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We consider practical synchronization on complex dynamical networks under linear feedback control designed
by optimal control theory. The control goal is to minimize global synchronization error and control strength over
a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin’s minimum
principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the
control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz
networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control,
we propose an optimal pinning control strategy which depends on the network’s topological structure. Obtained
results show that optimal pinning control is very effective for synchronization control in real applications.
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Since synchronization of complex networks has potential
applications in various fields, it has been studied thoroughly
and widely during the past few decades (see Refs. [1–4]
and many references therein). In order to realize various
synchronization patterns, many synchronization control meth-
ods have been proposed, such as pinning control [5,6],
impulsive control [7], adaptive control [8], and so on. A
general and common control goal is to realize complete
synchronization, i.e., the synchronization error converges to
zero as time t → +∞. Though these control methods can
effectively achieve the synchronization goal, they generally
need great control strength. In particular, these methods may
be infeasible when the control strength is limited to a small
range. In order to achieve a balance between the control
strength and synchronization goal, this Rapid Communication
will study network synchronization by applying a time-varying
control via the optimal control theory to globally reduce the
synchronization error and control strength. Noting that the
time interval for every complex dynamical network in real
applications is usually finite, in this case, the control goal
becomes minimizing the global synchronization error and
control strength over the given finite time interval, and the
synchronization error at terminal time. Actually, the expected
synchronization becomes practical complete synchronization
[9,10] (or practical synchronization for short), where the
synchronization error is limited globally to a small level.

Synchronization of master-slave systems via optimal con-
trol theory has been studied in recent years [11–13]. However,
reports of synchronization on complex dynamical networks via
optimal control are lacking. So, based on a general dynamical
complex network model, in this Rapid Communication we will
investigate its practical synchronization with optimal control.
We find that the proposed optimal control method is more
effective than linear feedback control with constant strength
(i.e., constant control). To further improve the performance
of optimal control, we introduce the optimal pinning control
strategy, by which only a fraction of nodes in the network are
controlled. These results are verified by numerical simulations.

The behavior of the complex dynamical network under
control is described by⎧⎪⎨

⎪⎩
ẋi(t) = f (xi(t)) + c

∑n
j=1 aij xj (t)

+ui(t)(s(t) − xi(t)),

ṡ(t) = f (s(t)),

(1)

where xi(t) = [xi1(t),xi2(t), . . . ,xim(t)]T ∈ Rm denote the
state variables for i = 1,2, . . . ,n. The initial condition of
model (1) is set as{

xi(0) = θi ∈ Rm, i = 1,2, . . . ,n,

s(0) = θn+1 ∈ Rm.
(2)

The nonlinear vector function f (·) defines the local dynamics
of node i, and we assume that it is differentiable. The
constant c > 0 is the coupling strength. The coupling matrix
A = (aij ) ∈ Rn×n with zero-sum rows shows the coupling
configuration of the network. If nodes i and j are connected,
then aij = aji = 1, otherwise aij = aji = 0. The diagonal
elements of the coupling matrix A are aii = −∑N

j=1,j �=i aij =
−ki, i = 1,2, . . . ,n, where ki denotes the degree of node
i. Here, we suppose that the matrix A is irreducible. Let
ui(t) ∈ R+ denote the time-varying control strength. Note
that if ui(t) is constant, the synchronization of model (1) has
been studied widely under the linear feedback control method
[2,4]. In this case, large control strengths are generally needed
to drive all nodes toward the desired state s(t). In order to
decrease the control strength, time-varying adaptive control
can be used [6,14]. However, this method cannot guarantee
that the control strength reaches the optimal level to achieve
the synchronization goal. So, how to realize its synchronization
and decrease control strength at the same time from the view
of optimization is still an open problem in complex networks.
Under this general dynamical complex network (1), this Rapid
Communication will address this problem by utilizing the
optimal control theory.

First, define synchronization error variables ei(t) =
xi(t) − s(t) for i = 1,2, . . . ,n, where s(t) is the expected
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synchronization state for all nodes. Since both the control
strength and time interval in real applications are usually finite,
we define the time-varying control strength ui(t) ∈ Uad =
{ξ (t) is measurable,0 � ξ (t) � b,t ∈ [0,tf ]}, where b > 0 is
the upper bound of the control strength and tf > 0 is terminal
time. Since our control goal is to decrease the global synchro-
nization error and control strength, and the synchronization
error at the terminal time, then a general objective function is
set as

J (u) = 1

2

n∑
i=1

{
eT
i (tf )ei(tf )+

∫ tf

0

[
eT
i (t)ei(t)+βiu

2
i (t)

]
dt

}
,

(3)

with Lagrangian L = 1
2

∑n
i=1 [eT

i (t)ei(t) + βiu
2
i (t)],

where parameters βi are all positive weights,
u(t) = [u1(t),u2(t), . . . ,un(t)]. In fact, the integral form
in objective function (3) is generally chosen to study the
synchronization on dynamical systems [11–13]. This kind
of objective function can ensure that the synchronization
error is decreased in the whole time interval [0,tf ] under the
following optimal control. If we want to relatively strengthen
the control of synchronization (i.e., weaken the consideration
of control strength), then the weights βi should be decreased,
and vice versa.

Therefore, the optimal control problem can be described as

OCP :

{
min , J (u(t)),

s.t., u(t) ∈ Un
ad .

(4)

The optimal solution [x∗
i (t),u∗

i (t)] of OCP will be resolved by
using the Pontryagin’s minimum principle [15]. Combining the
standard optimality conditions and complex network structure,
we develop an alternative formalization of network control in
terms of optimal control. Define the Hamiltonian H for OCP
as

H = L +
n∑

i=1

λT
i (t)ẋi(t), (5)

where λi(t) = [λi1(t),λi2(t), . . . ,λim(t)]T ∈ Rm are the ad-
joint variables determined by the following equations,

λ̇i(t) = − ∂H

∂xi(t)

∣∣∣∣
xi (t)=x∗

i (t),ui (t)=u∗
i (t)

= −e∗
i −

[
∂f (x∗

i (t))
∂x∗

i (t)

]T

λi(t) − c

n∑
j=1

ajiλj (t)

+u∗
i (t)λi(t), (6)

with transversality condition

λi(tf ) = ∂

∂xi(tf )

(
1

2

n∑
i=1

e∗T
i (tf )e∗

i (tf )

)
= e∗

i (tf ), (7)

where i = 1,2, . . . ,n. Furthermore, under the necessary con-
dition, the optimal control should satisfy

∂H

∂ui(t)

∣∣∣∣
xi (t)=x∗

i (t),ui (t)=u∗
i (t)

= βiu
∗
i (t) − λT

i (t)e∗
i (t) = 0, (8)

and u∗
i (t) ∈ Uad . These restriction conditions give the optimal

control

u∗
i (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0,
λT

i (t)e∗
i (t)

βi
� 0,

λT
i (t)e∗

i (t)
βi

, 0 <
λT

i (t)e∗
i (t)

βi
< b,

b,
λT

i (t)e∗
i (t)

βi
� b,

(9)

whose compact expression is given by

u∗
i (t) = min

{
max

(
0,

λT
i (t)e∗

i (t)

βi

)
,b

}
. (10)

Therefore, the optimal system of the complex dynamical
network under the optimal control is determined by Eqs. (1)
and (6) with initial condition (2), transversality condition
(7), and optimal control (10). In general, it is impossible
to obtain an analytic state solution and optimal control,
however, a solution can be obtained by numerical methods.
In the following simulations, we will apply the forward-
backward sweep method [16] to solve the optimal system,
where the underlying ordinary differential equations (1)
and (6) are solved by a fourth-order Runge-Kutta method.
The control strengths are updated by a convex combination
between the current strengths and the control strengths
provided by (10).

Without loss of generality, the heterogeneous structure is
characterized by three cases: the Star network, Watts-Strogatz
network, and BA network. The network size is n. In the Star
network, the first node has degree n − 1, while the other nodes
have the same degree 1. The Watts-Strogatz network [17] is
generated with probability 0.1 for rewiring links, where each
node is symmetrically connected with its six nearest neighbors
in its initial nearest neighbor network. The BA network [18]
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FIG. 1. (Color online) The synchronization errors e(t) on dif-
ferent complex networks with different controls, where e(t) =∑n

i=1 ‖ei(t)‖2. With the parameters (i), (a)–(c) are obtained on the
Star network, Watts-Strogatz network, and BA network, respectively.
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FIG. 2. (Color online) The synchronization errors e(t) on differ-
ent complex networks with different controls. With the parameters
(ii), (a)–(c) are obtained on the Star network, Watts-Strogatz network,
and Barabási-Albert (BA) network, respectively.

is produced with four initial nodes, which are fully connected,
and then adding a new node with three new edges at each time
step.

The local dynamics of each node is described by the chaotic
Lorenz oscillator⎧⎪⎨

⎪⎩
ż1 = a1(z2 − z1),

ż2 = a2z1 − z2 − z1z3,

ż3 = z1z2 − a3z3,

(11)

where a1 = 10, a2 = 28, and a3 = 8/3. So, we have m = 3
and

∂f (z)

∂z
=

⎛
⎜⎝

−a1 a1 0

a2 − z3 −1 −z1

z2 z1 −a3

⎞
⎟⎠.

In order to show that the choice of parameters for numerical
simulations does not affect the results, we consider two groups
of parameters: (i) n = 50, c = 0.1, b = 5, and βi = 1 for i =
1,2, . . . ,n; (ii) n = 60, c = 0.2, b = 6, and βi = 0.5 for i =
1,2, . . . ,n/2, βi = 1 for i = n/2 + 1, . . . ,n. The initial value
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FIG. 3. (Color online) The values of the objective function (3)
on different complex networks with different controls. With the
parameters (i), (a)–(c) are obtained on the Star network, Watts-
Strogatz network, and BA network, respectively; with the parameters
(ii), (d)–(f) are obtained on the Star network, Watts-Strogatz network,
and BA network, respectively.
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FIG. 4. (Color online) The dynamical change processes of the
optimal controls u∗

1(t) on different complex networks with the
parameters (i), where u∗

i (t),i = 2,3, . . . ,50 have similar dynamical
change processes, which are omitted for clarity.

θi are chosen from [0,1]3 at random for i = 1,2, . . . ,n + 1.
To show the effectiveness of the proposed optimal control
strategy, different constant controls and optimal control are
compared via their corresponding synchronization errors and
the values of their objective function. Figures 1 and 2 show
that, though the synchronization error with the optimal control
is larger than some constant control algorithms, it is limited to
a relatively low level (the error can become smaller by setting
larger upper bound b). That is to say, practical synchronization
is realized with the proposed optimal control strategy on these
networks. What is more important, from Fig. 3, the optimal
control strategy makes the value of the objective function J

minimal, while the other constant controls all result in larger J .
In Fig. 4, we can see the dynamical change process of optimal
control on different networks. To further measure the global
control strengths, we define the average control strengths of
the optimal control for each node as

vi = 1

tf

∫ tf

0
u∗

i (t)dt, i = 1,2, . . . ,n. (12)
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FIG. 5. (Color online) The average control strengths vi of the
optimal control for each node in the network with the parameters (i).
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FIG. 6. (Color online) The synchronization errors e(t) on the Star
network with the optimal pinning controls and different constant
pinning controls on the first node.

Obviously, 0 � vi � b, as 0 � u∗
i (t) � b. Figure 5 shows that

the average control strengths of the optimal control remain
relatively low for each network. Hence, we can conclude that
the optimal control indeed realizes a balance between the
synchronization error and control strength.

Though the above proposed optimal control is effective
in achieving practical synchronization, it may be infeasible
in real applications as it needs to control all nodes in the
network. In order to further improve the performance of
optimal control, we will propose an optimal pinning control
strategy by which only a fraction of nodes in the network are
controlled. As we know, for synchronization on heterogeneous
networks, the targeted pinning scheme, which aims to pin
the nodes with the largest degree, is more effective than
random pinning applied to the same number of nodes [4–
6,19]. Hence, we expect to improve the performance of
optimal control by targeting control on the nodes with a large
degree.

For simplicity, we take the Star network with size n = 10,
for example, to show the implementation of the optimal
pinning control strategy. In fact, the Star network is usually
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FIG. 7. (Color online) The values of objective function (3) on the
Star network with the optimal pinning control, and different constant
pinning controls on the first node with control strengths from 0.2b to
b. “Opt1” and “Opt2” denote u∗

1 and u∗
2, respectively.
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FIG. 8. (Color online) The dynamical change processes of the
optimal controls on the Star network with size n = 10. The average
control strengths are v1 = 1.6494, v2 = 1.3547.

investigated for synchronization as it can be considered as a
motif of the famous scale-free networks [20]. In this case, as
the first node has the maximal degree, we will only control
this node. To this end, in network (1), let ui(t) = 0,i =
2,3, . . . ,n, then u∗

1(t) = min {max (0,
λT

1 (t)e∗
1 (t)

β1
),b} from (10),

and u∗
i (t) = 0,i = 2,3, . . . ,n in Eq. (6). The other parameters

are set as c = 2, b = 5, tf = 5, and β1 = 1. The initial value
θi is chosen from [0,1]3 at random for i = 1,2, . . . ,n + 1.
From Fig. 6, we find that the synchronization error under
the optimal pinning control u∗

1(t) is limited to a relatively
low level, compared to the other constant pinning controls
on the same node. Moreover, from Fig. 7, the value of the
objective function is minimal when we apply the optimal
pinning control. Figure 8 shows the dynamical change process
of the optimal control u∗

1(t) with a small average control
strength v1 = 1.6494. For further comparison, we find that
the synchronization error and objective function are both
increased if only the second node is controlled with optimal
control u∗

2(t) (see Figs. 6 and 7), where the other parameters
are the same as the optimal pinning control. Hence, in real
applications of practical synchronization, the optimal pinning
control strategy is a highly effective method, as the number of
controlled nodes and the objective function are both small. As
we know, there is a close relationship between network syn-
chronization and network topological structure. The developed
optimal pinning control strategy provides a feasible method to
optimize the synchronization control on complex dynamical
networks.
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