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A method to approximately close the dynamic cavity equations for synchronous reversible dynamics on a
locally treelike topology is presented. The method builds on (a) a graph expansion to eliminate loops from the
normalizations of each step in the dynamics and (b) an assumption that a set of auxilary probability distributions
on histories of pairs of spins mainly have dependencies that are local in time. The closure is then effectuated
by projecting these probability distributions on n-step Markov processes. The method is shown in detail on the
level of ordinary Markov processes (n = 1) and outlined for higher-order approximations (n > 1). Numerical
validations of the technique are provided for the reconstruction of the transient and equilibrium dynamics of the
kinetic Ising model on a random graph with arbitrary connectivity symmetry.
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I. INTRODUCTION

Disordered spin systems are an important class of models
able to catch and reproduce a large range of phenomena from
phase transitions in magnets and amorphous systems [1] to
protein folding in biology [2], social media [3,4], epidemic
spreading [5], immune and neural networks [6], and appli-
cations in finance and optimization problems [7–9]. In the
thermodynamic limit these systems have rich and fascinating
repertoires of static and dynamic behavior, including the
clustering [8] or shattering [10] transition, ergodicity breaking,
and ageing [11]. To systematically describe their static prop-
erties the replica method (for fully connected systems) and
the cavity method (for dilute systems) were developed [12].
General techniques to systematically study the dynamics
of single finite systems in this class have, however, been
less developed and in practice mostly limited to dynamic
mean-field theories [13,14], path integral techniques [15–18],
large deviation approaches [19], and, above all, numerical
simulation [20].

The cavity method [12,21] here holds a special place as
it has become the method of choice to solve the statics of
models on sparse networks, while for dynamics it was long
restricted to dynamics on fully asymmetric graphs [22–24].
The main problem is that while the cavity technique reduces
the complexity “in space” (number of terms in an approximate
computation of marginals), there remains a complexity “in
time” (cardinality of each term). This is so because the natural
variables of the dynamic cavity method are probabilities of
spin histories, of which there are exponentially many (2t for
synchronous updates over time [0,t] with time constant one).
Therefore, although the dynamic cavity equations themselves
only involve a finite number of terms, summing them nev-
ertheless (in general) entails a number of operations which is
exponentially large in t . Fully asymmetric networks is a special
case since the cavity equations then can be marginalized
over time with no loss of information, and the complexity
“in time” disappears. Alternative “ways out” investigated in
the literature use additional assumptions on the evolution

law such as majority dynamics [25] (i.e., linear dynamics
with thresholding) or, more recently, unidirectional dynamics.
Models of this latter type, where after a variable makes a
transition from one state to another it can never go back, are
represented by the zero-temperature random-field Ising model
(RFIM) [26], cascade processes [27], spread optimization
problems [28], and several epidemic models as, for instance,
the susceptible-infected-recovered (SIR) model [29,30]. The
main peculiarity of such models is that the dynamics can be
parametrized in terms of the time(s) at which the transition
from one state of the variable to another occurs, which again
eliminates time complexity.

Another approach was taken in Ref. [31], where a sim-
plifying “one-time” assumption was introduced, which for
fully asymmetric networks reduces to (exact) marginalization
over time. For the kinetic Ising model with synchronous
and asynchronous updates this was later shown to be
considerably more accurate than dynamic mean field, not
only for asymmetric networks but also for partly symmetric
networks [32,33]. A different approach, based on variational
approximations, was very recently proposed in Ref. [34]
where the author shows better performances in recovering
stationary states compared to existing methods. Unfortunately,
except for fully asymmetric networks, all these approaches
are limited to steady states and hence cannot handle dynamic
phenomena.

In this contribution we present a method to approximatively
close the dynamic cavity equations for synchronous updates
with no assumptions on the underlying network and evolution
law beyond that the network is locally treelike and the
evolution law is Markov. Unlike other methods already present
in the literature, our approach is built not only to recover
stationary states but also potentially the transient, i.e., the
out-of-equilibrium dynamics. The method is built on two
ingredients. The first, which already appeared in this context
in Ref. [28], is the use of the graph expansion technique of
Ref. [12] to rewrite the probabilistic model in a way such
that the underlying graph is explicitly locally treelike, and the
standard cavity equations can be used. The second ingredient
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is the assumption that a set of auxilary probability distributions
on spin histories, “messages” in cavity method language,
contain dependencies that are mainly local in time. A closure
of the dynamic cavity equations is then effectuated within
the class of n-order Markov processes. For definiteness we
will here present the closure in the class of ordinary Markov
processes (n = 1) and only outline the extensions to n > 1,
to which we intend to return in a future contribution. The
pioneering contribution [31] can, in the present perspective, be
seen as a closure in the class of Bernoulli processes (n = 0),
without using graph expansion.

II. THE DYNAMIC CAVITY EQUATIONS

We consider a probabilistic graphical model defined on a
treelike graph G = (V,E), where V is a set of N vertices and
E is a set of directed edges. Spins, Boolean variables σi(t) =
±1, are associated to each vertex at each time. We denote
by Xi = [σi(0),σi(1), . . . ,σi(t)] the spin history of spin i and
the evolution law wi(σ s

i |σ s−1
i ,{σ s−1

j }j∈∂i) is the conditional
probability of spin i to take value σi at time s given the values
of spins i and ∂i, the graph neighbors of i, at time s − 1. We
note that this class is larger than the previously investigated
majority dynamics and (synchronous) kinetic Ising models
since we allow the evolution law to depend on σ s−1

i . The joint
probability over the spin histories can be then written as

P (X1, . . . ,XN ) =
∏
i∈V

t∏
s=1

wi

(
σ s

i

∣∣σ s−1
i ,

{
σ s−1

j

}
j∈∂i

)
P0, (1)

where P0 = P [σ1(0), . . . ,σN (0)] is the initial joint distribution
at time zero and t is the final time. We recall that the cavity
method works well when the underlying network is (locally)
treelike. Being a conditional probability, any evolution law
wi can be written as exp (σ s

i �i − log 2 cosh �i), where �i

is some function of (σ s−1
i ,{σ s−1

j }). wi hence contains two
types of “interactions,” namely σ s

i �i and log 2 cosh �i , and if
P (X1, . . . ,XN ) in (1) is written as exp [F (X1, . . . ,XN )], then
the graph describing the dependencies in F will have short
loops, which necessarily emerge even if the network topology
is treelike, as illustrated in Fig. 1. As shown in Refs. [12,28]
such loops can however be removed by defining an auxiliary
factor graph at the price that the new variable nodes will contain
more that one old variable. The procedure consists in changing
the old variable nodes into factor nodes and changing the
old interaction edges into new variable nodes. The resulting
topology of the new expanded graph is shown in Fig. 2, where
each variable node now contains the spin histories of two spins.
The functions sitting on the new factor nodes are defined in
order to guarantee all interactions to remain the same as in
the original graph and so, for consistency, the spin variables
of the same type that appear on different (new) variable nodes
have to take the same value. In the auxiliary graph the node
(i,j ) contains the pair [X(ij )

i ,X
(ij )
j ], where by X

(ij )
i we mean a

variable of the same kind as spin history Xi residing in the node
(i,j ). The joint probability distribution of the new variables on

FIG. 1. (Color online) Original graph topologically treelike
shown in a factor graph representation in which loops emerge
naturally in time when dynamics is considered. Circles illustrate spin
variables and squares interactions among them. More specifically,
black squares indicate the interaction between one spin and one of its
neighbors, i.e., φij [σi(t),σj (t − 1)], whereas colored squares show the
interaction among neighbors of a given spin, i.e., φj [{σj (t − 1)}j∈∂i].

the expanded factor graph of Fig. 2 then can be written as:

P
({

X
(ij )
i ,X

(ij )
j

}
(ij )∈E

)
=

∏
i∈V

δ
X

(ij1)
i , X

(ij2)
i ,...,Xi

t∏
s=1

wi

(
σ s

i

∣∣σ s−1
i ,

{
σ s−1

j

}
j∈∂i

)
P0, (2)

where all the variables in wi(σ s
i |σ s−1

i ,{σ s−1
j }j∈∂i) are taken

from the surrounding spin histories [X(ij1)
i ,X

(ij2)
i , . . . ] and the

constraint enforces that these histories agree. If the original
graph is (locally) treelike, then this procedure removes the
loops in time and gives us a new auxiliary graph which is also
(locally) treelike. The standard belief propagation (BP) update
equations then can be written, for the variables in the new

ij1 j1, i

j2

i, j2

j3

i, j3

FIG. 2. (Color online) Auxiliary graph obtained from the orig-
inal one shown in Fig. 1 where the time loops have been
removed with a standard procedure. The new variable nodes
contain the spin history of two variables which were neigh-
bors in the original graph and factor nodes contain the in-
teractions needed to generate and pass this history, i.e., �̃ =
δ
X

(ij1)
i

,...,Xi

∏t

s=1 wi(σ s
i |σ s−1

i ,{σ s−1
j }j∈∂i)P0(σi,{σj }j∈∂i). Observe that

the δ function is already summed over in the main text.
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graph, as in the static case (see Eq. (14.15) in Ref. [12]) as:

mi→(ij )(Xi,Xj ) ∝
∑
{Xk}

�(Xi,Xj ,{Xk})
∏

k∈∂i\j
mk→(ik)(Xk,Xi),

(3)

where �(Xi,Xj ,{Xk}) = P0
∏t

s=1 wi(σ s
i |σ s−1

i ,{σ s−1
k }k∈∂i\j ,

σ s−1
j ) is analogous to a potential sitting in the factor nodes

which transfers the dynamics to its neighbor variable nodes
and the normalization factor can be computed by the condition
that

∑
Xi,Xj

mi→(ij )(Xi,Xj ) = 1. Above we have shortened

the notation to Xi = X
(ij )
i , Xk = X

(ik)
k and the same for Xj

and all the σ variables contained in wi . Let us note that we
have fewer distinct messages with respect to the static BP
formulation since messages from factor to variable nodes are,
in this case, the same as messages from variable to factor
nodes, i.e., mj→(ij )(Xj,Xi) = m(ij )→i(Xj,Xi). Hence, for the
topology shown in Fig. 2, the message on the left-hand side
of (3) is illustrated in black, whereas the messages on the
right-hand side are those two in red coming from the right side
of the picture. To simplify notation, from now on variables
with no apex refer to variables at time t , i.e., σi = σi(t),
whereas variables with apex(es) refer respectively to previous
time(s), i.e., σ ′

i = σi(t − 1),σ ′′
i = σi(t − 2), . . . , and so X

′
i is

the spin history of spin i up to time t − 1. Let us observe that,
while notationally compact, Eq. (3) is, except for short times,
computationally intractable as the right-hand side involves
sums over complete spin histories.

III. MARKOVIAN CLOSURE OF THE DYNAMIC
CAVITY EQUATIONS

We first observe that, given the Markovianity of the dynam-
ics contained in �(Xi,Xj ,{Xk}), the messages mi→(ij )(Xi,Xj )
in (3) actually do not depend on the spin variable σj at time
t but only at time t − 1 and earlier times. The messages
mi→(ij )(Xi,Xj ) are hence always uniform distributions on
σj (t) and, since σj (t) is therefore a kind of dummy argument,
we may simplify the notation by writing mi→(ij )(Xi,X

′
j ). Fur-

thermore, if we use the same simplification on the right-hand
side of (3), then we have incoming messages mk→(ik)(Xk,X

′
i)

which can be marginalized to mk→(ik)(X
′
k,X

′
i) as there is no

other dependence on σk , the value of spin k at time t . Using
Markovianity again we can simplify further to mk→(ik)(X

′
k,X

′′
i )

and write (3) as

mi→(ij )(Xi,X
′
j ) ∝

∑
{X′

k}
�(Xi,X

′
j ,{X

′
k})

∏
k∈∂i\j

mk→(ik)(X
′
k,X

′′
i ).

(4)

Equation (4) shows that the dynamic cavity equations have a
different structure and are actually, in some respects, simpler
than standard BP updates, since if all messages up to some time
t − 1 are known, then messages up to time t can be evaluated
directly without the need to iterate to a fixed point.

A. Fully asymmetric graph

It is worth observing how Eq. (4) simplifies when referred to
a fully asymmetric graph, with interaction couplings between
node i and j such that Jij �= 0 and Jji = 0. Under this

assumption the interaction function � no longer depends on
the spin history X

′
j and, as a consequence, the message on the

left-hand side of the equation does not depend on that history
either, since such dependence is carried in only through the
function �. For consistency, we can apply the same argument
to the messages on the right-hand side and conclude that they
only depend on the spin history X

′
k and no longer on Xi

′′. Then,
remembering that � is a normalized function with respect to
the variable σ s

i , as shown in the text below Eq. (3), we can
sum both sides of (4) over the spin history X

′
i and then make

use of the sum over {X′
k} on the right-hand side to obtain the

simplified version of the dynamic message-passing equation
for a fully asymmetric graph,

mi→(ij )
(
σ t

i

)= ∑
{σ t−1

k }k∈∂i\j

wi

(
σ t

i

∣∣{σ t−1
k

}
k∈∂i\j

)

×
∏

k∈∂i\j
mk→(ik)

(
σ t−1

k

)
. (5)

This equation is in agreement with the literature for the same
graph topology [24,31,32].

B. Graph with arbitrary connectivity symmetry

In what follows, we propose a Markovian closure
of the dynamic BP update equation (4) for a network
with arbitrary connectivity symmetry. In the next sec-
tion the same closure is used to derivate the dynamic
BP output equations. In a closure in the class of n-
th order Markov processes we assume mi→(ij )(Xi,X

′
j ) =∏t

s=n T
(n)
i→(ij )(σ

s
i |σ s−1

i ,σ s−1
j , . . . ,σ s−n

i ,σ s−n
j ) and solve (4) it-

eratively. We here consider n = 1. The marginalizations over
the last and last two times of the variable node (i,j ) are

P
(t−1)
i→(ij )(σ

′
i ,σ

′
j ) =

∑
X

′′
i ,X

′′
j

mi→(ij )(X
′
i ,X

′′
j ), (6)

P
(t, t−1)
i→(ij ) (σi,σ

′
i ,σ

′
j ) =

∑
X

′′
i , X

′′
j

mi→(ij )(Xi,X
′
j ), (7)

by assumption linked by

P (t, t−1)(σi,σ
′
i ,σ

′
j ) = T (σi |σ ′

i ,σ
′
j ) P (t−1)(σ

′
i ,σ

′
j ), (8)

where we omitted the subscript i → (ij ) and the superscript
time dependence of T (t,t−1) for readability. We note that, by
the above, P (t−1)(σ

′
i ,σ

′
j ) actually does not depend on its second

argument and we will therefore from now on simplify to
P (t−1)(σ

′
i ). Closure means to make the same assumptions for

the upstream messages mk→(ik)(Xk,X
′
i), use (4) to compute

P
(t−1)
i→(ij ) and P

(t, t−1)
i→(ij ) in (6) and (7), and then take (8) to define

T (σi |σ ′
i ,σ

′
j ). This can be done by introducing an auxiliary

function F ,

F (t−1)
i→(ij )(σ

′
i ,{σ

′
k}k∈∂i\j )

=
∑

{X′′
k , X

′′
i , X

′′
j }

∏
k∈∂i\j

mk→(ik)(X
′
k,X

′′
i )

×
t−1∏
s=1

wi

(
σ s

i

∣∣σ s−1
i ,

{
σ s−1

k

}
k∈∂i\j ,σ

s−1
j

)
P0, (9)
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which is strictly a specific marginalization of the right-hand
side of (4). From now on, we use the notation {σk}\ =
{σk}k∈∂i\j and

∏
k\ = ∏

k∈∂i\j . In terms of (9) we have

P
(t−1)
i→(ij )(σ

′
i ) ∝

∑
{σ ′

k }
F (t−1)

i→(ij )(σ
′
i ,{σ

′
k}\), (10)

P
(t, t−1)
i→(ij ) (σi,σ

′
i ,σ

′
j ) ∝

∑
{σ ′

k }
wi(σi |σ

′
i ,{σ

′
k}\,σ

′
j )F (t−1)

i→(ij )(σ
′
i ,{σ

′
k}\).

(11)

On the other hand, by the (assumed) Markovianity of the
upstream messages we can write an iterative equation in time
for F :

F (t)
i→(ij )(σi,{σk}\)

=
∑

{σ ′
k },σ ′

i ,σ
′
j

∏
k\

Tk→(ik)(σk|σ
′
k,σ

′
i ) wi(σi |σ

′
i ,{σ

′
k}\,σ

′
j )

× F (t−1)
i→(ij )(σ

′
i ,{σ

′
k}\). (12)

Whereas the iterative equation for T , using (10) and (11), reads
as

Ti→(ij )(σi |σ
′
i ,σ

′
j )

=
∑

{σ ′
k } wi(σi |σ

′
i ,{σ

′
k}\,σ

′
j )F (t−1)

i→(ij )(σ
′
i ,{σ

′
k}\)∑

σi , {σ ′
k } wi(σi |σ ′

i ,{σ ′
k}\,σ ′

j )F (t−1)
i→(ij )(σ

′
i ,{σ ′

k}\)
, (13)

where the denominator takes care of the normalization.
Equations (12) and (13), which solve the dynamic cavity
equations under the assumption that messages are Markovian,
are the first result of this paper and represent the ingredients to
solve the BP update equations at any time. The entire procedure
clearly takes polynomial time instead of exponential time as
the original formulation and, as noted above, does not involve
iteration to a fixed point.

IV. MARKOVIAN CLOSURE OF THE BP
OUTPUT EQUATIONS

We now turn to the BP output equations, i.e., the equations
for the actual marginal probability both on the auxiliary and
on the original factor graph. The marginal probability of one
variable node (i,j ) in the auxiliary graph is simply given by
the product of the incoming messages to the node (i,j ):

P(ij )(Xi,Xj ) ∝ mi→(ij )(Xi,X
′
j ) mj→(ij )(Xj,X

′
i). (14)

We are, however, interested in the single-site one-time
marginal probability on the original graph, Pi[σi(t)], from
which we can compute physical observables of interest such
as, for instance, the magnetization at any given time. We can get
this marginal starting from the one-site marginal probability
on a spin history, Pi(Xi). In terms of the auxiliary probability
distribution on the expanded graph this reads as

Pi(Xi) ∝
∑
Xj

∏
j∈∂i

mj→(ij )(Xj,X
′
i)

×
[

t∏
s=1

wi

(
σ s

i

∣∣σ s−1
i ,

{
σ s−1

j

}
j∈∂i

)
P0

]
, (15)

where spins j ’s are the neighbors of site i in the original and
expanded graph (see Fig. 2). To solve these equations on the
same level of approximation as the update equation we define
a new auxiliary function:

G(t−1)(σ
′
i ,{σ

′
j }j∈∂i) =

∑
X

′′
i,{X′′

j }j∈∂i

∏
j∈∂i

mj→(ij )(X
′
j ,X

′′
i )

×
[

t−1∏
s=1

wi

(
σ s

i

∣∣σ s−1
i ,

{
σ s−1

j

}
j∈∂i

)
P0

]
.

(16)

The single-site one-time and two-time marginal probabilities
on the original graph then follow from (15):

P
(t−1)
i (σ

′
i ) ∝

∑
{σ ′

j }j∈∂i

G(t−1)(σ
′
i ,{σ

′
j }j∈∂i), (17)

P
(t, t−1)
i (σi,σ

′
i )∝

∑
{σ ′

j }j∈∂i

wi(σi |σ ′
i ,{σ

′
j }j∈∂i)G(t−1)(σ

′
i ,{σ

′
j }j∈∂i).

(18)

In analogy to F above, we can write a recursive equation for
G by using the Markovian assumption for messages:

G(t)(σi,{σj }j∈∂i) =
∑

σ
′
i ,{σ ′

j }j∈∂i

∏
j∈∂i

Tj→(ij )(σj |σ
′
j ,σ

′
i )

× wi(σi |σ ′
i ,{σ

′
j }j∈∂i)G(t−1)(σ

′
i ,{σ

′
j }j∈∂i).

(19)

Hence starting with an initial value for the functions T , F ,
and G, Eqs. (12), (13), and (19) can be iterated up to the
desired time and Eq. (17) can be used to compute the time-
dependent marginal probability of site i. We highlight that,
unlike the original formulation, which takes an exponential
time to compute marginals, the entire scheme presented here
has a polynomial computational cost.

V. RESULTS

In this section we test the accuracy of our dynamic message-
passing (DMP) approach on a statistical physics model often
chosen as a case of study to investigate dynamics of complex
systems: the kinetic Ising model.

Case study: The kinetic Ising model with arbitrary
connectivity symmetry

We compare the performance of DMP to Monte Carlo
Markov-chain simulations (MC) with Glauber dynamics on
the kinetic Ising model on a random diluted graph with
arbitrary connectivity symmetry: fully symmetric, partially
asymmetric, and fully asymmetric networks. The comparison
is performed computing the behavior of the magnetization of
the model both during the transient and at equilibrium (or at
the stationary states when detailed balance does not hold).
Following Ref. [35], we introduce a connectivity matrix cij ,
where cij = 1 if there is a link from vertex i to vertex j , cij =
0 otherwise, and matrix elements cij and ckl are independent
unless {kl} = {ji}. The following distributions then specify
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FIG. 3. (Color online) Comparison between dynamic message passing algorithm (solid lines) and Monte Carlo simulations (dashed lines)
for the evolution of the magnetization m(t) in an Erdös-Rényi network of N = 5000 nodes and average connectivity c = 3. Different colors
represent different initial magnetizations m(0), from the largest (upper line) to the smallest (lower line) according to the legend. (a) Fully
asymmetric networks at high temperatures. [(b) and (c)] Partially asymmetric network (ε = 0.5) respectively at high and low temperatures.
[(d) and (e)] Fully symmetric network respectively at high and low temperatures. In MC simulations m(t) is averaged over 5000 samples.

the graph topology: the marginal one-link distribution

p(cij ) = c

N
δ1,cij

+
(

1 − c

N

)
δ0,cij

(20)

and the conditional distribution

p(cij |cji) = εδcij ,cji
+ (1 − ε)p(cij ). (21)

Above, N is the size of the network, c the average connectivity,
and ε ∈ [0,1] a parameter which controls the asymmetry. The
value ε = 0 gives a fully asymmetric network, whereas ε = 1
gives a fully symmetric one.

In the kinetic Ising model the transition probability rate
wi , which appears above, is given by wi(σ s

i |{σ s−1
j }) =

exp [βσ s
i Jij σ

s−1
j − log 2 cosh(β

∑
j Jij σ s−1

j )], where the j ’s
variable are neighbors of spin i, Jij are the interaction strengths
between sites i and j , and β is the inverse temperature.
We observe that this model belongs to a subclass of the
models considered within the general formulation above as the
transition rate does not depend explicitly on σ s−1

i . Since we
here want to mainly investigate the effect of the asymmetry on
the performances of our algorithm, we restrict our numerical
analysis to ferromagnetic models, i.e., interaction strength
Jij = J > 0 for every pair of sites i,j . For simplicity, all
the spins on the graph are chosen to be independent at the
initial time although correlated initial conditions could also
be considered in the above formulation. Results are shown
in Fig. 3 for several values of the initial magnetization at
different temperatures and for various values of the asymmetry
parameter ε. Numerical results for fully asymmetric networks
are obtained by using the simplified version (5) of the
dynamic message-passing equation and, as expected from
Refs. [31–33], they show a perfect agreement with Monte
Carlo simulations both for the computation of the transient
and the stationary state [see Fig. 3(a)]. When the full asym-
metry is broken and a network with feedback is considered,
numerics is obtained through the DMP scheme presented
above. Comparison with MC shows that the results provided
by DMP are still very good for high-enough temperature
(above the critical transition) both for partially and fully
symmetric connectivities. Indeed, as it is possible to note from
Fig. 3 [partially asymmetric network in Fig. 3(b) and the fully

symmetric one in Fig. 3(d)], the transient regime is very well
reproduced by DMP and the stationary (or equilibrium) state
is the same as MC. When temperature is decreased below
the critical ferromagnetic transition the performances of DMP
begin to worsen [Figs. 3(c) and 3(e)]. In this regime, the
transient is very well recovered only for the first few initial
steps of the dynamics and progressively worsen for longer
times. Nevertheless, for the partially asymmetric network
considered (ε = 0.5) the stationary state reached by the DMP
and MC simulations coincide, although DMP has a faster
convergence to that [Fig. 3(c)]. For fully symmetric networks
similar considerations follow for the transient regime although
the equilibrium state reached by the DMP and MC simulations
at this temperature slightly differ [Fig. 3(e)]. This is not
always the case; indeed, we noticed numerically that, for some
of the temperatures even below the critical transition, DMP
reaches the same equilibrium state as MC [see, for instance,
Fig. 4(c)]. However, for fully symmetric networks, it is known
that the stationary solutions of the one-time approximation
(OTA) method presented in Refs. [24,31] are also the solution
of the static BP equations. Therefore the agreement between
the MC simulations and the one-time approximation for the
equilibrium state of fully symmetric networks is expected to
be near perfect, whereas, for some temperatures, the DMP
approach proposed here presents small differences with the
equilibrium MC solution.

In order to investigate the performances of DMP with
respect to the one-time approximation, we compared both
algorithms with MC simulations for different temperatures
and for various values of the asymmetry parameter ε. The
numerical investigation, partially illustrated in Fig. 4, shows
that, regardless, the network connectivity symmetry DMP
always outperforms OTA for the transient dynamic regime. For
temperatures above the critical transition (Tc) both algorithms
converge to the same stationary or equilibrium state, in
agreement with the MC simulations [see Figs. 4(a) and 4(d)]
and, surprisingly, the one-time approximation recovers well
the MC stationary solution also for partially asymmetric
networks [Fig. 4(d)]. For temperatures lower than Tc the
following picture emerges. For fully symmetric networks OTA
always reaches the same equilibrium state as MC, whereas
DMP in some cases does [see Fig. 4(c)] and in some cases
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FIG. 4. (Color online) Comparison among the dynamic message passing algorithm (solid lines with • dots), the one-time approximation
(solid lines with � dots), and the Monte Carlo simulations (solid lines) for the evolution of the magnetization m(t) in an in an Erdös-Rényi
network of N = 5000 nodes and average connectivity c = 3. [(a)–(c)] Fully symmetric network at high and low temperatures. [(d) and (e)]
Partially symmetric networks with different connectivity symmetry at high and low temperatures. In the MC simulations m(t) is averaged over
5000 samples.

does not [see Fig. 4(b)], depending on the temperature. For
partially asymmetric networks, the performances of DMP get
better and, surprisingly, OTA also gives fairly good results
for the stationary states [see Fig. 4(d)]. The differences in
the reconstruction of the transient and stationary regime of
the DMP and the one-time approach can be understood,
remembering that the two algorithms do not belong to the
same class of approximations.

We conclude this section by underlining that we expect
improvement of the results provided by the dynamic message-
passing scheme presented, both for the transient and for the
stationary or equilibrium states, when a higher-order closure
of the DMP equations is made (see the next section).

VI. HIGHER-ORDER CLOSURES

To close (3) in the class of n-th order Markov processes,
we consider, instead of P

(t−1)
i→(ij ) and P

(t,t−1)
i→(ij ) in (10) and (11),

the marginalizations P
(t−1,t−2,...,t−n)
i→(ij ) and P

(t,t−1,t−2,...,t−n)
i→(ij ) and

auxiliary functions F (n) and G(n) which depend on n earlier
times. The time iteration of F (n), G(n) and the iterative solution
of the nth-order kernel T

(n)
i→(ij )[σi |σ

′
i ,σ

′
j , . . . ,σi(t − n),σj (t −

n)] then proceed analogously as above. The computational cost
obviously increases quickly with n and the value of higher-
order closures will depend on the application and the model.
This issue will be addressed in future contributions.
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passing equations for models with unidirectional dynamics,
Phys. Rev. E 91, 012811 (2015).
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