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Scaling analysis, in which one infers scaling exponents and a scaling function in a scaling law from given
data, is a powerful tool for determining universal properties of critical phenomena in many fields of science.
However, there are corrections to scaling in many cases, and then the inference problem becomes ill-posed by an
uncontrollable irrelevant scaling variable. We propose a new kernel method based on Gaussian process regression
to fix this problem generally. We test the performance of the new kernel method for some example cases. In all
cases, when the precision of the example data increases, inference results of the new kernel method correctly
converge. Because there is no limitation in the new kernel method for the scaling function even with corrections
to scaling, unlike in the conventional method, the new kernel method can be widely applied to real data in critical
phenomena.
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I. INTRODUCTION

Critical phenomena relate many fields of science. Because
of a scale invariant at a critical point, a scaling law exists and
different systems share a set of values of scaling exponents.
This is a universality of critical phenomena. The set of
exponent values defines a universality class of critical phe-
nomena. The classification of various critical phenomena has
been extensively studied from the viewpoint of universality.
Scaling laws exist not only in the thermodynamic limit but
also in finite-size systems. In particular, by using a finite-size
scaling law for finite-size systems, we have confirmed various
universality classes [1]. However, such studies have often
suffered from corrections to scaling. For example, in the
study of spin glass transition, we often experience difficulties
attributed to strong corrections to scaling, because the size of
the system calculated is very limited. In the study of exotic
quantum criticality (e.g., the deconfined quantum criticality
[2], which is beyond the Landau-Ginzburg-Wilson paradigm),
the existence of corrections to scaling increases the difficulty
in distinguishing exotic quantum criticality from a weak first-
order transition [3–10]. Corrections to scaling are caused by
the existence of irrelevant scaling variables, which is generally
predicted by renormalization-group theory. Therefore, treating
corrections to scaling is an important issue in research on
critical phenomena.

The purpose of this work is to present a new approach
to treat corrections to scaling. With or without corrections to
scaling, the most conventional method in the scaling analysis
of critical phenomena is the least-squares method. It is based
on chi-square statistics to infer scaling exponents and a scaling
function from data. If we propose a certain model function
for the scaling, the least-squares method has no limitation.
However, because we usually do not know the specific scaling
function, we assume a polynomial as the model function in
the least-squares method (see Ref. [11]). Unfortunately, since
it is difficult to set the degree of the polynomial so that it
approximates the scaling function in the range of data points,
we have to limit the range of data to a narrow region near a
critical point (see Fig. 4 in Ref. [12]). The Bayesian inference
method [12] was recently proposed to resolve this inconvenient
problem; it is based on a kernel method as the Gaussian process

regression. Recent studies of various critical phenomena have
proved the effectiveness of the kernel method [9,10,13–19].
In this work, we extend the Bayesian inference method to
the problem of corrections to scaling. The new kernel method
is flexible even with corrections to scaling, because only the
smoothness of the scaling function related to relevant scaling
variables is assumed. Thus, it can be a promising tool for
studying critical phenomena whose data cannot be treated by
using the conventional approach.

The remaining parts of this paper are organized as follows.
In Sec. II, we will give a brief introduction to corrections
to scaling in the scaling analysis. In Sec. III, we will first
introduce the Bayesian inference and the Gaussian process
regression for the scaling analysis. We will then consider
the ill-posedness of an inference problem in the scaling
analysis with corrections to scaling, and we will propose a
new composite kernel method. In Sec. IV, we will explain the
details of the practical procedure for the new kernel method.
After that, we will report the performance of the new kernel
method for example data sets in detail. In Sec. V, we will
summarize this work.

II. SCALING ANALYSIS AND ILL-POSEDNESS BY
CORRECTIONS TO SCALING

In this paper, for the sake of simplicity, we consider a
finite-size scaling law with a relevant scaling variable and
an irrelevant one. Although the irrelevant scaling variable
vanishes in the thermodynamic limit, it has an effect in
a finite-size region, causing a correction to scaling in the
finite-size scaling law as

A(t,u,L) = Lc2F [tLc1,uL−c3 ], (1)

where L is the size of a system, and a scaling variable
t (u) is relevant (irrelevant). Thus, c1 and c3 are positive.
The universality class of critical phenomena is defined by
the exponent values of the relevant scaling variables. The
scaling function in the thermodynamic limit is F [·,0], and
the correction to scaling is F [tLc1,uL−c3 ] − F [tLc1,0].

The object of the scaling analysis is to determine the critical
exponents from a data set of A(t,u,L) by using the finite-size
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scaling law, Eq. (1). Using the new rescaled variables,

X1 ≡ tLc1 , X2 ≡ uL−c3 , Y ≡ A/Lc2 , (2)

we can rewrite Eq. (1) as

Y = F (X1,X2) ± E, (3)

where E ≡ δA/Lc2 and δA is the data precision of A.
Thus, the scaling analysis is a statistical inference of critical
exponents so that rescaled data points collapse on a surface F

with precision E.
In general, we can know the value of a relevant scaling

variable t . For example, t ≡ T − Tc, where T is a temperature
and Tc is a critical temperature. However, we do not know
that of an irrelevant scaling variable u. If u is constant and
nonzero, the right-hand side of Eq. (1) can be rewritten
as Lc2F [tLc1,uL−c3 ] = Lc2G[tLc1 ,L] = H [t,L]. Finally, the
trivial scaling function can be defined as H . Therefore, the
inference problem in the scaling analysis with a correction to
scaling is ill-posed.

III. BAYESIAN INFERENCE FOR SCALING ANALYSIS

A. Bayesian inference

If there is no irrelevant scaling variable, the definition of
scaling function F [X1,0] has no ambiguity. We can safely
apply a statistical inference method to the scaling analysis.
The most popular method is based on the least-squares method.
From Eq. (3), we can assume that the difference between Y

and F [X1,0] obeys the Gaussian distribution with mean 0 and
variance E2. Thus,

P (Y ) = 1√
2πE2

exp

(
− (Y − F [X1])2

2E2

)
, (4)

where F [X] ≡ F [X,0], Y = A(T ,L)/Lc2 , X1 = (T − Tc)Lc1 ,
E = δA(T ,L)/Lc2 . The joint probability distribution of all
points �Y ≡ [Y (1),Y (2), · · · ]t is written as

log P ( �Y ) = −
∑

i

{Y (i) − F [X1(i)]}2

2E(i)2
−

∑
i

log[2πE(i)2]

2
.

(5)

In the least-squares method, we assume the explicit form of
the scaling function F [x] as a parametric function with a
parameter set �a ≡ (a0,a1, · · · )t . The best value of �a is inferred
by maximizing the first term in the right hand of Eq. (5),
because the second term does not depend on �a.

From the view point of Bayesian inference, this procedure
can be derived as follows. The right-hand side of Eq. (5)
depends on the parameter set �a. Thus, it can be regarded as
a conditional probability of �Y for �a as P ( �Y |�a). According to
Bayes’ theorem, a conditional probability of �a for �Y can be
written as

P (�a| �Y ) = P ( �Y |�a)P (�a)

P ( �Y )
. (6)

When we do not know a prior distribution P (�a), we usually
suppose it as uniform. Then,

P (�a| �Y ) ∝ P ( �Y |�a). (7)

Therefore, we can infer the most probable value of �a by
simply maximizing the right-hand side of Eq. (5) in Bayesian
inference. It is called maximum a posteriori probability (MAP)
estimation in the field of Bayesian inference. The least-squares
method is a MAP estimation with Eq. (5).

In many cases, a regression function F [·] linearly depends
on parameters in �a: for example, polynomial. Then, we can use
a simple χ2 test to check the quality of fit. However, F [X1]
also includes physical parameters as (Tc, c1, c2) nonlinearly.
Thus, we cannot simply apply a χ2 test to check the quality of
fit with physical parameters.

We notice that the Bayesian inference does not restrict the
form of a conditional probability as Eq. (5). Therefore, we
can design a suitable conditional probability for the scaling
analysis as follows.

B. Gaussian process regression

As mentioned above, we often use the least-squares method
for a scaling analysis. However, because one has to assume the
form of the unknown scaling function as like a polynomial,
this sets limits on the data in a narrow region near a critical
point. To resolve this difficulty, we introduced the view point
of Bayesian inference in a scaling analysis in Ref. [12]. In
particular, we explored the use of Gaussian process regression
in a scaling analysis. Gaussian process regression relies on a
kernel function that defines the covariance of the data, so it is
called a kernel method. Regarding data points as a Gaussian
process with a covariance matrix �, the conditional probability
in Eq. (5) is changed to

P ( �Y |�a) = 1√|2π�| exp

(
−

�Y t�−1 �Y
2

)
, (8)

where �a is a parameter set and (�)ij ≡ k(i,j ). The kernel
function k(·,·) ensures that � is positive definite. If we use a
Gaussian kernel kG, the smoothness of the regression function,
which is a scaling function in our case can be represented by a
few parameters. The Gaussian kernel function in Ref. [12] is
written as

kG(i,j ) ≡ (
E(i)2 + θ2

2

)
δij + θ2

0 exp

{
−|X1(i) − X1(j )|2

2θ2
1

}
.

(9)

Here, we introduce new hyper parameters as (θ0, θ1, θ2). If
X1(i) is far from X1(j ), the kernel function exponentially
decays. The characteristic length scale is controlled by a pa-
rameter θ1. Since the covariance (�)ij represents a correlation
between Y (i) and Y (j ), the parameter θ1 represents the local
smoothness of a scaling function. The Gaussian kernel func-
tion only restricts the local smoothness of the scaling function.
It does not restrict the global shape of the scaling function as
in the least-squares method. Therefore, no limitation on the
range of data is needed in the kernel method. We notice that
the number of hyperparameters is only 3 as (θ0, θ1, θ2). For the
least-squares method, we probably need many parameters in
a regression function to fit data in a wide range.

In practice, we can infer the best values of parameters
�a = (Tc, c1, c2, θ0, θ1, θ2)t by maximizing the likelihood [the
right-hand side of Eq. (8) with Eq. (9)]. We used the
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conventional nonlinear optimization method to find a maxi-
mum point. In such algorithms, we need the derivative of Eq.
(8) for a parameter a. Then, we can use the following formula:

∂ log P ( �Y |�a)

∂a
= −1

2
Tr

(
�−1 ∂�

∂a

)

− �Y t�−1 ∂ �Y
∂a

+ 1

2
�Y t�−1 ∂�

∂a
�−1 �Y . (10)

Combining Eq. (7) with Eq. (8), we can define the
distribution function of parameters under given data points.
If we use a Monte Carlo method with the weight as Eq. (8),
we can evaluate an average and a confidential interval of a
parameter under given data points.

In the Gaussian process regression, we can also infer the
Y value of a new additional point (X,Y ). In fact, we assume
that all data points obey a Gaussian process. In other words,
the joint probability distribution of given data points and the
new additional point (X,Y ) is also a multivariate Gaussian
distribution as Eq. (8). Thus, a conditional probability of Y for
given data points and a parameter can be written by a Gaussian
distribution with mean μ(X) and variance σ 2(X):

μ(X) ≡ �kt�−1 �Y , (11)

σ 2(X) ≡ k(X,X) − �kt�−1�k, (12)

where �k ≡ {k[X(1),X],k[X(2),X], . . .}t .

C. Composite kernel

The Gaussian kernel method can be formally generalized
to the scaling analysis with an irrelevant scaling variable in
Eq. (1). Because the scaling function in Eq. (1) smoothly
depends on scaling variables, it can be represented by a
Gaussian kernel of a two-dimensional space of X1 and
X2. However, because of the scaling function’s ambiguity
as discussed above, the representation does not work. The
assumption of smoothness of a scaling function does not
resolve this ambiguity.

To resolve it, we consider a Taylor expansion of a scaling
function F [X1,X2] by an irrelevant rescaled variable X2 at a
point (X1,0) as

F [X1,X2] =
∞∑

n=0

fn(X1)(X2)n, (13)

where fn(X1) ≡ 1
n!

dnF [x,y]
dyn |

(X1,0)
and f0(·) is a scaling function

in the thermodynamic limit. When we introduce the cutoff of
the degree of the Taylor expansion, the functional form of
the irrelevant rescaled variable X2 is always a polynomial
without ambiguity. In addition, the function fn depends only
on the relevant scaling variable. Therefore, there is no ill-
posedness in the inference problem for the scaling function.
If we maintain the dependence on the relevant variable as
the general functional form as fn, then the Gaussian process
regression can be defined by a composite kernel written as

kC(i,j ) ≡ δij

[
E(i)2 + θ2

2

]
+

M∑
n=0

θ2
n,0 exp

[
−|X1(i)−X1(j )|2

2θ2
n,1

]
[X2(i)X2(j )]n,

(14)

where M is the cutoff of the Taylor expansion. Here, we intro-
duce new hyperparameters as (θn,0,θn,1) for 0 � n � M and
θ2. To derive the composite kernel, we assume that variables X1

and X2 are statistically independent. Since the kernel function
represents the covariance between two points i and j , the total
kernel is a simple product of kernels for each variable: a Gaus-
sian kernel for fn(X1) and a polynomial kernel for Xn

2 . The

Gaussian function part in Eq. (14) as θ2
n,0 exp [−|X1(i)−X1(j )|2

2θ2
n,1

]

represents the local smoothness of fn without the assumption
of the global shape of fn. Therefore, it does not set any limits
on the data near a critical point. We notice that the case of
M = 0 is the original kernel without a correction to scaling in
Ref. [12] [Eq. (9) in this paper]. Thus, the present approach
for the correction to scaling is a systematical extension of the
previous kernel method of the scaling analysis.

IV. PERFORMANCE OF THE COMPOSITE
KERNEL METHOD

We will now test the performance of the composite kernel
method. In this section, for the sake of simplicity, we set the
cutoff of the Taylor expansion as M = 1. We simply call the
case of M = 1 the composite kernel in this section.

At first, we will explain computational techniques for the
kernel method in Secs. IV A–IV C. After that, in Secs. IV D
and IV E, we will report the performance of the composite
kernel method in detail.

A. Normalization of rescaled variables

In Gaussian process regression, we first use a nonlinear
optimization to find a good starting point for Monte Carlo
sampling. Although there is no absolute scale for rescaled
variables, we found that the normalization of rescaled variables
increases the numerical stability of the optimization process
at the first stage of Gaussian process regression. In this work,
we set the unit of length scale by the largest system size as

X1 = (T − Tc)(L/Lmax)c1/RX,

X2 = (L/Lmin)−c3 ,

Y = [A/(L/Lmax)c2 − Y0]/RY ,

E = δA/(L/Lmax)c2/RY , (15)

where Lmax and Lmin are the largest and smallest system sizes
in a data set, respectively. The values of X1 and Y and E for the
largest system are independent of relevant scaling exponents
(c1 and c2). The scaling factor RX is defined so that the width
of X1 for the largest system is 2. The scaling factor RY and the
shift parameter Y0 are defined so that Y for the largest system
is in [−1 : 1]. Since data of the largest system most likely
affect the inference of a scaling function, the normalization
of rescaled variables may separate the inference of a scaling
function from those of scaling exponents.

B. Hybrid Monte Carlo sampling

In the inference process of averages and confidential
intervals of parameters, we use a hybrid Monte Carlo method
(see a review in Ref. [20]) for normalized rescaled variables
to construct samples of parameters by using the likelihood of
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Gaussian process regression. It is very effective for a Monte
Carlo sampling of continuous variables.

We consider the weight W (�q) of a sampling parameter
�q. For example, in Gaussian process regression for a scaling
analysis by the composite kernel, �q means inferred parameters
as �a = (Tc, c1, c2, c3, θ2, θ0,0, θ0,1, . . . , θM,0, θM,1)t . W (�q) is
written as the likelihood of Eq. (8).

In the hybrid Monte Carlo sampling, we introduce an
artificial momentum �p. Then, the artificial Hamiltonian is
written as

H (�q, �p) = U (�q) + �p2

2m
, (16)

where U (�q) = − log W (�q) and m is an artificial mass. At first,
we set an initial �p(0) by a random variable, which obeys a
Gaussian distribution with mean 0 and variance m, and �q(0) =
�q. We calculate an artificial time-evolution of [�q(t), �p(t)] until
an artificial time T by using a leap-flog integration scheme:

�p(t + ε/2) = �p(t) − (ε/2)∇U [�q(t)],

�q(t + ε) = �q(t) + (ε/m) �p(t + ε/2), (17)

�p(t + ε) = �p(t + ε/2) − (ε/2)∇U [�q(t + ε)],

where ε is a discrete time step. We accept �q(T ) as a next
sample with the probability

min(1, exp {−H [�q(T ), �p(T )] + H [�q(0), �p(0)]}). (18)

If not, a sample �q is remained. Since the leap-flog integration
conserves the total energy, the acceptance probability is almost
1. Therefore, the performance is much more effective than that
of the conventional approach using random walks to make trail
samples. In fact, we have to choose a suitable m and T . In many
cases, we need to introduce individual masses. The practical
details are explained in Ref. [20].

C. Practical procedure of the kernel method

In this subsection, we summarize a practical calculation
procedure in our kernel method for a scaling analysis. It is
based on the weight of parameters �q(=�a) as

W (�q) ≡ 1√|2π�| exp

(
−

�Y t�−1 �Y
2

)
, (19)

where (�)ij ≡ kC(i,j ) and the composite kernel kC(i,j )
is defined by Eq. (14). The inferred parameter is �q =
(Tc, c1, c2, c3, θ2, θ0,0, θ0,1, . . . , θM,0, θM,1)t . In addition, we
use normalized rescaled variables in Eq. (15). We estimate
an average and a confidential interval of parameters from
this weight under a given data set by the hybrid Monte Carlo
sampling.

At first, to prepare a good starting point of Monte Carlo
method, we find a maximum point of a logarithmic weight
W (�q) by using a nonlinear optimization algorithm as the
Fletcher-Reeves conjugate gradient algorithm. The derivative
of a weight by �q is written as

∂ log W (�q)

∂qi

= −1

2
Tr

(
�−1 ∂�

∂qi

)

− �Y t�−1 ∂ �Y
∂qi

+ 1

2
�Y t�−1 ∂�

∂qi

�−1 �Y . (20)

The Cholesky decomposition of � is useful to calculate the
right-hand side of Eq. (20). We notice that the initial values
of parameters are important, because a nonlinear optimization
scheme generally has no global convergence. In many cases,
we can guess the good initial values of physical parameters
(Tc, c1, c2, c3). We can also prepare the initial values of hyper
parameters (θ2, θ0,0, θ0,1, . . . , θM,0, θM,1), because we normal-
ize the range of data points by introducing the normalization
of rescaled variables. In fact, we always start from 1 for all
hyperparameters in the following cases. The hyperparameter
θ2 represents the total fidelity of a data set. Thus, θ2 = 1
implies that all data points has no fidelity. In fact, the values
of parameters can widely move at the early stage of nonlinear
optimization. It avoids trapping in local maximums. If the
precision of data is enough, the inference process will finally
converge with small θ2.

To infer averages and confidential intervals of parameters,
we make many samples of parameters by the weight in
Eq. (19). We recommend a hybrid Monte Carlo sampling
to estimate an average and a confidential interval of �q.
The practical details of the hybrid Monte Carlo method are
reviewed in Ref. [20].

By using numerical libraries for the implementation of our
kernel method, we can easily make a code of our kernel
method. The performance tests in the following cases have
been done by a reference C++ code of our kernel method [21].

D. Artificial data sets

1. Dimensionless observable

We first apply the composite and original kernel methods to
two artificial data sets with different types of correction forms.
The first data are defined as

A(Z,L) ≡ f0[(Z − Zc)(L/L0)c1 ] + a(L/L0)−c3 , (21)

and the second data are defined as

A(Z,L) ≡ f0[(Z − Zc)(L/L0)c1 ]

(
1 + a(L/L0)−c3

f0[0]

)
, (22)

where f0[x] = 1
2 (tanh x + 1), t ≡ (Z − Zc) is a relevant scal-

ing variable, L is the system size. Both forms obey a finite-size
scaling law, and the L−c3 term is the correction to scaling. In
particular, both forms are equal to the first-order of the Taylor
expansion of Eq. (13): f0 is shared, but f1 is constant or
proportional to f0, respectively. We choose the values of the
critical exponents close to those of the three-dimensional Ising
model; we set the values of parameters as Zc = 0, c1 = 1.5,
c3 = 0.8, a = 0.01, and L0 = 48. We generate an example
data set of A by adding a Gaussian noise with mean 0 and
variance (δA)2 to Eqs. (21) or (22). We consider four different
system sizes: L = 8, 12, 16, 24. The number of data points
for each system size is 17. Because of the existence of the
correction term, the crossing point between different system
sizes shifts from the critical point [see the inset of Fig. 1(a)].
The minimum size of the correction term is about 4% of the
thermodynamic scaling function at the critical point Z = Zc.

Using kernel methods, we infer Zc and c1 from a data
set of A with a precision δA. We start from correct values
of physical parameters (Zc, c1, c2, c3) for the convergence of
nonlinear optimization process in the first stage of our kernel
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(a)

(b)

FIG. 1. (Color online) Average of inferred (a) Zc, (b) c1, and
[inset of (b)] c3 for ten data sets of A with a precision δA. The
shaded band denotes the variance of inferred results. Horizontal solid
lines show correct values for each. Inset of (a): an example data set
of A obtained by using Eq. (21).

method. Here we fix c2 as zero, because A in Eqs. (21) or (22)
is dimensionless. Because of the normalization of rescaled
variables, we can safely start from 1 for all hyperparameters
(θ2, θi,0, θi,1). Starting from the result of the first optimization
step, we estimate averages and confidential intervals of
parameters by 1000 hybrid Monte Carlo samples.

Figures 1(a) and 1(b) show inference results for Zc and c1

as a function of precision δA, respectively. We average out
results of ten data sets. We call the original kernel in Ref. [12]
as the one-dimensional (1D) Gaussian kernel; it is equal to
M = 0 in Eq. (14). Whereas inferences from the 1D Gaussian
kernel quickly converge to incorrect values, those from the
composite kernel effectively converge to the correct ones.
However, it is necessary for the data precision to be within
10% for the size of the correction term. The case of Eq. (22)
may be harder than that of Eq. (21), because the deviation from
the correct value of c1 from the 1D Gaussian kernel is larger.
However, the composite kernel succeeds in its inference from
high-precision data in both cases without knowledge of the
correction form. We notice that the composite kernel has the
same performance as the 1D Gaussian kernel in the case of no
correction to scaling. In general, it is difficult to infer the value
of the irrelevant scaling exponent with precision. However,
when the data precision is improved, the result of the inference
should converge to a correct value. The inset of Fig. 1(b) shows
inference results of irrelevant scaling exponents c3 obtained
by using the composite kernel. Although the variances of the
inferred c3 values are large in both cases, they effectively are
improved by the data precision. Finally, the inference results
converge to a correct value.
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FIG. 2. (Color online) Average of inferred c2 for ten data sets of
B with a precision δB. The shaded band denotes the variance of
inferred results. The horizontal line shows the correct value of B.
Inset: an example data set of B.

2. General observable

In the case of a general observable, we also need to infer
c2 in the scaling law of Eq. (1). We test the case of a general
observable defined as

B(Z,L)(
L
L0

)c2
≡ g0

[
(Zc − Z)

(
L

L0

)c1
]

+ a

(
L

L0

)−c3

, (23)

where g0(x) = exp(−c2x/c1) for Z � Zc. Here, we set c2 as
−1, and the values of other parameters are equal to those
in the dimensionless case of A. Figure 2 shows the average
of inference results of c2 as a function of precision δB. We
average out results of ten data sets of B. The composite kernel
succeeds in the inference of c2 when the precision is within
10% for the size of the correction term. However, the 1D
Gaussian kernel method always converges to incorrect values,
because it does not consider the existence of a correction to
scaling. We notice that the performances for Zc, c1, and c3 are
similar to those in the dimensionless case.

E. Ising model on cubic lattices

Last, we apply kernel methods to the scaling analysis of the
Ising model on cubic lattices. The Hamiltonian is written as
H ≡ −J

∑
〈ij〉 SiSj , where the spin variables are Si = ±1,

and 〈ij 〉 denotes a pair of nearest neighboring sites on a
cubic lattice. The finite-temperature phase transition defines
the three-dimensional Ising universality class, which widely
covers a variety of critical systems. However, to confirm
the universality class precisely, we have to take into account
corrections to scaling in the scaling analysis [22]. Fortunately,
we can obtain high precision data by using a sophisticated
Monte Carlo algorithm for this model. Thus, it is a good
example for the scaling analysis with a correction to scaling.

1. Binder ratio of Ising model on cubic lattices

We calculated Binder ratio, 〈(∑i Si)4〉/[〈(∑i Si)2〉]2, from
L = 4 to 32 by using the cluster algorithm with an improved
estimator [23]. The simulation code is based on the ALPS
library [24]. The number of temperature values for each system
size is 17. To ensure high precision, we took about 108 samples
for each point.
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(a)

(b)

FIG. 3. (Color online) (a) Binder ratio of Ising model on cubic
lattices. Inset: Binder ratio near a critical point. (b) Precision of Binder
ratio in Monte Carlo calculations.

Figure 3(a) shows Binder ratios from L = 4 to 32. In the
thermodynamic limit, Binder ratios have a single crossing
point at a critical temperature. However, due to a correction to
scaling, there is a shift of crossing point in the finite system
sizes. As shown in Fig. 3(a), Binder ratios almost share a single
crossing point. The inset of Fig. 3(a) shows Binder ratios
near the critical point (in Ref. [22], βcJ = 0.22165463(8)].
The crossing point between neighboring system sizes shifts,
indicating the existence of corrections to scaling. Figure 3(b)
shows the precision of data in Monte Carlo calculations.
Because of critical slowing down, the precision becomes worse
near a critical point. But, it may be enough to do a scaling
analysis with a correction to scaling.

2. Inference results

We applied two kernel methods to the Binder ratios on
selected system sizes as a sequence of Nset systems up to
Lmax. The range of Binder ratios is [1.1, 2.2]. In addition,
we start from results of physical parameters in Ref. [22] for
the nonlinear optimization in the kernel method. Figure 4(a)
shows the inference results of an inverse critical temperature
βcJ and a critical exponent 1/ν as a function of Lmax. The βcJ

results obtained by using the 1D Gaussian kernel [M = 0 in
Eq. (14)], in which a correction to scaling is not assumed,
slowly converge when Lmax increases. In contrast, results
obtained by using the composite kernel [M = 1 in Eq. (14)]
quickly converge. For critical exponents 1/ν(=c1) and ω(=c3),
we observe a similar behavior in Fig. 4(b) and the inset. If the
number of Nset increases, the ignorance of a correction to
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FIG. 4. (Color online) Inference results of (a) βcJ and (b) 1/ν

from Binder ratios of the Ising model on cubic lattices. Inset of (b):
Inference results of ω. Nset is the number of systems in a data group
to which kernel methods are applied. Lmax is the largest system size
in a data group. Horizontal solid lines show the values of βcJ , 1/ν,
and ω in Ref. [22]. The shaded bands show the confidential intervals
of inference results.

scaling affects an inference result. In fact, the convergence of
Nset = 5 is slower than that of Nset = 4 in both kernel methods.
The βcJ , 1/ν, and ω results obtained by using the composite
kernel for Nset = 4 and Lmax = 32 are 0.221652(2), 1.587(2),
and 0.83(9), respectively. They are consistent with reported
values in Ref. [22] of βcJ = 0.22165463(8), 1/ν = 1.5873(6),
and ω = 0.832(6), which were estimated from the fine-tuned
Blume-Capel model up to L = 360. Figure 5 shows the
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FIG. 5. (Color online) Finite-size scaling plot of Binder ratios
with a correction to scaling. The values of βcJ and 1/ν are 0.221652
and 1.587, respectively. Solid pink line shows the thermodynamic
scaling function inferred by the composite kernel.
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finite-size scaling plot when we apply the composite kernel
method to the data set of L = 12, 16, 24, and 32 (Nset = 4
and Lmax = 32). Solid pink line shows the thermodynamic
scaling function inferred by the composite kernel. It is just
μ[(X1,X2 = 0)] in Eq. (11). The size of the correction to
scaling can be roughly estimated from the inferred scaling
function and data. In this case, it is about 1% of the scaling
function near the critical point, and the data precision is within
2% for it. Therefore, if the data precision is high enough, the
composite kernel can succeed in a scaling analysis of real data
with a correction to scaling.

V. SUMMARY

In this work, we proposed the composite kernel method
for a scaling analysis with corrections to scaling. This kernel
has no ill-posedness in the inference problem for the scaling
analysis. The key to the new kernel is the separation of relevant
and irrelevant variables in the inference problem. It is based on
the Taylor expansion by an irrelevant variable. We introduce
the explicit form of corrections as a polynomial of irrelevant
variables. In contrast, we do not need the explicit form of the
scaling function related to the relevant variables. Therefore,
the composite kernel method can be widely applied to real
data in critical phenomena. We tested the performance of the
new kernel method for example data sets that have corrections
to scaling: three types of artificial data and a real data set of
the Ising model on cubic lattices. The new kernel succeeded
in the scaling analysis for all cases. In addition, we found that

the data precision is important for successful scaling analysis.
If the data precision is low, we cannot statistically distinguish
a correction to scaling from the data noise. A precision within
10% for the correction term is necessary for succeeding in the
scaling analysis by using the composite kernel method. Testing
for a variety of critical phenomena requires further studies.

The goodness of fit is a useful test in the least-squares
method. In the case of the kernel method, the regression
function is nonlinear for inferred parameters. Thus, we cannot
define a useful quantity similar to the χ2. However, to be exact,
the regression function of the least-squares method is nonlinear
for the inferred physical parameters as (Tc, c1, c2, c3). Thus,
a simple χ -square test does not cover the check of their
inferences. In principle, the Bayesian framework gives us the
distribution of inferred parameters as a marginal likelihood. We
can compare the goodness of fit by the marginal likelihood.
For example, we did not discuss the cutoff of the Taylor
expansion in Eq. (13). To select a suitable cutoff, we can use
the comparison of marginal likelihoods. However, we need
additional calculations of them with addition of high precision
for a high-order correction term. The simple procedure to
check the goodness of fit remains in the future study.
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