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Recursive percolation
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2Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75231 Paris, France
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We introduce a simple lattice model in which percolation is constructed on top of critical percolation clusters,
and find compelling numerical evidence that it can be repeated recursively any number n of generations. In two
dimensions, we determine the percolation thresholds up to n = 5. The corresponding critical clusters become
more and more compact as n increases, and define universal scaling functions of the standard two-dimensional
form and critical exponents that are distinct for any n. This family of exponents differs from previously known
universality classes, and cannot be accommodated by existing analytical methods. We confirm that recursive
percolation is well defined also in three dimensions.
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The use of percolation theory pervades many parts of
science, ranging from material science to geology, epidemi-
ology, and sociology [1,2]. At the percolation threshold it
leads to random, scale invariant geometries that have become
paradigmatic in theoretical physics and probability theory.
Lattice models for percolation [3] have propelled powerful
theoretical constructions, leading to a host of exact results,
particularly in two dimensions [4–7].

A typical model is bond percolation, in which each link of
the lattice is taken to be open with probability p. An important
assumption in this model is that the medium is independent
of its preceding history. However, in numerous situations this
hypothesis is not fulfilled. Examples include the percolation
of a liquid in a porous medium such as granular rocks [8], or
epidemic spread [9,10], where a renewed percolation (spread)
event may depend on the history of sedimentation (immuniza-
tion). In both cases, the first percolation process imposes a
particular type of quenched disorder on the following process.
The purpose of this Rapid Communication is to formulate
a simple model of such recursive percolation and study its
properties numerically.

Given a configuration of percolation clusters at criticality,
p0 = p0

c , with superscript n = 0 for the original percolation,
we define a new (n = 1) percolation process on top of them
such that occupied bonds are placed with probability p1 on
all the pairs of neighboring sites in the same cluster. One
might then expect that any finite probability p1 < 1 would
destroy the critical singularity and lead to a subcritical phase
where it becomes exponentially difficult to form a large
cluster. Contrary to this expectation, we show that there
exists a nontrivial critical threshold, 1 > p1

c > p0
c , separating

a subcritical and a critical phase. This means in particular
that the construction can be repeated recursively: On top
of these critical clusters, one may again study a percolation
process and search for its threshold. The same scenario takes
place, so that the construction may be repeated any number of
times. Surprisingly, the nth generation of percolation clusters
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thus generated enjoys, at their threshold p = pn
c , distinct

critical exponents for any n. The d = 2 simulations show
that the exponents are universal, i.e., independent of lattice
and percolation process (bond or site). Moreover, they tend
to finite limits when n → ∞—in the case of a “worn out”
medium.

This family of recursive critical exponents for n � 1 does
not appear in previously known universality classes [4].
The d = 2 exponents cannot be accounted for by existing
analytical constructions, including the Coulomb gas (CG)
approach to conformal field theory (CFT) [4,5], and the more
recent Schramm-Loewner evolution (SLE) [6,7]. These field-
theoretical methods have provided a plenitude of information
about critical behavior, predicting exact values [11,12] of
critical exponents for most two-dimensional lattice models. We
find in particular that recursive percolation for n � 1 violates
the domain Markov property in the context of SLE theory.

Percolation threshold. We study recursive percolation on
periodic L × L square lattices. The starting point is standard
bond percolation [1,2], with the known threshold p0

c = 1
2 .

From a given set of percolation clusters C0, henceforth called
standard clusters for clarity, we define a set of dense clusters
C0 by filling in all bonds between neighboring sites in the
same cluster. Here and elsewhere quantities with (without) an
overline refer to the dense (standard) case.

Suppose that the thresholds p1
c , . . . ,p

n−1
c are already

known. A configuration of clustersCn at generation n � 1, with
a given occupation probability pn, is then defined as follows:
For each i = 1, . . . ,n in turn, produce Ci by performing bond
percolation on Ci−1 with probability pi = pi

c if i < n, and
pi = pn if i = n.

We have performed extensive simulations for L = 2�, with
� = 4,5, . . . ,12, using a variant of the Leath-Alexandrowicz
algorithm [13]. The existence of a nontrivial threshold pn

c is
revealed by the crossing properties of the probability Rn

2 that
one cluster in Cn wraps both periodic lattice directions (see
Fig. 1). The finite-size scaling clearly shows that pn

c acts as
an unstable fixed point for nth generation clusters: The slope
of Rn

2 near pn
c increases as Lyn

t , where the renormalization
exponent yn

t = 1/νn is generally referred to as the thermal
exponent. Away from pn

c , renormalization flows run into the
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FIG. 1. (Color online) Wrapping probability Rn
2 vs pn for n =

1,2,3,4. The superscript n is for the nth generation. Percolation
threshold is located by the approximately common crossing for
different sizes L, as denoted by different colors.

trivial fixed points pn ≈ 1 and pn = 0, respectively; see the
Supplemental Material (SM) [14] for more details.

From the scaling of Rn
2 near pn

c (see SM for the fitting
formula), we have determined, for n � 5, the thresholds pn

c ,
the thermal exponent yn

t , and the critical value of Rn
2 , given in

Table I. Notice that the values of pn
c are close to the simple

fraction (n + 1)/(n + 2), especially for larger n. This suggests
that pn

c → 1 for n → ∞, implying that recursive percolation
can be defined for any number of generations.

Observables and scaling. For a given configuration, the
occupied bonds are classified into bridges and nonbridges:
A bond is a bridge if its deletion leads to the disconnection
of a cluster. A pseudobridge is a nonbridge whose removal
would change the topology of the associated cluster—i.e.,
how it wraps the periodic boundary conditions. An efficient
algorithm has been introduced in Ref. [15] for the classification
of occupied bonds into these three classes; see SM for details.
We also measured the size Cn

1 of the largest cluster, the number
Bn

R of pseudobridges, the length Hn
1 of the largest loop [16]

surrounding percolation clusters, and the size Cn
b1 of the largest

backbone clusters that are constructed by those nonbridges.
At criticality, the finite-size scaling of these observables is
governed by a set of critical exponents,

Cn
1 ∝ Ldn

F , Hn
1 ∝ Ldn

H , Bn
R ∝ Ldn

R , Cn
b1 ∝ Ldn

B , (1)

TABLE I. Threshold pn
c , exponent yn

t , and wrapping probability
Rn

2 for nth generation percolation.

n 1 2 3 4 5

yn
t 0.433(1) 0.273(4) 0.182(4) 0.116(10) 0.09(2)

Rn
2 0.495(1) 0.547(1) 0.571(2) 0.586(3) 0.595(4)

pn
c 0.654902(10) 0.73954(4) 0.7945(1) 0.8342(8) 0.861(4)

TABLE II. Values of critical exponents. For n = 0, the backbone
is estimated as d0

B = 1.6431(6) from a transfer matrix computation
[17] and d0

B = 1.643 36(10) by Monte Carlo simulations [18,19]. Note
that dn

R coincides with yn
t in Table I. The equality y0

t = d0
R holds true

in any spatial dimension [20,21].

n 0 1 2 3 4

dn
F 1.8958(1) 1.8573(1) 1.8424(1) 1.8357(2) 1.8323(2)

dn
B 1.6433(3) 1.7596(1) 1.7942(1) 1.8078(2) 1.8148(2)

dn
H 1.75 1.6083(1) 1.5358(1) 1.4967(1) 1.4723(2)

d
n

H 1.3333 1.3739(1) 1.3929(1) 1.4026(2) 1.4075(2)

dn
R 0.751(1) 0.433(1) 0.272(2) 0.182(2) 0.121(3)

d
n

R − 0.77(3) − 0.429(1) − 0.275(2) − 0.194(6) − 0.15(1)

where dn
F is the cluster’s fractal dimension, dn

H is the hull
dimension, dn

R is the red-bond exponent, and dn
B is the back-

bone dimension. These critical exponents characterize more
precisely the critical clusters Cn. Analogous measurements
were taken for the dense clusters Cn, and our definitions imply
that dn

F = d
n

F. The “dense” hulls correspond to the accessible
perimeters in Ref. [22].

The scaling behavior in Eq. (1) is well confirmed by our
numerical data, and the results are shown in Table II [23]. The
SM presents the results for additional observables, including
the shortest path and the bond density. For the standard case
(n= 0), it can be derived [24] that the dense bond density
is 3/4.

Scaling functions. The recursive percolation can be con-
structed in an alternative way: Start from a seed site, grow a
percolation cluster, construct a n = 1 cluster right on top of
it from the same seed site, and repeat the process recursively.
This is illustrated in Fig. 2. We employ this procedure on
periodic L × L square lattices, and record the probability
distribution P (s,L) that the grown cluster is of size s.
Figure 3 shows P (s,L) at criticality versus s in a log-log

FIG. 2. (Color online) Illustration of recursive single-cluster
growing processes. The n = 0,1,2 bonds and clusters are marked
in gray, green, and black, respectively.
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FIG. 3. (Color online) Probability distribution P (s,L) in the
single-cluster growing procedure. The size L = 16 384 in the main
plot. The red (n = 0) and blue (n = 1) data are for p0 = p0

c =
1/2 and p1 = p1

c = 0.654 902, respectively. The black curve with
p1 = 0.6 < p1

c displays subcritical behavior. The red/blue straight
lines have slopes 1 − τ ≡ −d/dn

F , with d0
F = 91/48 and d1

F =
1.8573. The right-top inset shows the product sP (s,L), and the
left-bottom corner displays sτ−1P (s,L) for n = 1 vs s/d1

F , with
L = 256,512, . . . ,16 384.

scale for L = 16 384. The algebraically decaying behavior of
P (s,L) is well displayed in a wide range of size s.

The standard scaling theory yields

P (s,L) ∼ s1−τ f (s/LdF ) (τ = 1 + d/dF), (2)

where f is a universal function and the hyperscaling relation
τ = 1 + d/dF involves spatial dimension d. A nontrivial
question arises: Does Eq. (2), particularly the hyperscaling
relation, hold true for n � 1, for which the underlying
geometries are already fractal? We apply in Fig. 3 the critical
exponents d0

F = 91/48 [11] and d1
F = 1.8573. The latter is

taken from Table II, obtained from the other construction of
recursive percolation. Surprisingly, the two insets of Fig. 3
strongly support that the n = 1 recursive percolation enjoys
the scaling form in Eq. (2) with original dimensionality
d = 2.

We show in Fig. 4(a) the effective hull dimension d1
H

against the variable u = (p1 − p1
c )Ly1

t , defined as d1
H(L) ≡

log2 [H 1
1 (2L)/H 1

1 (L)]. With the choice y1
t = 0.433(1) the data

for all sizes L collapse perfectly to reveal the universal scaling
function. For u = 0 one has the Cn universality class, here with
d1

H = 1.6083(1), while for u > 0 there is a flow to the Cn−1

universality class, as expected, now with d
0
H = 4/3. The flow

for u < 0 is to the trivial fixed point with dH = 0.
Critical exponents. In two dimensions, the field-theoretical

methods [11,12] predict the exact results for percolation and
q-state Fortuin-Kasteleyn (FK) clusters (a correlated percola-
tion model)

d0
F = 2 − (6 − g)(g − 2)/(8g) = 91/48,

d0
H = 1 + 2/g = 7/4,

d0
R = (4 − g)(4 + 3g)/(8g) = 3/4, (3)
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FIG. 4. (Color online) Fractal dimensions. (a) Effective dimen-
sions d1

H(L) vs the variable u = (p1 − p1
c )Ly1

t ; d1
H(L) approaches

the exact value 4/3 for u � 0. (b)–(d) The critical exponent dn
X vs

generation n, with X = H,F,R, respectively. The “×” points are from
the fitting results. For each of the exponents, the n dependence can
be fitted to a common n → ∞ limit, as shown.

where g = 8/3 for percolation, in which case the above
results are rigorous [6,7]. The CG duality transformation

g → 16/g relates d0
H → d

0
H, and leads to the duality relation

(d0
H − 1)(d

0
H − 1) = 1/4 [12].

By comparing Eq. (3) to the numerical results in
Table II, we obtain that, for n � 1, (1) dn

F cannot be described
by the exact d0

F formula in Eq. (3) that has a minimum dF,min =
(2 + √

3)/2 ≈ 1.866 at g = 2
√

3, and (2) the recursive clusters
violate the domain Markov property, since dn

H and d
n

H data do
not satisfy the duality relation.

Limiting clusters. The n dependence of critical exponents
is illustrated in Figs. 4(b)–4(d). It is shown that as n increases,
the exponents for Cn and Cn approach each other. They can be
convincingly fitted to ratios of low-degree polynomials, with
a common limit for the standard and dense exponents. The
common limiting values for n → ∞ are estimated as

d∞
H = d

∞
H 
 1.42(3),

d∞
B = d

∞
B = d∞

F = d
∞
F 
 1.826(6),

d∞
R = d

∞
R 
 0.00(6). (4)

The numerical values of Table II also appear to satisfy
dn

R = −d
n

R for each n; we have no explanation for this. In
particular, the common n → ∞ limit d∞

R = d
∞
R = 0 most

probably holds true. These results provide substantial evidence
that the difference between standard and dense clusters—the
property that permitted us to define recursive percolation in the
first place—disappears when n → ∞. The variation of critical
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exponents (Table II) and the convergence pn
c → 1 (Table I),

all monotonic, strongly support the conjecture that recursive
percolation defines a distinct universality class for any finite n.

The above results can be used to characterize the limiting
clusters C∞ = C∞ in various ways. The fact that d∞

R = 0
means that the number of red bonds in the limiting clusters
does not grow with L. This is compatible with the observation
[Fig. 4(c)] that the difference between the clusters and their
backbones vanishes in the limit. In other words, the limiting
clusters are dense objects, with only few leaves or dangling
ends. Moreover, they are devoid of deep fjords, since their
hulls and external perimeter scale in the same way [Fig. 4(b)].

Another set of clusters having similar characteristics are the
FK clusters of the q = 4 state Potts model, whose hulls behave
as the level lines of a free Gaussian field with central charge
c = 1. These Potts clusters can be described by the CG con-
struction with the self-dual choice of the coupling, g = 4 [5].
They have dR = 0, dF = 15

8 , and dH = 3
2 , coming from Eq. (3).

Despite this resemblance, the C∞ clusters are most def-
initely different from the q = 4 FK clusters: The fractal
dimensions d∞

F and d∞
H disagree with Eq. (3).

Universality. Changing the lattice from square to triangular,
or the process from bond to site percolation [25], obviously
modifies the thresholds pn

c . However, the critical exponents dn
F ,

dn
R, and dn

H are found to be unchanged; the critical wrapping
probability Rn

2 also remains the same for different processes on
the same lattice. This demonstrates the universality of recursive
percolation. Simulations for d = 3 (see SM) produce different
exponents, but the thresholds pn

c < 1 remain nontrivial, so we
conjecture that recursive percolation is well defined in any d

below the upper critical dimension duc = 6 [1,2]. For d > duc,
the construction of a critical percolation cluster is basically a
branching process with small corrections [26], and we expect
pn

c = 1 for n � 1 and trivial exponents (see SM).
Discussion. We introduced a simple lattice model, recursive

percolation, which represents an infinite family of different
universality classes. A crucial element of its definition is
that the nth recursive process occurs on the set of dense
percolation clusters Cn−1 such that occupied bonds can be
placed between those neighboring sites connected via nonlocal
paths. Indeed, using instead the standard clusters Cn−1 would
have been tantamount to a trivial modification of p in the
n = 0 process, leading to pn

c = 1 for all n � 1. In other words,
the strengthening along the perimeter Cn−1 → Cn−1 makes
the clusters subcritical, while pn−1

c → pn
c takes them back

to criticality, but in a different, n-dependent universality class.
This modeling of the wearing out of the medium upon multiple
percolation events differs from that of Ref. [8], which has a
trivial percolation threshold pn

c = 1 for n � 1. In Ref. [8], the
standard nontrapping invasion percolation algorithm is used to
generate a percolating site cluster on top of a previous standard
site cluster, and thus effectively removes the occupied sites. In
a very recent paper [27], a different fragmentation process is
introduced and a set of varying dynamic exponents is found.

We also stress that although the underlying medium is
fractal for n � 1, recursive percolation belongs to the realm
of the original d-dimensional Euclidean space, as witnessed
most clearly by the hyperscaling relation in Eq. (2). Moreover,
we find that the d = 2 critical exponents for n � 1 are beyond
the description of field-theoretical methods that are applicable
for most two-dimensional lattice models. Several important
questions arise: Is recursive percolation conformally invariant
at criticality, what is the universality criterion, and how can the
exact values of critical exponents be obtained? Do the n � 1
clusters enjoy multifractal properties?

It is worth mentioning that earlier studies of statistical
models on top of fractal structures [28] focused either on
the case where the underlying structure is a self-similar
set, such as the Sierpiński gasket [29], or where the model
is random walks of the self-avoiding (SAW) [30–35] or
loop-erased [36] types on top of percolation backbones. While
the former case is easy, the latter inherits the difficulties of
the underlying d-dimensional lattice. Interestingly, SAW on
backbones defines a different universality class exactly at p =
pc [32] with multifractal properties [34,35]. In renormalization
group language this means that pc is an unstable fixed point
from which the system may flow to either the usual SAW fixed
point at p = 1, or to a trivial fixed point at p = 0. However,
recursive percolation differs from these existing works in
various ways: It can be defined recursively any number of
times, and the critical exponents are incompatible with existing
analytical methods.

We conclude by suggesting that the recursive construction
presented here, via the study of percolation on percolation
clusters, may carry over more generally to the q-state Potts
model. For instance, it is well known that q-state FK clusters
arise by considering percolation with pc = √

q/(1 + √
q) on

top of q-state Potts spin clusters [37], which are widely applied
in cluster-type Monte Carlo methods [38]. Both types of
clusters are well defined for arbitrary real 0 � q � 4 [39,40].
It is thus tempting to speculate that on top of q-state FK
clusters one may define new q1-state FK clusters, and that
the latter will be critical for a suitable nontrivial choice of the
temperature variable, with distinct critical exponents. Future
work will show whether this construction is possible and can
be repeated recursively.
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