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Asymptotic wave propagation in excitable media
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Université de Bordeaux, Bordeaux, France
(Received 5 February 2014; revised manuscript received 9 February 2015; published 8 July 2015)

Wave shape and velocity are important issues in reaction-diffusion systems, and are often the result of
competition in media with heterogeneous conduction properties. Asymptotic wave front propagation at maximal
conduction velocity has been previously reported in the context of anisotropic cardiac tissue, but it is unknown
whether this is a universal property of excitable tissues where conduction velocity can be locally modulated by
mechanisms other than anisotropy. Here, we investigate the impact of conduction heterogeneities and boundary
effects on wave propagation in excitable media. Following a theoretical analysis, we find that wave-front cusps
occur where local velocity is reduced and that asymptotic wave fronts propagate at the maximal translational
conduction velocity. Simulations performed in different reaction-diffusion systems, including cardiac tissue,
confirm our theoretical findings. We conclude that this property can be found in a wide range of reaction-diffusion
systems with excitable dynamics and that asymptotic wave-front shapes can be predicted.
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I. INTRODUCTION

Nonlinear waves of excitation govern a wide range of
phenomena, typically described by reaction-diffusion equa-
tions, and including, for example, flame-front propagation [1],
Belousov-Zhabotinsky chemical reactions [2], morphogenesis
of amoeba [3], intracellular calcium waves [4], and electrical
signaling in neural [5] and cardiac tissues [6]. The asymptotic
wave-front shape and velocity are important properties of wave
propagation and pattern formation in such media that have not
yet been properly addressed in systems with spatially varying
conduction properties.

Wave competition has previously been observed in the
heterogeneous Belousov-Zhabotinsky reaction [7] showing
a gradual invasion of the slower portions of the wave front
by the faster leading peaks. This results in a stationary wave
front whose shape and velocity are primarily determined by
the propagation dynamics of the faster portion [8]. A similar
behavior was found more recently in models of homogeneous
but anisotropic cardiac tissue. In this case, heterogeneity in
conduction properties is obtained through spatially varying
myofiber orientation [9]. Computational studies showed that
anisotropy could give rise to trailing intramural cusps in
layers where propagation is locally perpendicular to the fiber
orientation [10]. These cusps in the wave front can move
across layers and disappear at tissue surfaces where they
cause sudden apparent wave-front accelerations. Subsequent
propagation is asymptotic and can be described by translational
wave motion at the maximal longitudinal conduction velocity,
irrespective of local fiber orientation [11]. These findings
were verified theoretically and numerically in Ref. [11] and
indirectly through surface conduction velocity measurements
in intact heart optical mapping experiments [12]. More
recently, a geometric theory based on non-Euclidean metrics
was proposed to explain this observation in anisotropic heart
models [13]. However, it remains unknown whether these

observations on asymptotic wave propagation are general
features of excitable media with heterogeneous conduction
properties, especially those which affect active behavior.

In the present Rapid Communication, we show that the
occurrence of cusp waves and asymptotic wave propagation at
the fastest conduction velocity are universal properties of wave
propagation in excitable media, irrespective of the mechanism
leading to local dispersion of conduction velocities. We
primarily demonstrate these phenomena in cardiac tissue with
heterogeneous conduction properties across the thickness of
the ventricular wall, but demonstrate that our analysis holds
for any type of reaction-diffusion system.

II. THEORETICAL ANALYSIS OF ASYMPTOTIC
PROPAGATION AND CUSP WAVES

Let us first consider the asymptotic wave-front propagation.
We follow the approach described in Ref. [11] to derive
analytically the wave-front shape and its translational velocity.
We start with the case of an isotropic slab of thickness L

with a plane wave originating at x = 0 and propagating
in the positive x direction. The z direction denotes the
transmural direction across the thickness of the slab. For ease of
mathematical derivation, consider transmural heterogeneous
tissue properties leading to heterogeneities in conduction
velocity c(z) (other types of heterogeneities can be treated in a
similar manner). The wave-front position in the x direction is
denoted by F . The initially plane wave front will be deformed
by the transmural conduction heterogeneity and therefore F

will show z dependence. Assuming a constant asymptotic
translational velocity cx exists, we find that the asymptotic
wave front shape is given by the equation

dF

dz
(z) = ±

√(
cx

c(z)

)2

− 1, (1)
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or

F (z) = ±
∫ z

0

√(
cx

c(z)

)2

− 1 dz + F0, (2)

with F0 = F (0) an integration constant and where the sign
determines the slope of the wave front.

Consider a wave front with a single leading peak forming in
the layer zmax where the medium properties yield maximal con-
duction velocity cmax. Since the leading peak is an extremum of
F (z), we readily find from Eq. (1) that cx = cmax. Remarkably,
and similar to the case of anisotropy, we find that the
translational velocity is entrained to the maximal conduction
velocity in the heterogeneous reaction-diffusion system.

Consider now the case of a wave front with initially two
leading peaks forming in two distinct layers z1 and z2 where
the conduction velocity function has local maxima c1 and
c2. Without any loss in generality we consider z1 < z2. A
trailing cusp will be formed at a depth z1 < z0 < z2 where the
conduction velocity has a local minimum. The cusp effectively
splits the wave front in two portions: the lower having a
quasiasymptotic translational velocity c1 and the upper c2.
If c1 > c2, the cusp will move towards and disappear at the
z = L medium boundary. Once the cusp has disappeared at the
medium boundary, the problem is reduced to the previous case
of an asymptotic wave front with a single leading peak and
maximal translational velocity cx = c1. A similar reasoning
applies to the case where c2 > c1. In the special case of two
leading peaks with c1 = c2, a cusp will be observed in the layer
with minimal conduction velocity between the two leading

peaks. However, in this case, the cusp will not vanish at a
medium boundary and will remain in the same layer once
asymptotic propagation is reached.

III. COMPUTATIONAL EXAMPLES IN CARDIAC TISSUE

In order to verify our theoretical predictions, we ran
simulations in a widely studied excitable medium, i.e., cardiac
tissue. We ran monodomain simulations on a two-dimensional
(2D) finite element grid measuring 8 × 0.8 cm discretized into
quadrilaterals with edge lengths of 100 μm. The transmural
direction was defined from epicardium (z = 0) to endocardium
(z = L). The CARP cardiac simulator [14] solved the system
with an explicit method and a time step of 20 μs. Prop-
agation was initiated on the entire left edge of the tissue
by applying a 1 ms long transmembrane current pulse. To
describe electrophysiological behavior of nonischemic tissue,
the Luo-Rudy ionic model was used [15], while for ischemic
tissue, the Mahajan rabbit ionic model was implemented [16].
For ischemic tissue sodium and calcium conductance was
set to 75%, the extracellular potassium concentration was
elevated to 12 mM, intracellular potassium concentration
was lowered to 152.5 mM, and an adenosine triphosphate
(ATP)-sensitive potassium channel was introduced with an
adenosine diphosphate (ADP)/ATP ratio of 0.0063. Tissue
conductivity was set to 0.174 S/m in all cases. Conduction
velocity was measured as the inverse gradient of the activation
time map. Translational conduction velocity was obtained by
projecting the conduction velocity onto the x axis.

FIG. 1. (Color) Asymptotic wave propagation in a slab of cardiac tissue with four different transmural gNa profile (top panels). The middle
panels represent Tact, c, and cx , respectively (black and red arrows indicate the epicardial and endocardial surfaces, respectively), while the
bottom panel show the measured conduction velocity on epicardium (black) and endocardium (red).
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A. Transmural ion channel heterogeneity

In a first set of simulations, we varied the transmural
conduction velocity by implementing various gradients of
the sodium channel conductance gNa. Figure 1 shows the
resulting intramural propagation dynamics for four different
scenarios: (a) a linear transmural gNa gradient with minimum
at the epicardium (z = 0 mm) and maximum at endocardium
(z = 8 mm), (b) a piecewise-linear transmural gNa gradient
with a minimum in the middle of the slab (z = 4 mm)
and equal conductances at the epicardium and endocardium,
(c) a transmural step function with low gNa on the epicardial
side and high gNa on the endocardial side of the slab, and
(d) a piecewise-linear transmural gNa gradient with a minimum
at z = 1.8 mm and largest conductance at the endocardium.
The upper panels in Fig. 1 illustrate these four different
transmural gNa profiles. The middle panels show for each
case the transmural activation time (Tact) map, the wave-front
conduction velocity c map, and the translational velocity
cx map following plane stimulation at x = 0. The lower
panels show conduction velocities measured on the epicardium
(black) and endocardium (red) as a function of distance from
stimulus (x).

In the case of a linear transmural gradient [Fig. 1(a)] we
observe the formation of a wave front with a leading peak at
the endocardium, where gNa is maximal. The wave reaches
the asymptotic regime with no further changes in wave-front
shape or conduction velocity at about x = 6 cm, as can be
inferred from the Tact and c maps. At this point, the translational
velocity cx is maximal at all depths throughout the slab. A
constant and maximal conduction velocity is observed on the
endocardium, but a gradually increasing velocity is observed
on the epicardium until it reaches the maximal conduction
velocity. Hence, even though the epicardial gNa is reduced, the
maximal conduction velocity will be reached at some distance
away from the pacing site on this surface.

In the second case [Fig. 1(b)], a wave front with two leading
peaks at the epicardium and endocardium, respectively, is
formed with an initially trailing cusp at the middle of the slab.
The asymptotic regime is rapidly reached, at which point the
translational velocity is maximal at all depths. The conduction
velocities measured at the tissue surfaces remain constant and
maximal, consistent with maximal gNa at both surfaces. Note
that the effect of wave-front curvature on propagation velocity
is apparent at the cusp where c shows a local maximum.

In the third case [Fig. 1(c)], the endocardial portion (4 <

z � 8 mm) propagates faster than the epicardial portion of
the wave front (0 � z < 4 mm). This leads to an initially
transmural steplike wave front. As the wave propagates further
into the tissue, the wave-front orientation in the epicardial
portion changes gradually. The wave reaches its asymptotic
regime within a few cm from the pacing site, at which point
the wave-front orientation has acquired a constant acute angle
with respect to the epicardium in the lower portion of the
slab. The conduction velocity measured on the epicardium also
shows a sudden increase at this point and the wave propagates
at maximal translational conduction velocity from this point
onward.

Finally, in the fourth case [Fig. 1(d)], two leading peaks
are also observed at the epicardium and endocardium, but

FIG. 2. (Color online) Comparison between the theoretically
predicted (solid line) and simulated (white) asymptotic wave-front
shape.

now with the maximal velocity on the endocardium and an
intramural cusp located closer to the epicardium. As the wave
propagates, the faster portion of the wave front gradually
overtakes the slower portion and the cusp moves towards
the epicardial surface. The cusp eventually disappears at the
epicardium, at which point the wave reaches its asymptotic
regime at maximal translational velocity cx at all depths.
A sudden increase in epicardial conduction velocity is also
observed in this case.

As can be inferred from Fig. 1, the distance at which the
asymptotic regime and the maximal translational velocity are
reached depends on the extent and type of heterogeneity.

We verified the validity of Eq. (2) by comparison with
the simulated asymptotic wave shapes shown in Fig. 1.
First, we determined computationally the dependence of c

on gNa and found the following relationship in the Luo-Rudy
model, c(gNa) = 0.0307 + 0.378

√
gNa/23 − 0.21, where gNa

is expressed in μA/cm2. Next, we numerically integrated
Eq. (2) with c[gNa(z)] for the four different cases described
above. Figure 2 shows the results where the thick solid line
indicates the theoretically predicted wave front overlaid on the
simulated asymptotic wave shapes from Fig. 1 (white on black
background). We observe in all cases a good match between
theory and simulation. This was further verified by quantifying
the lateral extent of each asymptotic wave front (i.e., the
difference in x coordinates between the leading and trailing
edges) in each case: (a) 5.1 (theory) vs 5.4 (simulation) mm,
(b) 2.5 vs 2.5 mm, (c) 5.4 vs 6.6 mm, and (d) 5.6 vs 6.1 mm.
The relative difference between theory and simulation ranges
from 0% to 18%.

B. Bath-loading effects on intramural propagation

The extracellular bath (such as blood in vivo or saline
solution in experiments) provides a low resistance pathway for
extracellular currents resulting in a faster wave propagation
at the tissue surface [17]. Several simulation studies have
shown that this bath-loading effect can result in significantly
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FIG. 3. (Color) Effect of bath loading on transmural activation
patterns and conduction velocities.

curved intramural wave fronts, but without investigating
its mechanisms. Here, we find that intramural wave-front
dynamics in the presence of a tissue bath is a special case of
our general description above with fast conducting layers at the
epicardium and endocardium. Indeed, our theoretical analysis
predicts that an initially plane wave front will gradually
evolve towards its asymptotic shape with two leading peaks
at the tissue boundaries, a cusp in the middle of the slab,
and a translational velocity equal to the maximal conduction
velocity. This prediction was verified numerically and the
results are shown in Fig. 3.

C. Impact of regional ischemia on intramural propagation

Regional ischemia significantly increases electrophysiolog-
ical and conduction heterogeneity [18]. Here, we investigated
the effects of regional conduction velocity reduction due
to tissue changes related to ischemia. Acute ischemia was
simulated in the endocardial half of the tissue and a transmural
plane wave was simulated as in previous cases (Fig. 4). In
accordance with our theoretical predictions and similar to the
case presented in Fig. 1(c), we observe a wave that rapidly
reaches an asymptotic regime at which point the translational
velocity is maximal throughout the tissue slab. Interestingly,
the apparent conduction velocity measured at this point on the
pathological (ischemic) endocardial surface is much higher
than what would normally be expected in ischemic tissue [18].

IV. DISCUSSION AND CONCLUSION

To date, theoretical, numerical, and experimental studies of
asymptotic wave propagation in cardiac tissue have primarily
focused on the effects of structural heterogeneities and

FIG. 4. (Color) Effect of subendocardial ischemia on transmural
activation patterns and conduction velocities.

changing fiber orientation, or in mathematical terms, a spatially
varying diffusion tensor [10–13]. These studies have shown
that cusp waves can occur in regions where propagation is
perpendicular to the local fiber orientation, i.e., locally the
slowest, and more importantly that, at a distance from the
pacing site, waves reach an asymptotic translational regime
propagating at the maximal conduction velocity [10,11].

In the present study, we show that previous findings on
asymptotic wave propagation invariably and universally hold
in the presence of electrophysiological heterogeneities that
lead to spatial dispersion of conduction velocity (i.e., spatially
varying reaction parameters that impact on excitability).
Specifically, we find that cusps can be formed in the wave
front in regions where conduction velocity is depressed, that
these cusps can move along the wave front, and that in
all cases, waves reach an asymptotic translational regime
propagating at the maximal local conduction velocity. Our
results have important implications for the experimental
measure of conduction velocity and its interpretation. Indeed,
we find that if such measurement is performed at a distance
from the wave origin, measured conduction velocity at the
surface will always be maximal. Therefore, such measurement
may not be representative of the local electrophysiological
or structural properties, and the disease state (such as is-
chemia) of the tissue. Given that measurement of conduction
velocity near the stimulation site is furthermore complicated
by virtual electrode effects, extreme caution should be ex-
erted when measuring and interpreting conduction velocities
in the structurally and electrophysiologically heterogeneous
heart.

Recent theoretical and numerical studies have shown that in
homogeneous anisotropic media the description of wave prop-
agation could be greatly simplified by considering the inverse
diffusion tensor as a metric in a non-Euclidean space [19–21].
This approach allowed [13] to explain the earlier observation of
asymptotic wave propagation at maximal conduction velocity
within a geometrical framework where electrophysiological
distances are defined with respect to the diffusion metric.
Even though our study has focused on heterogeneities in the
reaction term, the previous geometrical analysis and concept
of electrophysiological distance introduced by Ref. [13] could
still be applied in our case through the construction of an
equivalent diffusion tensor in an homogeneous medium that
would phenomenologically reproduce wave propagation of an
heterogeneous medium. This can easily be achieved knowing
that c should scale as

√
D, where D is the scalar diffusion

coefficient in an isotropic medium. In this way, one can also
show that the previously obtained result of asymptotic wave
propagation at maximal speed should invariably hold for any
type of heterogeneity.

Although we have focused on cardiac tissue to illustrate our
findings, our theoretical analysis does not make any assump-
tion on the choice of model or parameters. We therefore further
verified our theoretical predictions in two other heterogeneous
excitable media: the two-variable Oregonator model with a
single diffusing variable for the Belousov-Zhabotinsky (BZ)
reaction [22] and the FitzHugh-Nagumo (FHN) [23] models.
Simulation results are presented in Fig. 5. In both cases we
have investigated wave-front propagation in a two-dimensional
medium perpendicular to a gradient in excitability properties.
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FIG. 5. (Color) Asymptotic wave propagation in the heteroge-
neous Oregonator (BZ) and the Fitzhugh-Nagumo equations (FHN).
For the Oregonator, ε was varied in a stepwise manner with a value
0.5 in the bottom half of the medium and a value of 1.5 in the
top. Activation is show with 0.5 ms isochrones in the upper panel,
and cx below. The FHN equations were implemented with a linear
increase in the vp parameter from 0.85 at the bottom to 1.05 at the
top. Activation is shown with 10 ms isochrones (top panel) and cx

below. In both cases asymptotic wave propagation at the maximal
translational conduction velocity can be observed.

In the Oregonator model we have simulated a stepwise gradient
in the parameter ε, whereas in the FHN model we implemented
a linear change in the parameter vp. All other parameters
remained unchanged from the original publications. In both
cases, we find the expected asymptotic behavior with the
translational conduction velocity reaching a steady state at the
maximal conduction velocity. Our findings should thus hold
for a wide class of reaction-diffusion systems.
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