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Deformation and shape of flexible, microscale helices in viscous flow
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We examine experimentally the deformation of flexible, microscale helical ribbons with nanoscale thickness
subject to viscous flow in a microfluidic channel. Two aspects of flexible microhelices are quantified: the overall
shape of the helix and the viscous frictional properties. The frictional coefficients determined by our experiments
are consistent with calculated values in the context of resistive-force theory. The deformation of helices by
viscous flow is well described by nonlinear finite extensibility. Under distributed loading, the pitch distribution is
nonuniform, and from this we identify both linear and nonlinear behavior along the contour length of a single helix.
Moreover, flexible helices are found to display reversible global to local helical transitions at a high flow rate.
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Helices have captured the fascination of many for centuries,
from Darwin’s observation of plant tendrils [1] to a child’s
play with a toy Slinky. Beyond curiosity, the interaction of
small helices with fluids is particularly important because of its
relevance to both fundamental science [2–9] and technological
applications, such as swimming microrobots or microflow
sensors [10–15]. Nature has perhaps best demonstrated the
importance of small scale helix-fluid interactions through the
evolution of helically shaped flagella, which are exploited by
swimming microorganisms to move through their surrounding
fluids [16–18]. At these length scales, structures function at
low Reynolds number (i.e., inertia is negligible and viscous
forces play a dominant role), defined as Re = ρvl/η, where
ρ and η are the fluid density and viscosity, respectively, v

is the flow velocity, and l is a characteristic length scale.
In these instances, the helical structure is key to locomotive
functionality; however, many questions remain with regard to
the fluid-helix interactions at these small length scales.

While helices in low Reynolds number flows have been
considered in several studies over the past couple of decades,
experimental work has focused mainly on macroscopic,
nondeformable helical models in high viscosity fluids [4,5,19],
likely due to the difficulties in fabricating and analyzing mi-
croscopic systems in a controlled manner. A natural bacterial
flagellar filament is on the order of tens of nanometers in
diameter and several microns long with bending stiffness in
the range of B ∼ 10−24–10−21 N m2 [20–22], values that have
been measured through optical tweezer or crude flow exper-
iments. This low flexural stiffness results in drastic changes
in the shape of bacterial flagella observed experimentally
under the motion of fluids [16,18,20,23,24]. Moreover, the
frictional coefficient that defines the relative resistance of
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motion between the solid and fluid is an important physical
parameter for small helices in flow [2,6–8,25,26]. Therefore, a
microscopic experimental model that examines flexible helices
in low Reynolds number flow, with the ability to predict and
extract helical shape changes and frictional properties, would
be exceedingly beneficial.

In this Rapid Communication, we examine the deforma-
tion of synthetically fabricated helical ribbons in controlled
viscous flow with length scales and mechanical properties
that approach those found in bacterial flagella and microscale
robots [16,17] (i.e., microscale radius, nanoscale thickness).
Here, taking the helical ribbon thickness ∼50 nm as the
characteristic length scale for axial flow experiments, our
approach allows for experiments in low Reynolds number
even with strong flows (∼10 mm/s), Re ∼ 10−4. We discuss
our findings in the framework of resistive-force theory [26,27]
and demonstrate that, as expected, the size, shape, and bending
stiffness of a helical ribbon defines the axial deformation of
microhelices in flow [7,26]. We quantify the nonuniform shape
of a flexible helix deformed by viscous drag, showing that the
pitch distribution transitions from linear to nonlinear behavior
within the same helix as a function of flow velocity. Our
measurements allow us to assess the validity of the resistive-
force theory and extract the effective frictional coefficient for
microscale, flexible helices.

Consider a helical ribbon defined by its axial length (H ),
contour length (L), pitch (p), and radius (R), as well as its cross
section, which is defined by the ribbon width (w) and thickness
(t), as illustrated in Fig. 1(a). To create such structures,
we recently reported a method that relies on spontaneous
formation of helices from initially flat ribbons, driven by
two-phase elastocapillary deformation [28]. The ribbons are
taken to be inextensible (i.e., a fixed contour length), and under
the condition that t/w � 1 and w/L � 1, helices form by
bending in the direction of the nanoscale thickness [Figs. 1(a)
and 1(b)]. A key point to emphasize is that the preferred helical
radius has a strong dependence on the ribbon thickness [28];
hence the bending stiffness B = EI and the helix radius R are
not independently controlled (E being the Young’s modulus
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FIG. 1. (Color online) (a) Geometry of a helical ribbon. (b) The relationship between the thickness and width of PMMA ribbons is best
fit to a quadratic, t = aw2 where a = 3530 m−1. Inset: Three-dimensional profile of a ribbon cross section measured by optical profilometry.
The y axis is in nm and the x axis is in μm. Note the nanoscale thickness and microscale width. (c) Experimental setup that allows helical
ribbons to form in a large pool and be placed into a connected microfluidic channel and (d) the placement of the helix in the vertical center of
the channel (at vmax). (e) Measured stretch ratio and flow rate in a three-cycle experiment with corresponding fluorescent images in (f).

and I ∼ wt3 being the second moment of area). This approach
is advantageous since it provides versatility in controlling the
helix geometry through control of the fabrication parameters.

In our experiments, a flow rate (Q) is applied to a helix
that is held in a microfluidic channel. To fabricate the helices,
ribbons are first prepared on a flat substrate by an evaporative
assembly method [29]. We use a common glassy polymer
as a model material: poly(methyl methacrylate) (PMMA,
120 000 g/mol) with fluorescent dye (Coumarin 153) for
imaging. The ribbons are released into a pool of water, at which
point they spontaneously form helices through a balance of
surface tension and elasticity of the asymmetric cross-sectional
geometry. Details on helix formation and fabrication can be
found in prior publications [28,29,31]. A micromanipulator
with a carbon fiber attached at its end is subsequently used
to fix one end of a helix and position it inside a microchannel
[Fig. 1(c)] at the vertical center (i.e., the center of the Poiseuille
flow), which is 600 μm wide and 100 μm tall [Fig. 1(d)]. The
carbon fiber is brought into contact with the helix and is fixed
due to nonspecific interactions. The flow velocity (v) is taken
to be vmax, where vmax = 3vavg/2 and vavg = Q/A, where A is
the channel cross-sectional area.

The designed setup has the advantage of measuring both
flow rate and helix geometry simultaneously in real time with
a flow sensor and a fluorescence microscope. In Figs. 1(e)
and 1(f), we present a typical flow cycle experiment to
demonstrate helix shape recovery and flow control (see movie
S1 in the Supplemental Material [30]). When the flow is turned
on, the helix deforms along its helical axis in the direction of
applied flow, and in the absence of flow, the helix returns
nearly to its original state. This particular helix is cycled three
times from 0 to 5 μL/min (corresponding to v ∼ 2 mm/s)
and the flow rate history and the stretch ratio, λ = H/H0, are
plotted along with corresponding micrographs. Here, H0 is

the axial length of the helix in the absence of flow. At point
b, λ ≈ 3.4 and recovers to point c where λ ≈ 1.1 when the
flow is turned off for 90 s. On the second cycle (point d),
λ ≈ 3.4 and recovers to λ ≈ 1.15 and responds similarly in
the third cycle, showing reversibility in our helices. The small,
irreversible deformations observed are likely associated with
creep deformations within the ribbon material, but as shown
below, these slight changes can be considered negligible for
the focus of this work.

Deformation of a helix in an external flow is caused by
the hydrodynamic drag forces acting at each point along its
contour length. Following resistive-force theory, the drag force
per unit length is given by f = −ζ⊥[v − (t · v)t] − ζ‖(t · v)t,
where t is the local tangent of the ribbon backbone, v is the
velocity of the fluid relative to the ribbon, and ζ⊥ and ζ‖
are the frictional coefficients that define the resistance to
motion of the surrounding fluid in the normal and tangential
directions from the ribbon, respectively [2,7]. These frictional
coefficients are proportional to the viscosity (η) and a loga-
rithmic correction dependent on the helical geometry [26]. In
general, for very elongated objects, the ratio ζ⊥/ζ‖ ≈ 2. For
the case of axial extension under flow, Kim and Powers [7]
give an expression for the helix extension in the limit that R/L

is small and ζ⊥/ζ‖ ≈ 2,

�H

L
= ζ‖vR2L

B
, (1)

where the velocity v is in the direction of the helical axis and
the axial extension is defined as �H = H − H0.

Guided by Eq. (1), we measure �H as a function of v. From
Fig. 2(b), the axial extension of the helices is nonlinear with
increasing flow velocity. We describe this nonlinearity phe-
nomenologically with nonlinear finite extensibility [32,33],
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FIG. 2. (Color online) (a) Fluorescent images of a helix with
increasing flow velocities. At higher velocities, the helix begins to lose
turns by rotating its free end. (b) Flow-extension curves for several
helices, showing different extensions due to the different helical
dimensions (i.e., R and L). The second magenta data that reaches
the highest flow velocity (∼4mm/s) correspond to (a). Dashed lines
are a fit for a helix with nonlinear, finite extensibility given in
Eq. (2). (c) Data from (b) scaled by the helical geometries and
determined B/ζ‖. (d) Semilog plot of B/ζ‖ determined by the flow
experiments as a function of the helix radius R.

which leads to

v = B

ζ‖R2L2

�H

1 − (
�H

�Hmax

)2 , (2)

where the maximum extension is taken to be �Hmax = L −
H0. A typical experiment is shown in Fig. 2(a). Helices with a
range of sizes were created to examine the effects of helix
and ribbon geometry; these range between R ≈ 3–15 μm,
p ≈ 4–20 μm, and L ≈ 55–420 μm. R is controlled by the
bending stiffness B = EI [28], where E = 2 GPa is a typical
value for PMMA [34]. R and p are measured directly from
the microscope images at zero flow rate and L is determined
by the helical relationship L = N

√
4π2R2 + p2, where N is

the number of turns. As expected, the assortment of helices
display different flow-extension curves due to their varying
shape and size, demonstrated in Fig. 2(b). The dashed lines
represent the fit of Eq. (2) and our data are well fit to this
relation. Using the corresponding R and L values at zero
flow rate, Eq. (2) leads to a best fit for B/ζ‖ for all helices.
Scaling with the measured helical geometries and determined
B/ζ‖ leads to a collapse of the data [Fig. 2(c)], validating
the use of Eq. (2). We determine the relationship between

FIG. 3. (a) Force-extension curve for an end-loaded helix. (b) The
determined relationship between B and R in end-loaded experiments.

B/ζ‖ and R for flow experiments by fitting to the expression
B/ζ‖ = C exp (αR), giving C = (1.7 ± 0.7) × 10−18 m4 s−1

and α = (3.5 ± 0.4) × 105 m−1 [Fig. 2(d)].
To determine frictional coefficients, we quantify B indepen-

dently with a recently developed micromechanical tool to mea-
sure the end-loaded force-extension relationship [Fig. 3(a)] of
our helices for different helix geometries (see Refs. [28,35]
for experimental details). Under end-loading conditions in the
linear limit, the helical extension is given by [7]

�H

L
= FR2

B
. (3)

At high extension, the force-extension relationship is nonlinear
and follows expressions developed previously by Pham et al.
[35,36]. A plot of B vs R provides the empirical relation
B = B0 exp(βR) with B0 = (2.6 ± 1.1) × 10−21 N m2, which
is comparable to bacterial flagella, and β = (3.5 ± 0.5) ×
105 m−1 [Fig. 3(b)]. Importantly, we find α ≈ β, demon-
strating that ζ‖ is independent of R within our experimental
resolution and parameter range. Accordingly, a frictional drag
coefficient can be quantitatively determined as ζ‖ = B0/C =
1.5 ± 0.6 mPa s.

While different expressions of ζ‖ have been proposed by
different researchers [2,6,7,26], the general relevant form for
a circular cross section is given by [26]

ζ‖ = 2πη

ln(2q/a)
, (4)

where q is usually taken as 0.09p and a as the radius of the
cylindrical fiber itself. Since our helices’ cross sections are
not circular, but rather a shallow triangular ribbon [Fig. 1(b)],
we took the ribbon thickness to be the relevant length scale
a. Although average ribbon dimensions are measured before
transformation into helices, determining the nanoscale cross-
sectional thickness of specific ribbons in their helical form
is not possible with the optical microscope used to record
the helix deformations. Thus, the thickness t is determined
for specific helices by relating R, measured optically, to
established relations for B and measured aspect ratios of t/w

by atomic force microscopy (AFM) and optical profilometry
[Fig. 1(b)]. Taking these values for t and the typical viscosity
of water η = 1 mPa s, we calculate a theoretical ζ‖ for each
helix using Eq. (4), providing ζ‖ = 1.6–2.5 mPa s. This range
is in reasonable agreement with our experimental results,
ζ‖ = 1.5 ± 0.6 mPa s. It must be noted that since the frictional
coefficient ζ‖ depends on the geometry of the helix as a
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FIG. 4. (Color online) (a) Helical ribbon with R ≈ 4.5 μm and
L ≈ 320 μm in the absence of flow (top) and at v = 0.625 mm/s
(bottom). (b) Pitch as a function of position on the contour length
corresponding to the helix in (a) for different flow velocity. The dotted
lines are calculated from Eq. (5) and the thin black line represents the
calculated p0. The error on pitch measurements is within the size of
the points on the graph (<1 μm).

logarithmic correction, the range of pitch and radius studied
here are unfortunately not sufficient to resolve differences
within our experimental resolution.

Aside from their global extension, flexible helices display
nonuniform shape distributions when deformed in fluid flow,
which has also been observed in helical flagella [18,20]. More
specifically, it is observed that the turns are most stretched at
the fixed end and continuously become less stretched along
the helix approaching the free end. This is clearly visualized
in an experiment of a long helix with several turns as shown
in Fig. 4, where L ≈ 320 μm and R ≈ 4.5 μm, and at an
applied flow velocity of v = 0.625 mm/s. Such nonuniform
shapes are readily explained by distributed loading of helices:
Under flow, the force applied to a small element of a helix
consists of local hydrodynamic drag on the element and
the force accumulating along the helix from the free end.
Mechanical equilibrium is then ensured by the equal and
opposite force applied to the element by the rest of the helix
that is farther away from the free end. If we assume that the
local hydrodynamic drag is independent of the position along
the helix, as in the resistive-force theory discussed above, the
total force applied to an element of the helix from the free end
grows linearly with the contour length s, measured from the
free end. Consequently, the local pitch of the helix also grows

linearly with s, as shown below. This situation is analogous
to stretching of low-stiffness springs under gravity [37,38].
Similarly, variations in the radius are observed when the local
stretch is sufficiently high, as demonstrated near the fixed end
of the helix in Fig. 4.

To quantitatively examine the shape distribution of our
helices, we measure the local pitch p(s) by calculating the
distance between the outmost points of neighboring turns along
the helix. At zero flow rate, the pitch p0 is constant along the
helix within small experimental variations. Under flow, p(s)
can be estimated as the difference of the axial displacement
of the points s + l/2 and s − l/2 obtained from Eq. (1),

p(s) = �H (s + l/2) − �H (s − l/2) + p0

= 2ζ‖vR2

B
ls + p0, (5)

where l is the contour length of one pitch, which we assume to
be constant. This assumption is justified as long as no turns are
lost during the experiment and irreversible deformations are
negligible. In Fig. 4(b), we plot Eq. (5) with the corresponding
values of ζ‖, R, and B determined by our flow experiment for
the different flow velocities. In Fig. 4(b), one can observe that
for small velocities, the pitch versus position dependence is
well described within the experimental errors by Eq. (5). Con-
sequently, the approximation of linear axial extension [Eq. (1)]
holds at low velocities; however, deviations are observed at
high flow velocities. Here the pitch distribution in the helix
section experiencing the highest forces (closer to the fixed
end) deviates from the linear approximation of Eq. (5). In this
part of the helix, measured pitches are smaller than predicted,
corresponding to geometric strain stiffening at large extension,
also seen in Fig. 2(b). Notably, our results demonstrate a spatial
manifestation of the crossover between linear and nonlinear
behavior of a helix under distributed loading.

Finally, we interestingly observe large shape changes in
helices at high velocities. Under these stronger forces, the
helical shape uncoils to lose turns near the point of attachment
[Fig. 2(a)]. More evident helical instabilities are observed
through localized transitions of coiled to uncoiled helical
geometry, as shown in Fig. 5 and movie S2 in the Supplemental
Material [30]. These drastic deformations are reversible; when
the flow is turned off, the helix relaxes to a shape that again is
nearly identical to the initial helix. Similar transitions of helical
and straightened geometries have been observed in torque-free,

FIG. 5. Qualitative example of a prominent helical transition from
a global helical geometry to local uncoiled and coiled configurations
at high velocity (of order ∼10 mm/s). See movie S2 in the
Supplemental Material for video of helix transitions [30].
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end-loaded experiments on cholesterol helical ribbons [39]
as well as in rods of preferred curvature under gravity [38].
Moreover, similar conformational transitions at high flow rates
are observed with flexible polymer chains [40]. Thus, future
studies will focus on these helical transitions in viscous flow,
which may provide important insight into unstable transitions
that exist in helical systems found in nature.

Overall, we have introduced a microscopic model system
to measure the deformation, shape, and frictional properties
of flexible helices in low Reynolds number viscous flow
and find that the global axial deformation is consistent with
existing theory [7]. We demonstrate that with known ribbon
properties and helical configurations, the shape distribution
can be quantitatively predicted. Moreover, our experimental
platform presents opportunities for theoretical advances on
flexible helices in low Reynolds number flow, in particular,
the effects of fluid viscosity or viscoelasticity, the friction
and flow around deformable helices, the global-to-local helical
shape transitions, and potentially the effects of cross-sectional

geometry. Understanding these general helical behaviors both
experimentally and theoretically will lead to fundamental
insights on natural helices, such as flagella, as well as the
development of synthetic helices, such as swimming microbots
in fluid environments. Well-characterized helices can also be
used to measure local forces in flows of simple or complex
fluids where local velocities can readily be measured by
various techniques, such as particle image velocimetry (PIV)
or particle tracking, while measuring local stresses presents a
significant technological challenge [41].
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