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Numerical estimate of the Kardar-Parisi-Zhang universality class in (2+1) dimensions

Andrea Pagnani
Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

and Human Genetics Foundation (HuGeF), Via Nizza 52, I-10126, Turin, Italy

Giorgio Parisi
Dipartimento di Fisica, INFN–Sezione di Roma 1, CNR-IPCF UOS Roma, Università “La Sapienza”, P.le Aldo Moro 2, I-00185 Roma, Italy
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We study the restricted solid on solid model for surface growth in spatial dimension d = 2 by means of a
multisurface coding technique that allows one to produce a large number of samples in the stationary regime in
a reasonable computational time. Thanks to (i) a careful finite-size scaling analysis of the critical exponents and
(ii) the accurate estimate of the first three moments of the height fluctuations, we can quantify the wandering
exponent with unprecedented precision: χd=2 = 0.3869(4). This figure is incompatible with the long-standing
conjecture due to Kim and Koesterlitz that hypothesized χd=2 = 2/5.
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The Kardar-Parisi-Zhang (KPZ) equation [1] is one of
the simplest and most studied models of out-of-equilibrium
surface growth. The equation describes the time evolution
of the height h(r,t) of an interface above a d-dimensional
substrate:

∂th(r,t) = ν �∇2h(r,t) + λ

2
| �∇h(r,t)|2 + η(r,t), (1)

where ν is the diffusion coefficient, λ is the strength of the
nonlinear growth rate, and η(r,t) is a Gaussian white noise of
amplitude D:

〈η〉 = 0, 〈η(r,t)η(r′,t ′)〉 = 2Dδd (r − r′)δ(t − t ′). (2)

The universality class induced by Eq. (1) is defined in terms
of the scaling properties of the height fluctuations w2(L,t) =
〈(h(r,t) − 〈h(r,t)〉)2〉. As a function of the system size L it
is believed that w2(L,t) ∼ L2χf (t/Lz), where the scaling
function is such that f (x) → const for x → ∞ and f (x) ∼
x2χ/z for x → 0. The peculiar behavior of f implies that
w2(L,t) ∼ L2χ for t 
 Lz and w2(L,t) ∼ t2χ/z for t � Lz.
Due to an infinitesimal tilt symmetry of Eq. (1) (h → h + r · ε,
r → r − λtε), the two critical exponents are related by the
scaling relation χ + z = 2, which is believed to be valid at
any dimension d [2].

After decades of intense work in the field, the determination
of the two critical exponents χ,z is known rigorously only
for d = 1 where a fluctuation-dissipation relation leads to the
exact result χ = 1/2, z = 3/2. At any d > 1 the quest for
the quantification of the critical exponents is still an open
challenge. In particular, in d = 2 there is a long-standing
conjecture dating back to the seminal paper of Kim and
Kosterlitz (KK) [3], which proposes χ = 2/5, z = 8/5. Such
a conjecture has been supported by a Flory type scaling
argument in [4] and later by a field theoretical operator
product expansion in [5]. More recently, a nonperturbative
renormalization group approximation reported a value of
χ = 0.33 [6,7] which, as we will see in the following, is
too small compared with our precise measurements. From
a numerical point of view the KK conjecture has been put
under scrutiny many times in the past [8–15] using different

models belonging to the KPZ universality class and different
simulation techniques.

In Table I we resume, to the best of our knowledge, the
current state of the art with respect to the numerical check of
the KK conjecture: although the statistical uncertainty (when
presented in the reference paper) is often too large to exclude
the validity of the KK conjecture, yet it is somehow clear that
all results fall somehow below the predicted rational guess.
Another common feature reported in the previously cited bib-
liography, is that finite-size scaling corrections to the exponent
estimate seem to be particularly relevant, although very few
works so far have implemented a systematic procedure to take
them into account.

Here, we will investigate the steady state scaling regime
t 
 Lz of a restricted solid on solid (RSOS) model for lattice
size volumes up to V = 4802 of a very large number of

TABLE I. In this table we display the estimates in different pre-
vious work for the exponent χ (with the uncertainty when available),
the model used [HSM = hypercubic stacking model, BCSOS = body
centered solid-on-solid, KPZ is the direct integration of Eq. (1), BD =
ballistic deposition, DLC = dimer lattice gas is a mapping to a
discrete model described in detail in [13], DPRM = direct polymer
in random medium], and the integration method used (MC = Monte
Carlo, FSS = finite-size scaling). The estimate and uncertainty of
the last row is obtained by averaging over two results obtained on
simple cubic lattices with Gaussian and uniform bond, respectively.

Reference χ Model Annotation

[16] 0.385(5) HSM MC
[8] 0.38(1) BCSOS FSS
[9] 0.38(8) RSOS Nonlinear measures
[10] 0.393(3) RSOS Multispin coding and FSS
[11] 0.366, 0.363 BD MC and FSS
[12] 0.38 � χ � 0.40 KPZ Direct integration
[13] 0.377(15) DLC MC and FSS
[14] 0.393(4) DLC Bit-coded MC on GPUs

and FSS
[15] 0.388 KPZ Eulerian integration
[15] 0.385(4) DPRM Transfer matrix method

1539-3755/2015/92(1)/010101(4) 010101-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.010101


RAPID COMMUNICATIONS

ANDREA PAGNANI AND GIORGIO PARISI PHYSICAL REVIEW E 92, 010101(R) (2015)

TABLE II. In this table we display the lattice linear size L, the
base 2 logarithm of the number of Monte Carlo sweeps (full lattice
updates), and the number of samples produced in our simulations.

L log2 (No. sweeps) No. samples

26 24 96
30 24 1140
40 27 30
60 26 280
80 27 60
120 27 312
160 27 156
240 27 305
320 27 492
480 25 687

surface samples to reduce as much as possible the statistical
error in the estimate of the critical exponent. The RSOS
model can be simulated in the following way: at any time
t we randomly select a site i on the d-dimensional lattice
and we let the surface height hi at that point grow of a
unit hi(t + 1) = hi(t) + 1 only if maxj∈∂i |hi(t) − hj (t)| � 1,
where with ∂i is the set of four nearest neighbors of i

in d = 2 assuming periodic boundary conditions. We used
an improved multispin coding algorithm which has already
been described in detail elsewhere [17]. We simulated two-
dimensional lattices of volume V = L2 for lattices of linear
size L = 26,30,40,60,80,120,160,240,320,480. A summary
of our simulations is provided in Table II.

The numerical strategy adopted here is to achieve a fair
statistical sampling of the asymptotic regime t > Lz. At any
time t and for each sample we measure the first three con-
nected moments wn(L,t) = ∑V

i=1(hi(t) − 〈h(t)〉)n/V , where
〈h(t)〉 = ∑V

i=1 hi(t)/V , and n = 2,3,4. Eventually, we define
our asymptotic (in time) estimate as

wn(L) = 1

T0 − T1 + 1

T0∑

t=T1

wn(L,t). (3)

In this way in practice we just consider the second half of the
simulation being able at the same time to judge how deep in the
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FIG. 1. (Color online) Scaling plot of the rescaled second mo-
ment w2/[A2L

2χ (1 + B2L
−ω)] vs the rescaled time t/Lz.

TABLE III. In this table we display the lattice linear size, the
minimal lattice size from which we start fitting the data; the best-fit
estimates of the exponents χ and ω; the variance of the reduced χ

square per degree of freedom (
√

WSSR/NDF), and the number of
degrees of freedom.

FIT I Eq. (4)

Starting L χ ω
√

WSSR/NDF NDF

26 0.3904(4) 0.9(1) 8.53 22
30 0.3903(4) 0.9(1) 8.41 19
40 0.3898(5) 0.9(1) 5.36 16
60 0.3893(6) 0.9(2) 3.22 13
80 0.3892(7) 0.9(3) 2.40 10

FIT II Eq. (5)
26 0.3869(4) 0.57(5) 1.2085 19
30 0.3866(6) 0.53(6) 1.27627 16
40 0.3868(7) 0.5(1) 1.22814 13
60 0.383(4) 0.3(2) 1.09807 10

asymptotic regime (t 
 Lz) our simulations are: Fig. 1 shows
clearly that our data for all lattice size produce a fair sampling
of the steady state regime. We already mentioned how relevant
finite-size scaling correction to the critical exponent is in two-
dimensional KPZ. To keep the size dependence of the scaling
under control in a reliable way we opted to fit simultaneously
the first three moments w2,3,4, which at the leading order,
scale as Lnχ with n = 1,2,3. The first order corrections to
the scaling are encoded in the exponent ω in the following
way [10,17]:

w2 = A2L
2χ (1 + B2L

−ω),

w3 = SA
3/2
2 L3χ (1 + B3L

−ω), (4)

w4 = KA2
2L

4χ (1 + B4L
−ω).

As we will see in the following, finite-size scaling corrections
turn out to be particularly severe, so we analyzed our data
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FIG. 2. Local slope of w2 is displayed as a function of L−1. Dots
with error bars are values obtained by simulations, while the line is
the 11-parameters best fit reported in Table IV. The solid horizontal
line is at χ = 0.3869, i.e. the best-fit prediction for the wandering
exponent. The highest tick on the y axis is 0.4, which is the KK
conjecture.
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TABLE IV. In this table we display the best-fit values together with their statistical error of the parameters defined in Eqs. (4) and (5).

χ ω A2 B2 C2 S B3 C3 K B4 C4

FIT I 0.3893(6) 0.8(2) 0.118(1) −0.4(2) NA −0.2669(4) −1.1(6) NA 3.146(2) −0.9(5) NA
FIT II 0.3869(4) 0.57(5) 0.1226(1) −0.37(2) 0.6(2) −0.2657(4) −0.46(7) −1.0(1) 3.145(1) −0.73(6) 1.0(3)

using the following second order fitting scheme:

w2 = A2L
2χ (1 + B2L

−ω + C2L
−2ω),

w3 = SA
3/2
2 L3χ (1 + B3L

−ω + C3L
−2ω), (5)

w4 = KA2
2L

4χ (1 + B4L
−ω + C4L

−2ω).

The relevance of the finite-size scaling corrections is best
appreciated from Table III, where we display, as a function
of the minimal linear lattice size, the outcome of the fit. As
far as the scheme proposed in Eq. (4) is concerned, we see
clearly how the larger the lattice size, the lower the best-fit
value for χ . The variance of the reduced χ square, although
decreasing sensibly in the size interval considered, due to the
extreme precision in our estimation of the moments, remains
too large. The scenario becomes even more satisfactory with
the second fitting scheme defined in Eq. (5) where, upon
increasing the minimal lattice size, the resulting best-fit values
remain remarkably stable with a reduced χ square around 1.
For these reasons we choose Eq. (5) as best fitting scheme
using as minimal linear size L = 26. Our final estimate yields
χ = 0.3869(4) and ω = 0.56(5), and the best-fit values for
the two fitting schemes are reported in Table IV. The values
χ = 0.33, ω = 0.7 reported in [6,7] are still far from our
numerical estimate.

To appreciate more clearly the finite-size effects on χ , we
evaluate the effective exponent χ eff

2 as the discrete logarithmic
derivative of Eqs. (5), which in our case reads

χ eff
2 (L) =

log
(

w2(L)
w2(L′)

)

2 log
(

L
L′

) , (6)
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FIG. 3. (Color online) The quantities w2, − w3,w4 obtained by
the best-fit value of Eq. (5) are displayed as a function of L (lines) on
double logarithmic scale. Dots with error bars are values obtained by
simulations. Note that all w2 values are larger than one even for the
smaller lattice sizes.

where L/L′ = 2. In Fig. 2 we display χ eff
2 as a function of

L−1 and we superpose to the data points the best-fit estimate
for χ . Note also how the effective exponent, upon increasing
the lattice size, departs substantially from the KK conjecture
value χKK = 2/5 = 0.4, which in Fig. 2 coincides with the
upper extremal y-axis tick.

A matter of concern, when studying numerically scaling
related properties of system at criticality, is the ability to define
how deeply inside the critical phase the system under study
is. For a discrete model such as RSOS, a practical way to
check this property is to compare to the typical size of the
fluctuations (given by w2) with the lattice spacing, which in
our model is equal to 1 [18]. In Fig. 3 we display the values of
w2,3,4 measured in our simulations as a function of the linear
size of the systems. We can easily convince ourselves that all
our simulations are characterized by typical fluctuations which
are larger than the lattice spacing. At odds with what happens
in d = 1, where in the asymptotic regime the fluctuations of
the surface are known to be Gaussian, the moments of the
distribution show a strong departure from the d = 1 case. This
is best appreciated in terms of the ratio of the cumulants R4 =
w4/w

2
3 vs R3 = w3/w

3/2
2 as shown in Fig. 4, where a scatter

plot of R4 vs R3 is shown (note that increasing lattice sizes are
from right to left). The linear scaling behavior of the plot was
already observed in [8,10], and here again is clearly indicating
a strong departure from a normal distributed fluctuation of the
surface, as RGauss

4 = 3.
The numerical technique we developed [17], allowed us to

run very accurate numerical simulations of the RSOS model in
d = 2. We have been able to estimate with an unprecedented
accuracy the critical exponent χ = 0.3869(4) in a reasonable
amount of computational time. The typical fluctuations length
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scale of our simulations and our careful finite-size scaling
analysis clearly indicate that (i) the system reached a controlled
scaling regime, (ii) the measured scaling exponents are reliable
and not affected by a preasymptotic crossover regime, and (iii)
the distribution of the fluctuations is non-Gaussian. A shrewd
use of the simultaneous fit of the three cumulants as a function
of the lattice size, we are finally able to disprove the KK
conjecture that the value of the exponent χ = 2/5, a figure

that, given the small statistical uncertainty of our estimate, lays
at more than 32 standard deviations away from our prediction.
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