a two-component SLF, and we will
then extend this treatment to develop a simplified approach for
investigating the effects of three-component SLFs.

B. Two-component SLF

The single-component STF and two-component SLF exter-
nal body force are represented by

F(y) = (
Fx

n sin(kny), F y
m1

sin(km1y) + Fy
m2

sin(km2y)
)
, (3)

where kn = 2nπ/Ly is the wave number of the STF for any
positive integer n, and km1 and km2 are the wave numbers for
the two SLF components for any pair of positive integers m1

and m2.
The density, strain-rate, and shear-pressure profiles are

periodic, so they can each be written as a Fourier series:

ρ(y) =
∞∑

p=0

ρp cos(kpy), γ̇ (y) =
∞∑

p=1

γ̇p cos(kpy),

(4)

�(y) =
∞∑

p=1

�p cos(kpy).

Likewise, we can write the streaming velocity profile as a
Fourier series u(y) = ∑∞

p=1 up sin(kpy), where γ̇p = kpup.

In [17], we described how the response functions defined by
Eqs. (1) and (2) and the corresponding equation for the shear
pressure can also be expressed as Fourier series. Substituting
the Fourier series representations for the response functions
from [17], as well as the force given in Eq. (3) and the
corresponding Fourier series profiles, into Eqs. (1) and (2) and
the corresponding equation for the shear pressure, we can take
the Fourier transform of each equation and hence determine
which Fourier components will be present in the density, strain
rate, and shear pressure for a fluid perturbed by Eq. (3).

The αth Fourier coefficient of the density for a fluid under
the influence of F(y) is given by

ρα = ρ0δα,0 − Ly

2
Fy

m1
χy

m1
δα,m1 − Ly

2
Fy

m2
χy

m2
δα,m2

+ L2
y

8
Fy

m1
Fy

m1
χyy

m1,m1
δα,2m1 + L2

y

8
Fy

m2
Fy

m2
χyy

m2,m2
δα,2m2

+ L2
y

8
Fy

m1
Fy

m2
χyy−

m1,m2
δα,|m1−m2|

+ L2
y

8
Fy

m1
Fy

m2
χyy+

m1,m2
δα,m1+m2 + L2

y

8
Fx

n F x
n χxx

n,nδα,2n, (5)

where δαβ is the Kronecker delta, and we note that repeated
indices here do not imply summation. χ

y
m1 and χ

y
m2 are the

Fourier coefficients of the linear density response function
at wave numbers m1 and m2 corresponding to the two SLF
components, χ

yy
m1,m1 and χ

yy
m2,m2 are the Fourier coefficients

of the second-order density response function corresponding
to each SLF component, and χxx

n,n is the Fourier coefficient
of the second-order, shear-induced density response function
corresponding to the STF. All of these quantities appear
in the single-component response theory discussed in detail
previously [17]. χ

yy+
m1,m2 and χ

yy−
m1,m2 represent the density

responses due to coupling between the two SLF components.
Each SLF component contributes linearly, so we refer to this
response as the bilinear density response. We see that these
bilinear density response components are only excited when
two SLF components of different wave number are present
simultaneously. For a given pair of F

y
m1 and F

y
m2 , we can

evaluate the two bilinear response Fourier coefficients by

χyy−
m1,m2

= 8ρ|m1−m2|
L2F

y
m1F

y
m2

, χyy+
m1,m2

= 8ρm1+m2

L2F
y
m1F

y
m2

. (6)

The Fourier space representation of the strain rate in terms
of F(y) is given by

γ̇α =−Ly

2
Fx

1 ξx
n δα,n + L2

y

8
Fx

n F y
m1

[
ξxy−
n,m1

δα,|n−m1| + ξxy+
n,m1

δα,n+m1

] + L2
y

8
Fx

n F y
m2

[
ξxy−
n,m2

δα,|n−m2| + ξxy+
n,m2

δα,n+m2

]

+ L3
y

32
Fx

n F y
m1

Fy
m1

[
ξxyy−
n,m1,m1

δα,|n−2m1| + ξxyy0
n,m1,m1

δα,n + ξxyy+
n,m1,m1

δα,n+2m1

]

+ L3
y

32
Fx

n F y
m2

Fy
m2

[
ξxyy−
n,m2,m2

δα,|n−2m2| + ξxyy0
n,m2,m2

δα,n + ξxyy+
n,m2,m2

δα,n+2m2

]

+ L3
y

32
Fx

n F y
m1

Fy
m2

[
ξxyy−+
n,m1,m2

δα,|n−(m1+m2)| + ξxyy−−
n,m1,m2

δα,|n−|m1−m2|| + ξxyy+−
n,m1,m2

δα,n+|m1−m2| + ξxyy++
n,m1,m2

δα,n+(m1+m2)
]
, (7)
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and the shear pressure is given by

�α =−Ly

2
Fx

n πx
n δα,n + L2

y

8
Fx

n F y
m1

[
πxy−

n,m1
δα,|n−m1| + πxy+

n,m1
δα,n+m1

] + L2
y

8
Fx

n F y
m2

[
πxy−

n,m2
δα,|n−m2| + πxy+

n,m2
δα,n+m2

]

+ L3
y

32
Fx

n F y
m1

Fy
m1

[
πxyy−

n,m1,m1
δα,|n−2m1| + πxyy+

n,m1,m1
δα,n+2m1

] + L3
y

32
Fx

n F y
m2

Fy
m2

[
πxyy−

n,m2,m2
δα,|n−2m2| + πxyy+

n,m2,m2
δα,n+2m2

]

+ L3
y

32
Fx

n F y
m1

Fy
m2

[
πxyy−+

n,m1,m2
δα,|n−(m1+m2)| + πxyy−−

n,m1,m2
δα,|n−|m1−m2|| + πxyy+−

n,m1,m2
δα,n+|m1−m2| + πxyy++

n,m1,m2
δα,n+(m1+m2)

]
. (8)

ξx
n and πx

n are the Fourier coefficients for the linear response of
the strain rate and shear pressure to the STF, ξxy±

n,m1 and ξ
xy±
n,m2 are

the Fourier coefficients for the bilinear response of the strain
rate to the coupled STF and SLF, and π

xy±
n,m1 and π

xy±
n,m2 are

the Fourier coefficients for the bilinear response of the shear
pressure. ξ

xyy±
n,m1,m1 , ξ

xyy±
n,m2,m2 , ξ

xyy0
n,m1,m1 , and ξ

xyy0
n,m2,m2 are the third-

order strain-rate response coefficients that are linear in the STF
and quadratic in the SLF, and π

xyy±
n,m1,m1 and π

xyy±
n,m2,m2 are the

third-order shear-pressure response coefficients that are linear
in the STF and quadratic in the SLF. All of these quantities are
described in [17], where we also show that π

xyy0
n,m1,m1 = 0 and

π
xyy0
n,m2,m2 = 0.
ξ

xyy±±
n,m1,m2 and π

xyy±±
n,m1,m2 represent the strain-rate and shear-

pressure responses that are linear in the STF and each of the
SLF components. For a combination of a single-component
STF and a two-component SLF, we excite four additional
harmonics in both the strain-rate and shear-pressure profiles.
We refer to this as the trilinear response since each force
component contributes linearly. For any Fx

n and any pair of
F

y
m1 and F

y
m2 we can calculate the four trilinear strain-rate

response coefficients from

ξxyy++
n,m1,m2

= 32γ̇n+(m1+m2)

L3Fx
n F

y
m1F

y
m2

, ξ xyy+−
n,m1,m2

= 32γ̇|n+|m1−m2||
L3Fx

n F
y
m1F

y
m2

,

(9)
ξxyy−+
n,m1,m2

= 32γ̇|n−(m1+m2)|
L3Fx

n F
y
m1F

y
m2

, ξ xyy−−
n,m1,m2

= 32γ̇|n−|m1−m2||
L3Fx

n F
y
m1F

y
m2

,

and we can calculate the four shear-pressure response coeffi-
cients by

πxyy++
n,m1,m2

= 32�n+(m1+m2)

L3Fx
n F

y
m1F

y
m2

, πxyy+−
n,m1,m2

= 32�|n+|m1−m2||
L3Fx

1 F
y
m1F

y
m2

,

(10)
πxyy−+

n,m1,m2
= 32�|n−(m1+m2)|

L3Fx
n F

y
m1F

y
m2

, πxyy−−
n,m1,m2

= 32�|n−|m1−m2||
L3Fx

n F
y
m1F

y
m2

.

In Sec. IV, we will evaluate these response functions over a
range of SLF wavelengths. In this paper, we will only consider
the case of n = 1 for the STF wave number. In Sec. V, we will
use the response functions to predict some simple flow profiles.
We will also show how they can be used to predict flow profiles
for fluids under the influence of a single-component STF and
a three-component SLF. First, we will briefly describe the
computer simulation method used throughout this paper.

III. SIMULATION DETAILS

The simulation methods in this paper are the same as those
used in [17]. We will only repeat the necessary information.
The only difference between the system studied in this paper

and the system used in [17] is that here we use multiple Fourier
component SLFs. The equations of motion are therefore given
by

ṙi = pi

m
,

(11)
ṗi = F�

i + Fx
n sin(knyi)i +

∑
q

F y
mq

sin(kmq
yi)j

−α0[pi − mux(yi)i],

where i = 1,2, . . . ,N labels the ith atom for a system of N

atoms. F� is the force due to the interatomic potential. We use
the Weeks, Chandler, and Andersen (WCA) potential given by

φWCA(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] + ε, r � 21/6σ,

0, r > 21/6σ,
(12)

where σ and ε are the usual Lennard-Jones parameters. The
WCA potential reproduces the generic structural properties of
dense fluids, which are mainly determined by their hard-core
interactions [18]. α0 is the Nosé-Hoover integral feedback mul-
tiplier [19–21] calculated by solving α̇0 = (T − T0)/ζ , where
T is the instantaneous zero-wave-vector kinetic temperature,
T0 is the target value of the temperature, and ζ is the feedback
strength constant. m1,m2, . . . label the set of SLF components
with wave numbers km1 ,km2 , . . . . In this paper, we will consider
systems with two- and three-component SLFs.

For all simulations, we use N = 1372 atoms. All quantities
are given in standard Lennard-Jones reduced units, scaled by
the atomic mass and the Lennard-Jones distance and energy
parameters. The average reduced temperature is T = 0.765
and the average reduced density is ρ = 0.685, corresponding
to a typical dense fluid state. All atoms have a reduced
mass of mi = 1.0, and the simulation cell lengths are Lx =
Ly = Lz = 12.605 in reduced length units. With n = 1 for
the STF and a suitable choice of the SLF wavelengths, we
can generate flows in which one half-wavelength of the STF
resembles a Poiseuille flow profile for a channel of width
L/2 = 6.3025, i.e., approximately six molecular diameters.
For water, this corresponds to a channel width of around 2 nm.
The wavelengths of the SLFs are chosen so as to generate a
range of density profiles including some closely resembling
those found in planar channels. We obtain modulated density
oscillations of wavelength L/(2m), where m = 6 . . . 14. At
m = 10, the wavelength of the density oscillations is close
to one molecular diameter, giving density profiles similar to
those observed in simulations of dense fluids near hard walls.

To calculate the Fourier coefficients for the density profile,
we use the direct Fourier decomposition method for the
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0 1 2 3
−1

0

1

2

x 10
−4

F y
6 , F y

10

χ
y

y
±

6
,1

0

 

 

χy y +
6 , 1 0

χy y −
6 , 1 0

FIG. 1. Two examples of the SLF field strength dependence of the
bilinear density response Fourier coefficients. Both SLF components
have equal amplitude such that F y

m1
= F y

m2
= 0.5, 1.0, 1.5, 2.0,

and 2.5.

instantaneous atomic configurations as described in
[15,17,22]. The Fourier coefficients for the velocity and tem-
perature profiles are determined by the least-squares method
described by Baranyai [23] and others [16,17,24,25]. The
Fourier coefficients of the shear-pressure profile are calculated
directly from the expression for the wave-vector-dependent
pressure tensor [17,22].

All results were obtained by averaging over 10 macroscop-
ically equivalent but independent systems that were run for
2 × 106 time steps after reaching a stable steady state, as
described in our previous paper [17].

IV. RESULTS FOR A SINGLE-COMPONENT STF
AND TWO-COMPONENT SLFs

In Eq. (5) we showed that for each pair of distinct SLF
components, we excite two harmonics in the density profile
due to second-order bilinear coupling. In Eqs. (7) and (8) we
showed that for each single-component STF and each pair
of distinct SLF components, we excite four harmonics in
the strain-rate and shear-pressure profiles due to third-order
trilinear coupling. All of the other response components
presented in these three equations were discussed in [17].
In this section, we evaluate the Fourier coefficients for the
additional response functions that arise due to the addition of
a second SLF component. Since the response functions should
be evaluated in the limit of zero field strength, we will examine
how the response function Fourier coefficients behave as the
STF and SLF fields strengths are varied. We will see that none
of the new response functions considered in this paper appear
to have any systematic dependence of either the STF or SLF
field strength over the range of fields investigated.

A. Bilinear density response functions

We begin with the bilinear density response coefficients
χ

yy+
m1,m2 and χ

yy−
m1,m2 given by Eq. (6). As an example, in Fig. 1

we show how χ
yy+
6,10 and χ

yy−
6,10 behave over a range of SLF force

amplitudes. We evaluate these coefficients from

χ
yy−
6,10 = 8ρ4

L2F
y

6 F
y

10

, χ
yy+
6,10 = 8ρ16

L2F
y

6 F
y

10

. (13)

Figure 1 shows results for Eq. (13) evaluated for F
y

6 = F
y

10 =
0.5, 1.0, 1.5, 2.0, and 2.5. We see that both χ

yy+
6,10 and χ

yy−
6,10 are

TABLE I. Fourier coefficients of bilinear density response func-
tions. The numbers in parentheses following the values are their
uncertainties.

m1,m2 χyy+
m1,m2

(×10−4) χyy−
m1,m2

(×10−5)

6,8 0.86 (0.12) −4.1 (0.2)
6,10 2.1 (0.1) −5.7 (0.2)
6,12 3.9 (0.2) −3.4 (0.6)
6,14 2.0 (0.0) 4.9 (0.3)
8,10 2.3 (0.0) −5.0 (0.1)
8,12 4.9 (0.1) −4.0 (0.5)
8,14 2.9 (0.1) 3.6 (0.4)
10,12 7.1 (0.3) −2.4 (0.8)
10,14 6.4 (0.3) 5.5 (0.2)
12,14 15.0 (1.9) 11.0 (1.0)

independent of the SLF field strength. We have confirmed
that this independence holds for all possible combinations
of pairs from m = 6, 8, 10, 12, and 14. Since the data
points for F

y
m1 = F

y
m2 = 0.5 often have larger uncertainties,

we exclude these values from our analysis. To evaluate the
response function Fourier coefficients at zero field strength, it
is therefore sufficient to calculate the average of the coefficients
over the four field strengths from 1.0 to 2.5. We show numerical
results for these calculations in Table I for all pair combinations
of m = 6, 8, 10, 12, and 14.

Because the bilinear density response function Fourier
coefficients do not systematically depend on the SLF field
strength, we can use a less computationally expensive method
to evaluate them. Instead of performing the calculations over
a range of SLF field strengths and then calculating an average
value, we can just choose a single value for the field strength.
In this way, we directly calculate χ

yy+
m1,m2 and χ

yy−
m1,m2 from

Eq. (13). In this instance, we take F
y
m1 = F

y
m2 = 2.0. The

response function Fourier coefficients χ
yy+
m1,m2 and χ

yy−
m1,m2 are

two-dimensional functions in k space since they depend on the
wavelengths of both SLF components. It is possible to evaluate
these functions in specific domains of k space by evaluating
Eq. (13) over a range of m1 and m2 values. In Fig. 2, we show
five one-dimensional slices of χ

yy+
m1,m2 and χ

yy−
m1,m2 . In particular,

we show χ
yy±
6,m2

, χyy±
8,m2

, χyy±
10,m2

, χyy±
12,m2

, and χ
yy±
14,m2

, evaluated over
a range of m2 such that m2 = 1,2, . . . ,20.

It should be noted that we need to make various corrections
when evaluating χ

yy−
m1,m2 . For example, when m1 = 6 and

m2 = 12, the density Fourier component ρ6 cos(k6y) consists
of both a linear-response contribution from F

y

6 and a bilinear-
response contribution since |m1 − m2| = 6. We correct χ

yy−
6,12

by letting χ
yy−
6,12 = 8(ρ6 + LF

y

6 χ
y

6 )/L2F
y

6 F
y

12. χ
y

6 is taken
from Ref. [17]. As a second example, consider the case
in which m1 = 6 and m2 = 2. In this case, the density
Fourier component ρ4 cos(k4y) again has two contributions:
a second-order response contribution from F

y

2 and a bilinear-
response contribution since |m1 − m2| = 4. To correct for
the additional contributions, we calculate χ

yy−
6,2 from χ

yy−
6,2 =

8(ρ4 − L2F
y

2 F
y

2 χ
yy

2,2/8)/L2F
y

6 F
y

2 .

B. Trilinear strain-rate and shear-pressure response

We now evaluate the Fourier coefficients for the trilinear
response functions given by Eqs. (9) and (10). For all
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FIG. 2. Fourier space bilinear response function shown for one-dimensional slices through the full two-dimensional space.

systems in this paper, we take n = 1 and so the STF is
Fx(y) = Fx

1 sin(k1y). Therefore, the Fourier coefficients of
the corresponding strain-rate and shear-pressure response
functions are ξ

xyy±±
1,m1,m2

and π
xyy±±
1,m1,m2

. We wish to determine
whether these Fourier coefficients of the response functions
depend on the force amplitudes. As an example, in Fig. 3 we
show ξ

xyy++
1,6,10 and π

xyy++
1,6,10 calculated over a range of SLF force

amplitudes for a single STF force amplitude Fx
1 = 0.10. From

Eq. (7), we have

ξ
xyy++
1,6,10 = 32k17u17

L3Fx
1 F

y

6 F
y

10

, π
xyy++
1,6,10 = 32�17

L3Fx
1 F

y

6 F
y

10

. (14)

For the two-component SLF, we use equal force amplitudes
such that F

y

6 = F
y

10 = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0. We
neglect the data points for the lower SLF amplitudes F

y

6 =
F

y

10 = 1.0, 1.5, and 2.0 since the data have large uncertainties

0 1 2 3 4
−2

−1

0

1

2

x 10
−4

F y
6 , F y

10

ξ
x

y
y
+

+
1

,6
,1

0
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−10

−5

0

5
x 10

−6

F y
6 , F y

10

π
x

y
y
+

+
1

,6
,1

0

FIG. 3. Examples of the SLF dependence of the trilinear strain-
rate and shear-pressure response function Fourier coefficients for n =
1, m1 = 6, and m2 = 10. Single STF field strength used F x

1 = 0.10.

for these values. In the region of F
y

6 = F
y

10 = 2.5, 3.0, 3.5,
and 4.0, the coefficients are essentially independent of the SLF
amplitude. We calculate the averages of ξ

xyy++
1,6,10 and π

xyy++
1,6,10 in

this region. We plot these averages as a function of STF field
strength to check the STF amplitude dependence. This is done
in Fig. 4 for all ξ

xyy±±
1,6,10 and π

xyy±±
1,6,10 coefficients.

Note that in the case of ξ
xyy+−
1,6,10 and π

xyy+−
1,6,10 , we need

to calculate a correction due to bilinear contributions at the
same wave number. For the strain-rate response, we calcu-
late ξ

xyy+−
1,6,10 = 32(k5u5 − L2

8 Fx
1 F

y

6 ξ
xy−
1,6 )/L3Fx

1 F
y

6 F
y

10, and for

the shear-pressure response we calculate π
xyy+−
1,6,10 = 32(�5 −

L2

8 Fx
1 F

y

6 ξ
xy−
1,6 )/L3Fx

1 F
y

6 F
y

10. ξ
xy−
1,6 and π

xy−
1,6 are taken from

Ref. [17].
From Fig. 4 we see that all ξ

xyy±±
1,6,10 and π

xyy±±
1,6,10 coefficients

appear to be independent of the STF amplitude. We therefore
calculate the average of these values. In this way, we are
calculating two averages to evaluate the ultimate value of
a response coefficient: the average over the range of SLF
amplitudes for each value of the STF, and then the average of
these averages over the range of STF amplitudes. Alternatively,
we can reduce the number of simulations used to evaluate
the coefficients. Instead of calculating ξ

xyy±±
1,m1,m2

and π
xyy±±
1,m1,m2

over a range of SLF amplitudes, we use a single-amplitude
F

y
m1 = F

y
m2 = 3.0, which we see from Fig. 3 is in the region

where we can be confident that the trilinear coefficients are
similar to the average value of the coefficient. With the same
range of STF amplitudes as above, Fx

1 = 0.05, 0.10, 0.15, and
0.20, we calculate ξ

xyy±±
1,m1,m2

and π
xyy±±
1,m1,m2

for the single SLF
amplitude and then calculate the average over the range of
STF amplitudes. In Table II, we show ξ

xyy±±
1,m1,m2

and π
xyy±±
1,m1,m2

calculated in this way for various pairs of m1 and m2.
We must be careful when calculating the values in Table II

to account for many cases in which there are multiple response
contributions to a particular Fourier component of the strain
rate and shear pressure. For example, when |m1 − m2| = 2,
then ξ

xyy−−
n,m1,m2 and π

xyy−−
n,m1,m2 both represent coefficients for

harmonics with wave number k1 = 2π/Ly . In this case, we
need to subtract the linear response (and, in the case of the
strain rate, the third-order response due to ξ

xyy0
n,m1,m1 and ξ

xyy0
n,m2,m2 )

from the strain rate and shear pressure, in order to calculate
ξ

xyy−−
n,m1,m2 and π

xyy−−
n,m1,m2 correctly.

Finally, it is interesting to note the small magnitudes of all
π

xyy±±
1,m1,m2

terms. In many cases, the uncertainty in the coefficient
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FIG. 4. STF dependence of the four ξ
xyy±±
1,6,10 coefficients and the four π

xyy±±
1,6,10 coefficients.

is approximately equal to, or perhaps even larger than, the
value of the coefficient. For example, we see that π

xyy+−
1,6,12 =

0.2 ± 1.8. Therefore, the trilinear contributions to the shear
pressure are often negligible at the currently achievable limits
of precision.

V. PREDICTING DENSITY, VELOCITY, AND
SHEAR-PRESSURE PROFILES FOR A

SINGLE-COMPONENT STF AND TWO-COMPONENT SLFs

In this section, we use the Fourier coefficients for the
response functions calculated in Sec. IV and in our previous
paper [17] in the truncated functional expansions to predict
various density, velocity, and shear-pressure profiles produced
with a single-component STF and two component SLFs. We
will compare the results with profiles obtained directly from
MD simulations.

A. Density profiles

For the force given by Eq. (3) with n = 1, we expect a
density profile given by

ρ(y) = ρ0 − L

2
Fy

m1
χy

m1
cos(km1y) − L

2
Fy

m2
χy

m2
cos(km2y)

+ L2

8
Fy

m1
Fy

m1
χyy

m1,m1
cos(k2m1y) + L2

8
Fy

m2
Fy

m2
χyy

m2,m2

× cos(k2m2y) + L2

8
Fy

m1
Fy

m2
χyy−

m1,m2
cos(k|m1−m2|y)

+ L2

8
Fy

m1
Fy

m2
χyy+

m1,m2
cos(km1+m2y)

+ L2

8
Fx

1 Fx
1 χxx

1,1 cos(k2y), (15)

TABLE II. Third-order trilinear strain-rate and shear-pressure response function Fourier coefficients for various pairs of two-component
SLFs. All evaluated with a single-component STF at n = 1. The numbers in parentheses following the values are their uncertainties.

m1,m2 ξ
xyy++
1,m1,m2

(×10−4) ξ
xyy+−
1,m1,m2

(×10−4) ξ
xyy−+
1,m1,m2

(×10−4) ξ
xyy−−
1,m1,m2

(×10−4)

6,8 0.91 (0.27) 2.5 (0.3) 1.1 (0.3) 2.7 (0.4)
6,10 1.3 (0.3) 4.2 (0.2) 1.9 (0.3) 3.8 (0.5)
6,12 3.0 (0.5) 7.4 (0.6) 3.3 (06) 8.0 (0.6)
6,14 1.3 (0.6) 0.62 (0.17) 1.5 (0.5) 1.4 (0.3)
8,10 1.5 (0.3) 4.0 (0.4) 1.6 (0.3) 5.0 (0.7)
8,12 2.9 (0.6) 6.0 (0.6) 2.9 (0.2) 6.9 (0.8)
8,14 1.4 (0.4) 1.4 (0.3) 1.2 (0.7) 1.5 (0.2)
10,12 4.5 (0.8) 8.4 (1.1) 5.2 (0.7) 12 (2)
10,14 1.4 (0.7) 2.2 (0.3) 1.5 (0.7) 2.7 (0.4)
12,14 1.4 (0.5) 1.3 (0.6) 0.87 (0.90) 0.59 (1.0)

m1,m2 π
xyy++
1,m1,m2

(×10−6) π
xyy+−
1,m1,m2

(×10−6) π
xyy−+
1,m1,m2

(×10−6) π
xyy−−
1,m1,m2

(×10−5)
6,8 −1.8 (1.3) 5.4 (3.4) 2.1 (1.4) −1.6 (0.6)
6,10 −3.3 (2.6) 5.8 (1.0) 4.2 (2.2) −0.42 (0.23)
6,12 −7.1 (0.6) 0.2 (1.8) 8.0 (0.9) 0.07 (0.16)
6,14 −3.0 (1.2) −1.4 (1.5) 3.2 (0.9) 0.0 (0.1)
8,10 −4.1 (1.0) 6.6 (3.2) 3.9 (1.5) −2.0 (0.6)
8,12 −5.2 (0.9) 1.6 (1.8) 6.0 (0.9) −0.20 (0.3)
8,14 −3.6 (2.1) 2.2 (1.5) 3.7 (0.9) 0.17 (0.19)
10,12 −9.5 (1.2) 4.5 (4.3) 10 (1) −1.2 (1.0)
10,14 −7.6 (1.2) −2.3 (2.1) 8.0 (1.3) 0.66 (0.19)
12,14 −16 (1) −9.2 (2.6) 17 (2) 0.27 (0.79)
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FIG. 5. Comparison between density profiles obtained directly from MD simulations and those predicted by truncated functional expansions
with independently computed response functions, for a single-component STF combined with two-component SLFs. Bold lines without symbols
represent MD simulations. STF has F x

1 = 0.08 for all profiles. (a) m1 = 6 and m2 = 10. Thin dashed lines indicated with crosses represent
F

y

6 = 1.0,F
y

10 = 0.5, and thin dashed lines indicated with circles represent F
y

6 = 1.0,F
y

10 = 3.0. (b) m1 = 8 and m2 = 10. Thin dashed lines
indicated with squares represent F

y

8 = F
y

10 = 1.0, crosses represent F
y

8 = F
y

10 = 3.0, and circles represent F
y

8 = F
y

10 = 4.0.

where we have truncated the functional expansion at the
second-order response. This expression can be obtained
substituting Eq. (5) into the density Fourier series in Eq. (4).
We can reconstruct the density profiles produced by a single-
component STF and two-component SLFs using the values
of the bilinear response functions given in Table I and the
values for the first- and second-order single-component SLF
response functions given in [17]. In Fig. 5, we show two sets
of example density profiles. Figure 5(a) shows data for m1 = 6
and m2 = 10. Figure 5(b) shows data for m1 = 8 and m2 = 10.
The force amplitudes are given in the figure caption. The
bold lines show the MD simulation results, and the thin lines
indicated with symbols show the predictions of the truncated
functional expansion using the previously calculated response
functions. The symbols do not indicate discrete data points
since all of the profiles are functions constructed by Fourier
synthesis. We use the symbols only to distinguish the different
profiles. The MD simulation results and the predictions are
in very good agreement, so it is difficult to distinguish the
compared profiles. The relative difference is of the order of
1% for F = 0.5 and 5% for F = 3.0 at most. To calculate
the relative difference, we normalized the residuals using the
zero-wave-vector density component. In Fig. 5(b), we can
see at the density minima of the profile for F

y

8 = F
y

10 = 4.0
that there is a small but observable difference between the
prediction and the MD profile. At these regions, the difference
is approximately 5%. The force amplitudes are relatively large,
so it is likely that the difference is due to third-order effects,
as we described in [15]. Figure 6 shows a magnified view
to emphasize the contribution of each order of response to the
total density profile. We show the convergence of the prediction

given by Eq. (15) toward the MD simulation profiles as we add
additional orders of response. We show this convergence for
the case of m1 = 8, m2 = 10, and F

y

8 = F
y

10 = 4.0, which is
the density profile with the largest amplitude in Fig. 5(c). The
region near the first peak is magnified in Fig. 6. The bold
line represents the density profile calculated directly from the
MD simulations. The thin dashed lines indicated with symbols
represent the different orders of truncation. We see that the
linear response alone (crosses) is insufficient to describe the
density profiles, as expected. The circles show second-order
predictions without the inclusion of the bilinear response terms

0 0.5 1

0

0.5

1

1.5

y

ρ
(y

)

 

 

1 s t o rde r
2 n d o rde r s ing le
2 n d o rde r a l l
MD Simula t io n

FIG. 6. Convergence of the truncated expansion density profile
toward the MD density profile. Magnification of the first peak in
Fig. 5(b) for F

y

8 = F
y

10 = 4.0. The thick line represents the MD
density. Thin dashed lines indicated with symbols represent different
orders of truncation.
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described in the previous section. When we include the bilinear
terms (triangles), we greatly improve the prediction. We see
that there are still differences between the prediction and the
MD simulation profile, but they are quite small. Again, it is
most likely that we could further improve the predictions by
including the third-order response in our treatment. We con-
clude that a truncated functional expansion including the first-

and second-order response terms is sufficient to predict the
total density response under these conditions.

B. Velocity profiles

For the force given by Eq. (3) with n = 1, we expect a
velocity profile given by

u(y) =−L

2
Fx

1
ξx

1

k1
sin(k1y) + L2

8
Fx

1 Fy
m1

[
ξ

xy−
1,m1

k|1−m1|
sin(k|1−m1|y) + ξ

xy+
1,m1

k1+m1

sin(k1+m1y)

]
+ L2

8
Fx

1 Fy
m2

[
ξ

xy−
1,m2

k|1−m2|
sin(k|1−m2|y)

+ ξ
xy+
1,m2

k1+m2

sin(k1+m2y)

]
+ L3

32
Fx

1 Fy
m1

Fy
m1

[
ξ

xyy−
1,m1,m1

k|1−2m1|
sin(k|1−2m1|y) + ξ

xyy0
1,m1,m1

k1
sin(k1y) + ξ

xyy+
1,m1,m1

k1+2m1

sin(k1+2m1y)

]

+ L3

32
Fx

1 Fy
m2

Fy
m2

[
ξ

xyy−
1,m2,m2

k|1−2m2|
sin(k|1−2m2|y) + ξ

xyy0
1,m2,m2

k1
sin(k1y) + ξ

xyy+
1,m2,m2

k1+2m2

sin(k1+2m2y)

]

+ L3

32
Fx

1 Fy
m1

Fy
m2

[
ξ

xyy++
1,m1,m2

k1+(m1+m2)
sin(k1+(m1+m2)y) + ξ

xyy+−
1,m1,m2

k|1+|m1−m2||
sin(k|1+|m1−m2||y)

+ ξ
xyy−+
1,m1,m2

k|1−(m1+m2)|
sin(k|1−(m1+m2)|y) + ξ

xyy−−
1,m1,m2

k|1−|m1−m2||
sin(k|1−|m1−m2||y)

]
. (16)

This equation for the velocity can be determined using the
equation for the Fourier space representation of the strain rate
Eq. (7). The velocity profile is shown because it is easier to
visualize than the strain-rate profile.

In the second and third lines of Eq. (16), we see the bilinear
couplings between the single-component STF and each single-
component SLF. In the next two lines, we see the third-order
coupling between the single-component STF and quadratic
contributions from each single-component SLF. These terms
were discussed in [17]. In addition, we see the inclusion of
the four trilinear terms that were described in Sec. IV. The
values for the linear-response functions given in Ref. [17] and
in Table II can now be used to construct the velocity profiles.

In Fig. 7, we show some examples of velocity profiles
produced using the force given by Eq. (3). We only show
the velocity profile over half of the simulation box length. The
systems are the same as those introduced in the previous sec-
tion, i.e., for the same set of forces used to produce the density
profiles in Fig. 5. The relative residuals are also shown. The
residuals are scaled using the amplitudes of the MD simulation
profiles. In Fig. 7(a), where m1 = 6 and m2 = 10, we see
that the predictions of the truncated functional expansion with
independently computed response functions are accurate. The
relative difference is between 1% and 5% at most. In Fig. 7(b),
where m1 = 8 and m2 = 10, we can see that for the larger SLF
amplitudes, there is a small difference between the MD sim-
ulations and the truncated functional expansion predictions.
The difference between the two profiles is observable when
F

y

8 = F
y

10 = 3.0, but it greatly increases when we increase the
SLF amplitudes to F

y

8 = F
y

10 = 4.0. It should be kept in mind
that these are very large force amplitudes.

In Fig. 8 we consider the convergence of the velocity
profile given by the truncated functional expansion to the
velocity profile calculated directly from the MD simulation

for the case in which m1 = 8 and m2 = 10, Fx
1 = 0.08, and

F
y

8 = F
y

10 = 3.0, which is the second largest profile in
Fig. 7(c). We show the convergence in two different ways. The
first, in Fig. 8(a), shows how the series in Eq. (16) approaches

0 2 4 6
0

0.1

0.2

y

u
(y

)

0 2 4 6
0

0.1

0.2

0.3

0.4

y

u
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(a)

(b)

FIG. 7. Comparison between velocity profiles obtained directly
from MD simulation with predictions of the truncated functional
expansion for a single-component STF and two-component SLFs.
Bold lines represent MD simulations, thin dashed lines with symbols
represent predictions. The system parameters are the same as those
used in Fig. 5. Velocity profiles are only shown for half of a wave
cycle.
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FIG. 8. Convergence of the Fourier series velocity profile Eq. (16) toward the MD simulation profile for m1 = 8, m2 = 10, F x
1 = 0.08,

and F
y

8 = F
y

10 = 3.0. (a) Convergence for increasing orders of response. (b) Convergence for the addition of increasingly shorter wavelengths.
Velocity profiles are only shown for half of a wave cycle.

the MD simulation profile as we add increasing orders of
response. For the third-order contributions, we distinguish be-
tween a series that includes only the third-order terms that are
due to the single-component STF and single SLF, as described
in Ref. [17], and a series that includes the third-order trilinear
terms. The former is labeled as “no trilinear” in the figure
legend. This plot is interesting for two reasons. First, it shows
that the short-wavelength oscillations in the velocity profile
are largely due to the second-order bilinear terms. Second, it
shows the significant contribution to the total velocity profile at
the fundamental wave number made by the third-order terms.
There are three third-order response contributions to the funda-
mental velocity component: one given by ξ

xyy0
1,8,8 , one by ξ

xyy0
1,10,10,

and one due to the third-order trilinear response ξ
xyy−−
1,8,10 .

In Fig. 8(b), we show how the series in Eq. (16) approaches
the MD simulation profile as we add terms with progressively
shorter wavelengths. We show u1 sin(k1y) for the linear
response only, and also for the linear plus all third-order
contributions. u3 sin(k3y) only makes a small contribution,
so we only include it when we include all terms. Next we
add u7 sin(k7y), u9 sin(k9y), and u11 sin(k11y). These are the

harmonics that are excited due to the bilinear response for
n = 1, m1 = 8 and for n = 1, m2 = 10. Figure 8(b) confirms
that the short-wavelength oscillations in the velocity profile are
mostly due to the bilinear terms. Including shorter-wavelength
terms in the series has little effect on the total profile. We are
able to conclude that the inadequacy in the truncated functional
expansion prediction of the velocity profile, which is clearest
where the velocity oscillations are greatest, is due to additional
contributions to the velocity at the u7 sin(k7y), u9 sin(k9y), and
u11 sin(k11y) components, which are not accounted for by the
bilinear response alone. There are higher-order contributions
to the velocity profile at these wavelengths that we have
neglected, and it is likely that for larger SLF amplitudes,
these terms provide a more significant contribution to the total
velocity profile.

C. Shear-pressure profiles

For the force given by Eq. (3) with n = 1, we expect the
shear-pressure profile to be given by

�(y) =−L

2
Fx

1 πx
1 cos(k1y) + L2

8
Fx

1 Fy
m1

[
π

xy−
1,m1

cos(k|1−m1|y) + π
xy+
1,m1

cos(k1+m1y)
] + L2

8
Fx

1 Fy
m2

[
π

xy−
1,m2

cos(k|1−m2|y)

+π
xy+
1,m2

cos(k1+m2y)
] + L3

32
Fx

1 Fy
m1

Fy
m1

[
π

xyy−
1,m1,m1

cos(k|1−2m1|y) + π
xyy+
1,m1,m1

cos(k1+2m1y)
]

+ L3

32
Fx

1 Fy
m2

Fy
m2

[
π

xyy−
1,m2,m2

cos(k|1−2m2|y) + π
xyy+
1,m2,m2

cos(k1+2m2y)
] + L3

32
Fx

1 Fy
m1

Fy
m2

[
π

xyy++
1,m1,m2

cos(k1+(m1+m2)y)

+π
xyy+−
1,m1,m2

cos(k|1+|m1−m2||y) + π
xyy−+
1,m1,m2

cos(k|1−(m1+m2)|y) + π
xyy−−
1,m1,m2

cos(k|1−|m1−m2||y)
]
. (17)
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FIG. 9. Comparison between shear-pressure profiles obtained
from MD simulation and predictions of the truncated functional
expansion with independently computed response functions. Bold
lines represent MD simulations, thin dashed lines with symbols
represent predictions. Both plots are for F x

1 = 0.08. (a) m1 = 6 and
m2 = 10 with F

y

6 = 1.0,F
y

10 = 3.0. (b) m1 = 8 and m2 = 10 with
F

y

8 = F
y

10 = 3.0. Shear-pressure profiles only shown for half of a
wave cycle.

Unlike the velocity profile, the shear-pressure profile does
not include the π

xyy0
1,m1,m1

and π
xyy0
1,m2,m2

terms since we have

previously shown that these terms are zero [17]. The π
xyy±±
1,m1,m2

coefficients are evaluated in Table II for n = 1 and various pair
combinations of m1 and m2.

In Fig. 9 we show two examples of shear-pressure profiles.
We only show the profiles over half of the simulation box
length. Figure 9(a) shows a comparison between the truncated
functional expansion prediction, given by Eq. (17) for m1 = 6,
m2 = 10, F

y

6 = 1.0, and F
y

10 = 3.0, and the MD simulation
results. Figure 9(b) shows the comparison for m1 = 8, m2 =
10, and F

y

6 = F
y

10 = 3.0. We can see that there is excellent
agreement between the prediction and the MD simulation
results.

The convergence plot in Fig. 10 shows the contribution of
the different orders of response to the shear pressure. The plot
shows only a small part of the full profile. We see that, unlike
the velocity profile, the shear-pressure profile contains no
apparent contribution at the fundamental wavelength due to the
nonlinear response. Most of the oscillation in the shear stress
is due to the bilinear response, but the third-order response
slightly improves the accuracy of the prediction.

VI. PREDICTING DENSITY, VELOCITY, AND
SHEAR-PRESSURE PROFILES FOR A

SINGLE-COMPONENT STF AND A
THREE-COMPONENT SLF

In this final section, we investigate whether the density,
velocity, and shear-pressure profiles for a fluid under the

0 0.5 1 1.5 2

−0.1

−0.08

−0.06

−0.04

y

Π
(y

)

 

 
1st o rde r
1st + 2nd o rde r
1st + 2nd + 3rd o rde r
Simula t io n

FIG. 10. Convergence of the shear-pressure profile predicted by
Eq. (17) toward the MD simulation profile for m1 = 8, m2 = 10,
F x

1 = 0.08, and F
y

8 = F
y

10 = 3.0. Shear-pressure profiles only shown
for half of a wave cycle.

influence of a single-component STF and a three-component
SLF can be described using functional expansions truncated
at second order for the density response and third order for
the strain-rate and shear-pressure responses. Note that, due
to symmetry, there can be no contribution to the first- or
second-order density response from terms that couple all
three SLF components. Also there can be no first-, second-,
or third-order contributions to the velocity or shear pressure
from terms that couple the single STF component and all
three SLF components. It is our intention to test whether it is
necessary to include additional terms to account for the four
force component couplings or whether the density, velocity
and shear-pressure profiles can be suitably predicted using
orders of response that have already been discussed. If we can
simplify the description, then the way is open to predicting
density, velocity, and shear-pressure profiles for systems with
many-component SLFs, such as those that might be used
to model Fourier-synthesized channel-like density profiles,
without the need to continually acquire additional response
functions of increasing order every time we add another SLF
component.

For this investigation, we will use the following specific
composite force with a single-component STF and a three-
component SLF:

F(y) = (
Fx

1 sin(k1y),F y

6 sin(k6y)

+F
y

8 sin(k8y) + F
y

10 sin(k10y)
)
. (18)

We do not include the explicit Fourier expansions of the
fluid profiles as we did for the two-component SLF system
in Eqs. (15), (16), and (17). Since we do not introduce
any additional orders of coupling, Eqs. (15), (16), and (17)
can be used as a guide for constructing the profiles for a
three-SLF system by simply combining the terms from the
three two-SLF-component systems, being sure to leave out
any repeat occurrences of terms.

A. Density profiles

In Fig. 11(a), we show a comparison between the MD
simulation density profiles and the truncated functional expan-
sion predictions for the density profiles produced by the force
given in Eq. (18). In the functional expansion, there are three
linear-response terms, one for each value of m, three quadratic
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FIG. 11. Comparison between density profiles directly from MD simulations and the predictions of the truncated functional expansion
using previously computed response functions for three-component SLFs. m1 = 6, m2 = 8, and m3 = 10. Bold lines without symbols represent
MD simulations. Thin dashed lines indicated with triangles are for F

y

6 = F
y

8 = F
y

10 = 0.5. Thin dashed lines indicated with crosses are for
F

y

6 = F
y

8 = F
y

10 = 1.5. Thin dashed lines indicated with circles are for F
y

6 = F
y

8 = F
y

10 = 2.5.

second-order response terms, again one for each value of m,
six bilinear response terms for all pair couplings, and a single
second-order shear-induced term due to the STF. We show
three profiles produced such that F

y

6 = F
y

8 = F
y

10 = 0.5, 1.5,
and 2.5. For all profiles, the STF has an amplitude Fx

1 = 0.08.
We see that our prediction gives a good representation of the
density profile from the MD simulation. The greatest deviation,
which is clearest at the lowest density minima, occurs for
the largest field strength. For the system with the largest
field strengths, the greatest relative difference between the
truncated expansion and the MD profiles is 4%. To calculate
the relative difference, we normalized the residuals using the
zero-wave-vector density component.

In Fig. 12, we show the convergence of the Fourier
series density profile toward the MD simulation results.
We show results for the density profile produced with the
largest field strength F

y

6 = F
y

8 = F
y

10 = 2.5. Figure 12 shows
a magnification of the first peak of this profile. We see that
including the three quadratic second-order response terms
alone does not greatly improve the agreement. It is the bilinear
second-order response that is crucial for accurate predictions.
These are very large field strengths, so again it is likely that

0 0.5 1
0.2

0.4

0.6

0.8

1

1.2

y

ρ
(y

)

 

 

1 s t o rde r
2 n d o rde r s ing le
2 n d o rde r a l l
MD Simula t io n

FIG. 12. Convergence of the truncated expansion density profile
toward the MD density profile for a three-component SLF. Magni-
fication of the first peak in Fig. 11 for F

y

6 = F
y

8 = F
y

10 = 2.5. The
thick line represents the MD density. Thin dashed lines indicated with
symbols represent different orders of truncation.

the small remaining discrepancies are due to a third-order
response to each of the single-component SLFs. It is also
possible that there is a contribution from terms corresponding
to three-SLF-component coupling. It is clear that the truncated
expansion gives good agreement with the MD simulation
profile. We can say that the prediction of the density profile
is quite good even without three-SLF-component coupling.
This is a promising result when we consider the possibility of
producing density profiles with many-component SLFs.

B. Velocity profiles

Figure 13 shows the velocity profiles produced using
Eq. (18) for the same combinations of force amplitudes used
to produce the density profiles in Fig. 11. We compare the MD
simulations with predictions. The Fourier series expansion has
a single linear-response term due to the single-component STF,
six bilinear-response terms, nine third-order response terms
due to the single-STF and single-SLF-component couplings,
and 12 trilinear-response terms. We see that the prediction is
accurate for smaller force amplitudes, but it is less accurate
for the largest force amplitudes, especially in the regions

0 2 4 6
0

0.1

0.2

0.3

y

u
(y

)

FIG. 13. Comparison between velocity profiles obtained directly
from MD simulations and predictions of the truncated functional
expansion using independently calculated response functions for
single-component STF and three-component SLFs. Bold lines rep-
resent MD simulations, thin dashed lines with symbols represent
predictions. The system parameter labels are the same as those used
in Fig. 11. Velocity profiles only shown for half of a wave cycle.
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FIG. 14. Convergence of the predicted velocity profile toward the MD simulation velocity profile for a single-component STF and a
three-component SLF. F x

1 = 0.08 and F
y

6 = F
y

8 = F
y

10 = 2.5. Velocity profiles only shown for half of a wave cycle.

where the density perturbations are greatest. Note that the
resulting field is extremely large with a combined force
amplitude of F

y

6 + F
y

8 + F
y

10 = 7.5. Third-order effects are
expected to be observed at these field strengths [15]. The
convergence plot shown in Fig. 14 confirms the similarity with
the two-component SLF system shown in Fig. 8. It shows that
the oscillatory behavior is predominantly due to the bilinear
response described in Ref. [17]. It also shows that there is no
significant error in the fundamental velocity component. This
means that the contributions to the fundamental component
are from sources previously discussed and that there is
no additional contribution from, for example, a four force
component coupling. This is an encouraging result. It should
be kept in mind, however, that for some other combinations of
m1,m2,m3 we may find excitations at the fundamental velocity
component. We now have five third-order contributions to the
fundamental velocity component: ξxyy0

1,6,6 , ξxyy0
1,8,8 , ξxyy0

1,10,10, ξxyy−−
1,6,8 ,

and ξ
xyy−−
1,8,10 . Given that there are so many contributions to the

velocity at this wavelength, it is a testament to the accuracy of
the method that there is so little error in this component of the
velocity.

0 2 4 6

−0.1

−0.05

0

0.05

0.1

y

Π
(y

)

FIG. 15. Comparison between shear-pressure profiles obtained
directly from MD simulations and the truncated functional expansion
prediction using independently computed response functions for
a single-component STF and a three-component SLF. Bold lines
show MD simulations, thin dashed lines indicated with symbols
show predictions. F x

1 = 0.08 and F
y

6 = F
y

8 = F
y

10 = 0.5, 1.5, and
2.5. Shear pressure profiles only shown for half of a wave
cycle.

C. Shear pressure

Finally, we consider the shear-pressure profiles for fluids
under a single-component STF and a three-component SLF. In
Fig. 15, we show the shear-pressure profile for one particular
system. The Fourier series expansion will have the same
set of terms as the velocity profile, except that three of
the third-order response terms due to the single-STF and
single-SLF-component couplings will not be included since,
as has been discussed, there is no third-order contribution
to the fundamental shear-pressure component. We show only
the case of Fx

1 = 0.08 and the largest SLF amplitudes, i.e.,
F

y

6 = F
y

8 = F
y

10 = 2.5. The prediction and the simulation are
in excellent agreement.

VII. CONCLUSIONS

We have investigated the density, velocity, and shear-
pressure profiles of a fluid under the influence of a single
sinusoidal transverse force and a multiple-component sinu-
soidal longitudinal force. We have extended a method that
we introduced in a previous publication, where we used
only single sinusoidal transverse and longitudinal forces in
combination to calculate various nonlocal response functions
describing the formation of the density, strain rate, and
shear-pressure profiles in simple atomic fluids. There are
two reasons for extending the treatment to multicomponent
SLFs in this publication. First, we wish to determine the
nature of the density response to external fields that are
more complex than single Fourier component external fields.
This is helpful when we consider that the effects of a solid
wall on a fluid at a fluid-solid interface can be represented
as an effective external field that is much more complex
than a single Fourier component external field. Second, the
extension to multicomponent SLF systems has allowed us
to generalize our description of the coupling between the
transverse and longitudinal forces to include more complicated
longitudinal forces. Again, this knowledge will be very helpful
when considering the coupling relationships that are known
to occur in flowing, nanoconfined fluids, where the density
profiles due to the fluid-solid interface are quite complex.
Therefore, this extension to multicomponent SLFs helps us
to determine which orders of response are important when
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describing strongly inhomogeneous shearing fluids and which
orders of coupling significantly effect the fluid properties.

We have shown that for each pair of SLF components used
in superposition, we excite two additional harmonics in the
density profile due to bilinear coupling. By evaluating the
amplitudes of these density harmonics, we have shown that we
can calculate two bilinear density response functions, which
are two-dimensional in Fourier space. Using single-component
SLFs, we can only access a one-dimensional slice of one
of these functions, which is necessarily equivalent to the
second-order density response function discussed in [15,17].
We have shown that these additional bilinear-response terms
provide a significant contribution to the total density profile,
and so it is necessary to include this lowest-order coupling
relationship when describing the density response to external
fields. We have also shown that for each combination of a
single-component STF and a two-component SLF, we excite
four additional harmonics in the velocity profile and four
additional harmonics in the shear-pressure profile. These
harmonics depend linearly on each force amplitude. We
have evaluated the Fourier coefficients for four additional
third-order response functions for both the strain-rate response
and the shear-pressure response, and we have considered the
relative contributions of different terms, showing that some
are indeed significant, especially those that influence the
fundamental components of the strain rate and shear pressure.
Other terms are negligible.

We have predicted density, velocity, and shear-pressure
profiles for various combinations of a single-component STF
and two-component SLFs. Our predictions are generally in
excellent agreement with profiles directly calculated using MD
simulations. For the density profiles, we required very large
force amplitudes to see a significant difference between the
predicted profile and the MD profile. It is most likely that the
small differences observed were due to our exclusion of third-
and higher-order density response terms.

For the velocity profiles, we confirmed that most of the
short-wavelength oscillatory behavior is due to the second-
order bilinear response, as was discussed in [17]. We showed
that the velocity profile is greatly affected by multiple third-
order contributions to the fundamental velocity component.
In many instances, we found that there were significant
contributions to the fundamental velocity component from the

additional third-order terms. In general, these terms could not
be neglected, but in some cases, such as for short-wavelength
contributions, we could neglect these additional third-order
terms. For the shear pressure, we have shown that including
third-order terms does slightly increase the accuracy of the
predictions, but the profiles are already well described by
the linear and bilinear response. Many of the third-order
contributions to the shear pressure could be neglected.

Finally, we showed that it is possible to accurately describe
fluids that are perturbed by a single-component STF and a
three-component SLF without needing to account for any four
force component couplings. The success of this approximation
shows that there is a limit to how many orders of coupling
we need to account for as we add more SLF components.
It would appear that it is sufficient to only account for at
most the coupling between each single STF and each pair of
SLF components. This result paves the way for describing
shearing fluids with inhomogeneous density profiles using
functional expansions truncated at the second-order response
in the density and third-order response in the velocity and shear
pressure. This is a very promising result for the prediction of
flow in fluids under the influence of complex external fields,
and possibly even hard walls.

Overall, we can conclude that the integral-type constitutive
relations that we have proposed can fully account for both
nonlocality and coupling in systems with flow and density
inhomogeneities on molecular length scales. This is likely to be
true, not only for the simple fluid that we have investigated, but
also for any dense fluid having a structure that is dominated by
its hard-core interactions. The response functions that we have
introduced should be useful for predicting density, velocity,
and stress profiles in highly confined flows where density
inhomogeneity and its coupling to the velocity profile are
important factors.
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