
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 92, 010702(R) (2015)

Effect of disorder on the contact probability of elongated conformations of biopolymers
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Biopolymers are characterized by heterogeneous interactions, and usually perform their biological tasks
forming contacts within domains of limited size. Combining polymer theory with a replica approach, we study
the scaling properties of the probability of contact formation in random heteropolymers as a function of their
linear distance. It is found that, close to or above the θ point, it is possible to define a contact probability
which is typical (i.e., “self-averaging”) for different realizations of the heterogeneous interactions, and which
displays an exponential cutoff, dependent on temperature and on the interaction range. In many cases this cutoff
is comparable with the typical sizes of domains in biopolymers. While it is well known that disorder causes
interesting effects at low temperature, the behavior elucidated in the present study is an example of a nontrivial
effect at high temperature.
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In biopolymers, the formation of contacts between
monomers in noncompact conformations is one of the basic
physical processes which eventually determines the function
of the molecule. For example, in the case of proteins, the
formation of noncovalent interactions between distant amino
acids in the denatured state is, in many cases, among the
first steps in the folding process [1]. In fact, the folding rate
of proteins from their denatured state has been shown to be
correlated with the separation �l along the chain of the pairs
of residues which are in contact in the native conformation [2],
and the same phenomenon was observed in minimal protein
models [3]. Similarly, in chromatin the contact probability
between loci was found to correlate with their linear distance
on the megabase scale [4,5].

Moreover, biopolymers usually display a rather tight upper
limit in the value of �l associated with their contacts. Most
of them are structured in domains of characteristic size,
and the formation of contacts takes place predominantly
within such domains. For example, proteins can be very
long, but the distribution of domain sizes drops above 250
residues [6], while longer proteins are usually built of multiple
domains that fold independently and then assemble together.
Also in the case of chromatin, the polymer seems to form
domains with a maximum size of the order of 105–106

bases [7].
The simplest description we can give to the contact

formation in biopolymers is through a homopolymeric model
at equilibrium. In the elongated states of homopolymers, the
contact probability between two monomers depends on �l

(when this is sufficiently large) according to a power law �l−κ ,
where κ = 3/2 for ideal chains, that is when the effective
interaction between monomers is null, and κ = 9/5 [8] for
a random coil made of mutually repulsive monomers. As a
matter of fact, the contact probability between the ends of
unstructured peptides with repeated AGQ sequence of length
up to 29 residues, measured by FRET, displays a power law
with respect to the length of the peptide whose exponent
changes from 1.55 in water to 1.7 in urea and guanidine [9].
Simulations of the unfolded state of globular, single-domain
proteins up to lengths of 250 monomers show a power-law
dependence of contact probabilities with exponent 2.0 [10].

Even the crystal structure of proteins seems reminiscent
of the associated denatured state and displays ideal-chain
statistics [11], the distribution of loop sizes having a maximum
at 27 residues [12].

A homopolymeric model can account for the power-law
relation between contact probability and linear distance, but
it cannot explain the presence of finite-size domains. On
the contrary, the long tail associated with power laws would
suggest that the probability of nonlocal contacts remains rather
high even at large separation distances. In such a scenario, the
evolutive advantage of shaping a biopolymer into domains to
reduce the entropic cost of forming the initial contacts is weak
or null.

However, biomolecules are rarely homopolymers, and
consequently it may be useful to investigate the effect of
the heterogeneity of the interactions in the probability of
contact formation. As a model, we will consider a random
heteropolymer [13,14] interacting with the potential

U ({ri}) = U0({ri}) + v

2

N∑
ij

Bij δ(ri − rj ), (1)

where U0({ri}) = ∑
i u0(|ri − ri−1| − a) is any function that

maintains the integrity of the polymer, a is the intermonomer
separation length, N is the number of monomers, v is the in-
teraction volume, and Bij accounts for two-body interactions,
assumed as stochastic quenched variables distributed accord-
ing to a Gaussian of average B0 and standard deviation σ .

One would be interested in the contact probability

Rij ≡ Zij

Z
≡ v

∫
d{r} δ(ri − rj ) exp[−βU ({r})]∫

d{r} exp[−βU ({r})] (2)

between monomers i and j of the chain. But in disordered
systems, relevant quantities should be averaged over disorder,
and this is meaningful only if their relative fluctuations become
negligible when the system is large enough, namely if they
are self-averaging [15]. The standard Brout’s argument [16]
suggests that extensive quantities, like the free energy, are
self-averaging. The argument says that in a system with
a given realization of the disordered interactions, the rel-
ative fluctuations of extensive quantities go to zero in the
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thermodynamic limit thanks to the central limit theorem. If
one divides this system in K weakly interacting subsystems,
each of them can be regarded as a different realization of
the disordered interaction in an identical, although smaller,
system, and consequently the relative fluctuations of the
extensive quantity over the disorder goes to zero as well.

The quantity Fij = −T lnRij is a free energy, but it is diffi-
cult to apply Brout’s argument to it. In fact, when dividing the
whole chain into weakly interacting subsystems, these will not
be identical to each other, because one of them will contain the
loop and the others will not. Instead, a self-averaging quantity
is expected to be F�l = −T (N − �l)−1 ∑

m lnRm,m+�l in the
case that �l � N . In fact, dividing the chain in K subsystems,
F�l results in the sum of (N − �l)(K − 1) terms accounting
for the free energy of an unconstrained polymer, and (N − �l)
terms accounting for the free energy of a looped polymer. The
relative fluctuations of these sums, which can be regarded
as averages over the disordered interactions, go to zero for
N − �l � 1, suggesting that F�l is self-averaging.

The average of F�l over disorder can be evaluated with the
standard replica trick [17] from

lnR�l ≡ 1

N − �l

∑
m

lnRm,m+�l

= 1

N − �l

∑
m

lim
n→0

1

n
ln

Zn
m,m+�l

Zn
. (3)

The constrained partition function Zn
ij defined by a contact i −

j can be integrated over the Gaussian-distributed interaction
elements Bij as in Ref. [18] to give

Zn
ij =

∫
d{rα}

(
vn

∏
α

δ
(
rα
i − rα

j

))

× exp

[
−β

∑
α

U1
({

rα
l

}) + β2σ 2

2
v2

×
∑

k �=l α �=β

δ
(
rα
k − rα

l

)
δ
(
r

β

k − r
β

l

)⎤⎦, (4)

where U1 = ∑
k u0(|rα

k − rα
k−1| − a) + vB ′

0
2

∑
klα δ(rα

k − rα
l )

with B ′
0 = B0 − βσ 2 is the effective one-replica

interaction which controls the density of the
chain [19]. A similar expression, lacking of the
product of δ(rα

i − rα
j ) holds for the unconstrained Zn.

For each pair of replicas, the double sum over monomers
at the exponential of Eq. (4) counts the number of contacts
shared by the two replicas. If the chain has density ρ, this

number is expected to scale as Nρ2, because each monomer
has a probability ρ to be in contact with another monomer
of the same replica, and a probability ρ to be in contact
with the same monomer within the other replica. Thus, the
number of shared contact results independent on N close to
the θ point, where ρ = ρ0 ∼ N−1/2, and decreases above the θ

point, where ρ < ρ0. If v � a3, for “biological temperatures”
(β−1 ∼ σ ) the term which couples the replica together can be
treated perturbatively, obtaining

Zn
ij =

∫
d{rα}

(
vn

∏
α

δ
(
rα
i − rα

j

))
exp

[
−β

∑
α

U1
({

rα
l

})]

×
⎛
⎝1 + β2σ 2

2
v2

∑
k �=l α �=β

δ
(
rα
k − rα

l

)
δ
(
r

β

k − r
β

l

)⎞⎠. (5)

At variance with the perturbation approach applied to the
excluded volume [8], in which case the perturbing term scales
as (T − θ )N1/2 and thus is meaningful only if T ∼ θ , in the
present case it can be applied at any temperature. Following
a scheme similar to that of Ref. [20] one can write the ratio
needed in Eq. (3) as

lim
n→0

1

n
ln

Zn
ij

Zn

= lim
n→0

1

n
ln

⎧⎨
⎩
(
Z

(0)
ij

)n
(Z(0))n

⎡
⎣1+

⎛
⎝(

Z
(2)
ij

)n
(
Z

(0)
ij

)n − (Z(2))n

(Z(0))n

⎞
⎠
⎤
⎦
⎫⎬
⎭, (6)

where the superscript (2) indicates the perturbed partition
functions, including the term proportional to v2, while the
superscript (0) indicates the unperturbed partition function.
The last fraction is immaterial because it does not depend on
(j − i).

The perturbed constrained partition function can be written
as

(
Z

(2)
ij

)n = v4β2σ 2

(
Z

(0)
ij

)n
(
Z

(0)
ij

)2
n(n − 1)

×
∑
k<l

(∫
drδ(ri − rj )δ(rk − rl)e

−βU1(r)

)2

,

(7)

where the integral is performed over a single replica. The above
sum can be split in terms defined by the order of the indexes
k, l, i, and j , which can be graphically represented as

(8)
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To calculate the integrals in the sums defined by the above graphs, we employ the approximation that U1 ≈ U0, so that the
propagators associated with the solid segments in the graphs is that of the ideal chain,

G0(�r,�l) = 1

(2πa2�l)3/2
exp

[
− |�r|2

2a2�l

]
, (9)

which is exact if B ′
0 = 0 and worsens as B ′

0 > 0 increases. Vertexes are V (�r) = 2πδ(|�r|). Each term of Eq. (8) can be
calculated integrating the chain of propagators corresponding to the graph and approximating the sum over k and l as integrals.
For example, the simplest contribution is

(10)

where � is the volume of conformational space of the chain, needed because the functions G0 are probability densities. In four
of the six terms of Eq. (8), the leading contribution in the limit of large (j − i) scales as (j − i)−3. Exception is made for the
third and the sixth term, which give

.

(11)

These two terms give a perturbation to lnRij which depends
on (j − i), since the square of the unperturbed constrained
partition function with which one must compare them [see
Eqs. (6) and (7), and below] scales as (j − i)−3 for the ideal
chain and (j − i)−18/5 for the swollen coil.

Identifying the conformational-space volume � with
(Z(0))n, Eq. (3) can be calculated using Eqs. (6), (7), and (11),
and performing the limit n → 0, resulting for large �l in

lnR�l = ln

{
1

�lκ
exp

[
−
(

�l

�l0

)2κ−2
]}

, (12)

where

�l0 ≡
[

8π2

β2σ 2

(
a3

v

)4
]1/(2κ−2)

. (13)

This means that when one plots the contact probabilities of
pairs of monomers versus their separation in log-log scale,
the linear behavior can be detected only for �l � �l0, while
an exponential drop dominates at larger values of �l. The
exponent associated with the power-law regime does not result
in change with respect to the homopolymeric case, as already
suggested in Ref. [21] making use of the renormalization group
in three dimensions. Examples of the exponential correction to
the power law are displayed at different temperatures in Fig. 1
for the case of the ideal chain (upper panel) and the random
coil (lower panel).

When the temperature is close to the θ point (i.e., B ′
0 = 0),

then κ = 3/2 and the effect of the disorder in the interactions is
that of applying an exponential cutoff to the contact probability
to monomers whose linear distance is beyond �l0. To have an
order of magnitude for �l0 in the ideal-chain regime, one can
consider the case B0 = σ , so that B ′

0 = 0 implies β2σ 2 = 1
(i.e., T = σ ), and v/a3 = 0.5. In this case, �l0 ≈ 103.

FIG. 1. (Color online) The shape of R�l calculated at increasing
temperatures, from T = 0.2σ [blue (lowest) curve] to T = 0.5σ

(purple curve), T = σ (green curve), and T = 1.5σ (red curve), for
the cases B ′

0 = 0 (upper panel) and B ′
0 > 0 (lower panel). The black

(upper) curves in each panel show the power law without exponential
correction.
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FIG. 2. (Color online) The dependence of �l0 on the temperature
for the cases B ′

0 = 0 [black (upper) curve] and B ′
0 > 0 [red (lower)

curve]. If one assumes, for instance, that B0 = σ , then the transition
between the two cases occurs at T = σ (marked by a dotted arrow). At
lower temperatures the system is in a globular phase and the present
calculations do not apply.

Above the θ point (i.e., B ′
0 > 0) κ = 9/5 and the correction

to the power-law behavior is a stretched exponential with
power 8/5, which is not very far from a Gaussian function.
If, for example, we still set B0 = σ and v/a3 = 0.5, but now
choose T = 3/2 σ , so that B ′

0 = 1/3 σ > 0 and the chain is
in a coil phase, now �l0 ≈ 130. The coil regime, above the
θ point, is the typical case experienced by proteins at the
beginning of the folding process in the experiments [22].

The behavior of �l0 with respect to the temperature is
quite irregular (see Fig. 2). At the θ point it can be large
because, in spite of the small denominator in Eq. (13), the
overall exponent is 1. When the temperature increases just
above the θ point, the denominator becomes somewhat larger,
but the overall exponent drops to 5/8, making �l0 small.
As temperature is further increased, �l0 becomes larger and
eventually diverges. A consequence of this is that, for each
value of B0, there is an intermediate range of temperatures
which penalizes the formation of long-range structure in the
elongated conformations of biopolymers.

Actual biopolymers are finite systems. The upper limit of
their length is usually well defined, and long biopolymers are
structured in domains compatible with this upper limit. In
the case of proteins, single domains are shorter than ∼250
residues [6], corresponding to ∼100 Kuhn lengths. Among
the factors which constrain the size of single domains could
be the difficulty of establishing long-range contacts in the
denatured state due to the exponential cutoff highlighted above,
and consequently of achieving an efficient folding mechanism.
Also in the case of chromatin, whose Kuhn length is ∼6 ×
103 bases [23], the polymer seems to form domains with a
maximum size of the order of 105–106 bases [7], corresponding
to hundreds of Kuhn lengths.

The low-temperature globular phases of random het-
eropolymers have been widely studied in the past [18,19],
and show glassy behavior. Interestingly, the effect of disorder
on the contact probability displayed by Eq. (12) appears at
rather high temperatures, well above the glassy transition.

The author would like to thank E. Shakhnovich for helpful
discussions and suggestions.
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