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Nonparaxial rogue waves in optical Kerr media
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We consider the inhomogeneous nonparaxial nonlinear Schrödinger (NLS) equation with varying dispersion,
nonlinearity, and nonparaxiality coefficients, which governs the nonlinear wave propagation in an inhomogeneous
optical fiber system. We present the similarity and Darboux transformations and for the chosen specific set of
parameters and free functions, the first- and second-order rational solutions of the nonparaxial NLS equation are
generated. In particular, the features of rogue waves throughout polynomial and Jacobian elliptic functions are
analyzed, showing the nonparaxial effects. It is shown that the nonparaxiality increases the intensity of rogue
waves by increasing the length and reducing the width simultaneously, by the way it increases their speed and
penalizes interactions between them. These properties and the characteristic controllability of the nonparaxial
rogue waves may give another opportunity to perform experimental realizations and potential applications in
optical fibers.
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I. INTRODUCTION

The generation of solitons in optical fibers, predicted by
Hasegawa and Tappert [1] through the balance between the
pulse broadening due to self-phase modulation and compres-
sion due to negative group-velocity dispersion (GVD), has en-
abled the generation of stable picosecond and subpicosecond
pulses in the near infrared. In a weakly nonlinear dispersive
medium, the dynamics of the pulse envelope is governed in
the paraxial approximation by the cubic nonlinear Schrödinger
(NLS) equation [1].

An important property of NLS equation solitons is that they
emerge from particular initial profiles as long as a particular
threshold condition is met. As a consequence, it is possible to
experimentally observe solitons when neither the initial pulse
amplitude nor the initial pulse shape corresponds to a pure
soliton. Therefore, verification of many of the predicted soliton
pulse characteristics was carried out in a series of experiments
by Mollenauer and co-workers [2–4].

Temporal, spatial, and spatiotemporal optical solitons can
find applications including all-optical routing, transparent
beam interconnections, and the massive integration of optical
operations in a fully three-dimensional environment. In fact,
light is self-guiding in bulk media, which have modes with nu-
merical apertures that violate the paraxial approximation. We
recall that the paraxial approximation is valid when the radius
of the beam is sufficiently large compared to the wavelength.
Nonparaxiality may arise in the miniaturization of devices and
in other configurations, such as those involving multiplexed
beams [5]. Analytical and numerical studies of nonparaxial
bright and dark solitons in optical Kerr media have been
reported [6]. In particular, Barruch et al. [6] solved numerically
the (2+1)-dimensional nonlinear Helmholtz equation for input
beams that collapse in the simpler model. They used a Kerr-
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slab material of finite length and solved the (1+1)-dimensional
nonlinear Helmholtz equation for an incoming soliton profile.

It is found that the solution inside the Kerr-slab propagates
virtually unchanged and solitonlike solutions still exist even
for such a narrow beam for which the nonparaxiality is still
moderate. Chamorra-Posada et al. [7] have investigated and
shown that the nonlinear Helmholtz equation, which can also
be taken as the NLS equation, has an exact nonparaxial soliton
solution from which the paraxial soliton is recovered in the
appropriate limit. Based on the general particlelike nature
of solitons, Fewo et al. [8] have described some physical
parameters for the pulses such as the amplitude, the chirp, the
frequency, and the pulse width. They derived the generalization
of the matrix equation using a collective variable approach,
leading to a set of second-order differential equations of motion
of the nonparaxial spatial optical solitons.

The focusing NLS equation, which describes generic
nonlinear phenomena, supports a whole hierarchy of recently
discovered Peregrine soliton or rational solutions [9,10], Ma
solitons [11], and Akhmediev breathers [12,13]. Although
solitary by nature, these rational solutions or rogue waves
are different from the usual solitons in that they are rare,
short lived, and unstable. They can emerge from a turbulent
state of random fields, while ordinary solitons are stable
waves with characteristic collision properties, commonly
appearing in a deterministic setting of nonlinear evolution
partial differential equations. Rogue waves are giant single
waves that may suddenly appear in oceans [14]. In recent years,
the idea of rogue waves has been extended far beyond oceanic
expanses. The concept has been applied to pulses emerging
from optical fibers [10,14–22] and waves in Bose-Einstein
condensates [23], in superfluids [16], in optical cavities [18],
in the atmosphere [24], and even in finance [25].

In particular, rogue wave solutions emerging from opti-
cal fibers have been found analytically for many types of
generalized NLS models such as NLS models with constant
coefficients [10,26–29] and NLS models with varying coef-
ficients [9,30,31]. Recently, this interesting phenomenon of
optical rogue waves has been verified experimentally [21,32].
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According to the controllability of rogue waves, which has
been studied before [33–38], the problem now is what waves,
which are localized in both space and time and depict a unique
event that appears from nowhere and disappears without a
trace [39], can exist in the presence of the GVD and Kerr
nonlinearity in the nonparaxial approximation.

The present paper is organized as follows. In Sec. II we
use the similarity transformation and the modified Darboux
transformation to investigate the analytical nonparaxial rogue
wave solutions. In Sec. III we focus our attention on the effect
of the nonparaxiality on the propagation of rogue waves to
solve the problem of controllability of rogue waves in the
nonparaxial approximation by selecting parameters of the
original equation. In Sec. IV a summary is given.

II. SIMILARITY TRANSFORMATION AND RATIONAL
SOLUTIONS OF THE NONPARAXIAL NONLINEAR

SCHRÖDINGER EQUATION WITH VARIABLE
COEFFICIENTS

The complex envelope of the optical field ψ(z,x) of a
continuous-wave beam liable to a linear diffraction in one
transverse dimension in isotropic Kerr media moves according
to the nonparaxial NLS equation in the form [8]

dψzz + iψz + pψxx + q|ψ |2ψ = 0, (1)

where z and x are the longitudinal and transverse coordinates,
respectively,

x = x̃/r0, z = z̃/2LDF , ψ = √
2n2/n0r0k0Ã, (2)

where r0 is the input beam radius with diffraction length
LDF = k0r

2
0 , k0 is the linear wave number, n0 is the linear index

of refraction, n2 is the Kerr coefficient, Ã(x,z) is unscaled
field assumed to be slowly varying, and d = 1

(r0k0)2 is the
nonparaxiality parameter. The parameters p and q are related
to the GVD and Kerr nonlinearity, respectively. Equation (1)
quantifies changes in the transverse profile of a light beam
with respect to a forward-propagating reference frame and can
be seen as the nonparaxial NLS equation. This equation has
been used in the literature [6,7,40,41] for fixed values of the
dimensionless parameters p and q.

In the presence of management, the optical pulse propaga-
tion in Kerr media can be described by the nonparaxial NLS
equation with variable coefficients in the form

d(z)ψzz + iψz + p(z)ψxx + q(z)|ψ |2ψ = 0. (3)

Here z is taken as the time parameter. The variable coefficients
d(z), p(z), and q(z), which are functions of the propagation
distance z, are related to the nonparaxiality, GVD, and Kerr
nonlinearity, respectively. Inspired by the previous work of
Yan and Dai [42], we use the envelope field in the form

ψ(z,x) = ρ(z)V [Z(z),X(z,x)] exp[iϕ(z,x)] (4)

to investigate the rational solutions related to nonparaxial
rogue waves, where ρ(z) is the amplitude, Z(z) the effective
propagation distance, X(z,x) the similitude variable, and
V [Z(z),X(z,x)] the complex field. The variable ϕ(z,x) is the
phase of the wave. This form of the envelope field is also known
as the similarity transformation or the symmetry reduction
method. This method, which is also based on the self-similarity

of specific partial differential equations, has been applied in
NLS equations to search for the exact and the asymptotic
self-similar solutions [43–45]. Equation (3) is not integrable
because of varying dispersion, nonlinearity, and nonparaxiality
coefficients, which govern the nonlinear wave propagation in
an inhomogeneous optical fiber system. In order to construct
exact analytical solutions of Eq. (3) we should reduce it to some
integrable differential equation: the standard NLS equation. So
in what follows we use the symmetry transformation method
to obtain integrability conditions. This kind of exact analytical
solution has more attractive properties than those of the soliton
because of its reduced interaction and smaller peak power than
that of the soliton [46] and allows a possible pedestal-free pulse
compression [47]. Notice that the similarity and the modified
Darboux transformation methods are analytical methods that
enable us to construct rational solutions related to rogue waves.

Substituting Eq. (4) into Eq. (3) gives a couple system of
partial differential equations with variable coefficients

ρzV + 2pρXxϕxVX + ρZzVZ + ρXzVX + 2ρdϕzXzVX

+pρϕxxV + ρdV ϕzz + 2dρzV ϕz + 2ρdϕzZzVZ = 0, (5)

dρzzV + 2dρzZzVZ + 2dρzXzVX + ρdZz
2VZZ

+ 2dρZzXzVZX + ρdZzzVZ + ρdXz
2VXX + dρXzzVX

− dρV ϕz
2 − ρV ϕz + pρXx

2VXX + pρXxxVx

−pρV ϕx
2 + q|ρ|2|V |2ρV = 0. (6)

According to previous works [9,30], we consider the above
symmetry (reduction) transformation or similarity transfor-
mation (4) that would reduce Eq. (3) to the standard NLS
equation

iψz + 1
2ψxx + |ψ |2ψ = 0. (7)

By connecting the solutions of Eq. (3) with those of the above
standard NLS equation, the complex field V [Z(z),X(z,x)]
should satisfy that equation in the form

i
∂V

∂Z
+ 1

2

∂2V

∂X2
+ |V |2V = 0. (8)

With V [Z(z),X(z,x)] satisfying the relation (8), we have after
the similarity reduction of Eqs. (5) and (6)

d(z)Xzz + p(z)Xxx = 0, (9)

q(z)ρ2 + Zz = 0, (10)

Zz + d(z)ϕzZz = 0, (11)
1
2Zz + p(z)Xx

2 + d(z)Xz
2 = 0, (12)

ϕz + d(z)ϕz
2 + p(z)ϕx

2 = 0, (13)

ρz + ρ(p(z)ϕxx + d(z)ϕzz) + 2d(z)ρzϕz = 0, (14)

ρzzV + 2ρzZzVZ + 2ρzXzVX + ρZz
2VZZ

+ 2ρZzXzVZX + ρZzzVZ = 0. (15)

We start the resolution of the system (9)–(15) by solving
Eq. (9).

In order to look for rational solutions, several conditions
are imposed,

Zz = − 1
2p(z)Xx

2, q(z) = 1
2p(z)ρ(z)−2Xx

2, Xx = α(z),

(16)
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which verify Eq. (10). The above parameters can generate
the constraints for the variable Z(z) and the nonlinear Kerr
coefficient q(z). More specifically, it follows that

Xx = α(z), Xxx = 0. (17)

As d(z) �= 0 and p(z) �= 0, Eq. (9) leads to the condition Xzz =
0, which implies that αzz = δzz = 0. So from relations (17) we
obtain

X(z,x) = α(z)x + δ(z), (18)

where α(z) is the inverse of the wave width and δ(z) the position
of its center of mass −δ(z)/α(z). Quantities α(z) and δ(z) are
free functions of z.

From condition (16) we obtain the effective dimensionless
propagation distance

Z(z) = −1

2

∫ z

0
p(s)α(s)2ds. (19)

Substituting Eq. (16) into Eq. (12) leads to

X2
z = −3p(z)α(z)2

4d(z)
. (20)

The relation above is true for d(z) < 0 or p(z) < 0. In this
work we choose p(z) < 0. For Zz �= 0, Eq. (11) becomes

ϕz = − 1

d(z)
. (21)

Substituting Eq. (21) into Eq. (13), we obtain the phase
expression

ϕx = 0, ϕxx = 0, ϕ(z,x) = −
∫ z

0

1

d(s)
ds + ϕ0(x), (22)

where ϕ0(x) is a constant.
From Eq. (14) we have

ρ(z) = ρ0 exp

(∫ z

0
γ (s)ds

)
, (23)

which is the amplitude of the wave, assumed to be a real
function, and where γ (s) leads to

γ (s) = d(s)ϕzz. (24)

Here ρ0 is a constant. Now we can deduce the Kerr coefficient
given by

q(z) = 1

2

p(s)α(s)2

ρ2
0 exp

(
2
∫ z

0 γ (s)ds
) . (25)

For the defined values of d(z), p(z), α(z), and δ(z), we can
give the expressions of X(z,x), Z(z), ρ(z), ϕ(z,x), and q(z).

To determine the variable V [Z(z),X(z,x)], we use a
dressing method of the modified Darboux transformation
[26,48–50]. The first order of the standard NLS equation given
by Eq. (1) was found by Peregrine [10] and the second order
was proposed by Soto-Crespo et al. [51].

According to the modified Darboux transformation, we
obtain the first and the second order of rational solutions.
If we let V [Z(z),X(z,x)] = 	[Z(z),X(z,x)], the first order
presented in Refs. [9,10] is given by

	1 = V1 =
[

1 − G1 + iZ(z)H1

1 + 2X2 + 4Z2

]
exp i{Z(z)}, (26)

where

G1 = 4, H1 = 8, D1 = 1 + 2X2 + 4Z2. (27)

This solution is known as the Peregrine soliton [10] when
we consider the correspondence Z = z and X = x

√
2. Then,

collecting the partial solutions together, we construct the first-
order rational solution related to the exact nonparaxial rogue
wave solution of Eq. (3)

ψ1 = ρ0 exp

{∫ z

0
γ (s)ds

}[
1 − 4

1 + 2iZ(z)

1 + 2X(z,x)2 + 4Z(z)2

]

× exp i{Z(z) + ϕ(z,x)}. (28)

The intensity of the first-order nonparaxial rogue wave is given
by

|ψ1|2 = ρ0
2 exp

{
2
∫ z

0
γ (s)ds

}(
(2X2 + 4Z2 − 3)

2 + 64Z2

(1 + 2X2 + 4Z2)2

)
.

(29)

This first-order rational solution is used to describe the
dynamics of rogue waves in optical fibers. We use it to show
the effect of the nonparaxiality on the propagation of rogue
waves and present the different cases in which the choice of
parameters of the original equation (3) lead to the control
of rogue waves. The second-order rogue wave presented in
Ref. [9] is given by

	2 = V2 =
[

1 + G2 + iZ(z)H2

D2

]
exp i{Z(z)}, (30)

where G2, H2, and D2 are given by the relations

G2 = 3
8 − 3

2X2 − 1
2X4 − 9Z2 − 10Z4 − 6X2Z2,

H2 = 15
4 + 3X2 − X4 − 2Z2 − 4Z4 − 4X2Z2,

D2 = 3
32 + 9

16X2 + 1
8X4 + 1

12X6 + 33
8 Z2

+ 9
2Z4 + 2

3Z6 − 3
2X2Z2 + 1

2X4Z2 + X2Z4.

(31)

According to the same correspondence of variables z and x as
for first order, this solution is the one found by Soto-Crespo
et al. [51]. Collecting the partial solutions together, we
construct the final second-order rational solution related to
the exact nonparaxial rogue wave solution of Eq. (3)

ψ2 = ρ0 exp

{∫ z

0
γ (s)ds

} [
1 + G2 + iZ(z)H2

D2

]

× exp i{Z(z) + ϕ(z,x)}. (32)

The intensity of the second-order nonparaxial rogue wave
solution is

|ψ2|2 = ρ2
0 exp

{
2
∫ z

0
γ (s)ds

}(
(D2 + G2)2 +Z2H 2

2

D2
2

)
. (33)

This second-order rational solution is more precise than the
first one. It describes the dynamics of two rogue waves
propagating in an optical fiber as well as collisions between
them. We will use it to illustrate the effect of the nonparaxiality
on rogue wave collisions.
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FIG. 1. (Color online) Wave propagation in 2D and 3D representations of the first-order rational solution for the intensity |ψ1(x,z)|2 with
d(z) = z

4 , p(z) = − z2

4 , α(z) = 1, and δ(z) = z.

III. EFFECT OF THE NONPARAXIALITY ON THE
PROPAGATION OF ROGUE WAVES IN OPTICAL FIBER

To illustrate the effect of the nonparaxiality on the prop-
agation of rogue waves related to the first- and second-order
rational solutions, we fix values of parameters ρ0 = 1. We
present managed cases, in which the choice of parameter
functions leads to the control of rogue waves.

Our goal now is to choose appropriately free functions d(z),
P (z), α(z), and δ(z) so that we can generate abundant structures
of nonparaxial rogue waves. We choose them as polynomial
functions. We noted that parameters are chosen in order to be
bounded in the intervals −5 < z < 5 and −5 < x < 5.

For the chosen coefficients and free functions

d(z) = z

4
, p(z) = −z2

4
, α(z) = 1, δ(z) = z. (34)

The wave propagations is presented in Fig. 1 in three-
dimensional (3D) [Fig. 1(a)] and 2D [Figs. 1(b) and 1(c)]
representations showing the nonparaxial effects. For the given
parameters

d(z) = 1

4
, p(z) = −z2

4
, α(z) = 1, δ(z) = z. (35)

Figure 2 depicts the dynamics of the first-order rational
solution for the intensity |ψ1(x,z)|2 in 3D [Fig. 2(a)] and
2D [Figs. 2(b) and 2(c)] representations illustrating the
nonparaxial effects on the propagation of rogue waves.

In this paper we plot the intensity of the first- and second-
order rational solutions with the help of MATLAB. We can see in
Figs. 1 and 2 that the behavior of the nonparaxial rogue waves
is more surrounded in Fig. 1 than in Fig. 2. We observe that

the space where the usual rogue waves reach their maximum
moves from the center to the periphery in Fig. 1. So the
usual symmetry of the Peregrine soliton is absent in Fig. 1
with the nonparaxial parameter d(z) taken as the polynomial
function and present in Fig. 2 with d(z) taken as a constant.
This means that the choice of nonparaxial parameter d(z),
given in relation (34), is appropriate to obtain particularities
of nonparaxial effects. The intensity profile of Fig. 1 increases
more rapidly than the ones of the usual cases in the paraxial
approximation. It follows that the nonparaxiality increases the
length and reduces the width of the wave peak simultaneously.
It is also responsible for the unusual symmetry of the Peregrine
soliton (rogue waves) in Fig. 1.

We first show the influence of polynomial functions d(z),
p(z), α(z) and δ(z) on the structure of nonparaxial rogue waves.
Second, we choose some of them now as Jacobian elliptic
functions. When k is weaker than one, the approximative
formulas of Jacobian elliptic functions [52] are given by

dn(z,k) ≈ 1 − k2 sin (z)2

2
,

cn(z,k) ≈ cos(z) − k2 sin(z)

(
z − sin(z) cos(z)

4

)
,

sn(z,k) ≈ sin(z) − k2 cos(z)

(
z − sin(z) cos(z)

4

)
.

(36)

Here we choose k = 0.6. If we set coefficients and free
functions as

d(z) = cn(z,k), p(z)= − 1
2 sn(k,z) α(z)=z, δ(z) = z,

(37)
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FIG. 2. (Color online) Wave propagation in 2D and 3D representations of the first-order rational solution for the intensity |ψ1(x,z)|2 with
d(z) = 1

4 , p(z) = − z2

4 , α(z) = 1, and δ(z) = z.

we can obtain the 3D and 2D representation profiles in
Figs. 3(a) and 3(c), respectively, showing the nonparaxial
effects on rogue waves.

Figures 3(a)–3(c) depict the behavior of nonparaxial rogue
waves with d(z) and p(z) taken as Jacobian elliptic functions.
The profiles show waves with usual symmetry along the

(a) (b)
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4

z

|ψ
|2

(c)

FIG. 3. (Color online) Wave propagation in 2D and 3D representations of the first-order rational solution for the intensity |ψ1(x,z)|2 with
d(z) = cn(z,k), p(z) = − 1

2 sn(k,z), α(z) = z, and δ(z) = z.
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FIG. 4. (Color online) Wave propagation in 2D and 3D representations of the second-order rational solution for the intensity |ψ2(x,z)|2
with d(z) = z

4 , p(z) = − z2

4 , α(z) = 1, and δ(z) = z.
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FIG. 5. (Color online) Wave propagation in 2D and 3D representations of the second-order rational solution for the intensity |ψ2(x,z)|2
with d(z) = 1

4 , p(z) = − z2

4 , α(z) = 1, and δ(z) = z.
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FIG. 6. (Color online) Wave propagation in 2D and 3D representations of the second-order rational solution for the intensity |ψ2(x,z)|2
with d(z) = cn(z,k), p(z) = − 1

2 sn(k,z), α(z) = z, and δ(z) = z.

z direction. The intensity profiles of the nonparaxial rogue
waves given in Figs. 3(a) and 3(c) show how they are localized
in the z direction (with z taken as the time parameter). These
waves appear spontaneously and decrease rapidly as shown in
previous works [9,26,53,54].

Having completed the first order, we now study the
dynamic behavior of the nonparaxial effect on the propa-
gation of nonparaxial rogue waves related to the second-
order rational solutions. Here the parameters that were
used to plot the first-order rational solutions are also
used to obtain the intensity profiles of second order. So
from Eq. (34) the nonparaxial effects on rogue waves are
shown in 3D [Fig. 4(a)] and 2D [Figs. 4(b) and 4(c)]
representations.

It follows from Eq. (35) that Fig. 5 reveals the non-
paraxiality effect [Figs. 5(a) and 5(b)]. The intensity profiles
of Figs. 4 and 5 are remarkably similar to Figs. 1 and 2.
Nevertheless, we record a difference, particularly notable in
the number of collisions and peaks near the periphery of the
center.

In the same way, we use the Jacobian elliptic functions to
plot the profiles of second order. By using Eq. (37) we obtain
Figs. 6(a)–6(c), which show the influence of the nonparaxiality
on rogue waves.

In Fig. 6 we observe many collisions between waves. We
record again an unusual symmetry of the nonparaxial rogue
waves in Fig. 6(a). The wave peak of Fig. 6(c) splits into
two and this split is due to the diffraction effect in a lossy
medium. We note that in the presence of the nonparaxiality,

the collisions between waves are rare but significant when they
appear [see Figs. 6(a) and 6(b)].

IV. CONCLUSION

In this work we have presented the first- and the second-
order rational solutions related to the analytical rogue wave
solutions. By using one direct method known as the simi-
larity transformation and Darboux transformation, we have
constructed the final rational solutions of the nonparaxial
NLS equation by collecting partial solutions obtained from
the standard NLS equation and the ones from the similarity
reduction. This method can also be applied to the higher orders
(third, fourth, etc.). Through the 2D and 3D representations
we showed the effect of the nonparaxiality on the propagation
of rogue waves: It follows that the nonparaxiality increases
rapidly the intensity of rogue waves by increasing the length
and reducing the width peak simultaneously. We noted that
the nonparaxial rogue waves are faster than the ones obtained
from the standard NLS equation. We have recorded that the
nonparaxiality moves the higher peak of rogue waves from
the center to the periphery. We also showed the effect of the
polynomial and Jacobian elliptic functions on rogue waves.
We concluded that the displacement of the wave peak from
the center to the periphery is due to height velocity of the
nonparaxial rogue waves. As the nonparaxial effect increases
the velocity of waves, it also penalizes the interactions between
them. These aspects are additional features and can find
application in optics, notably in telecommunications, and in
many other physical systems.
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