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Analytic structure of a drag-driven confined dust vortex flow in plasma
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Flow structure of a dust medium electrostatically suspended and confined in a plasma presents a unique setup
where the spatial scale of a volumetric drive by the plasma flow might exceed that of the boundaries confining
the dust. By means of a formal implementation of a two-dimensional hydrodynamic model to a confined dust
flow and its analytic curvilinear solutions, it is shown that the eigenmode spectrum of the dust vortex flow can
lose correlations with the driving field even at the low dust Reynolds numbers as a result of strong shear and finer
scales introduced in the equilibrium dust vorticity spectrum by the boundaries. While the boundary effects can
replace the desired turbulent processes unavailable in this regime, the shear observable in most of the dust vortex
flows is identified to have a definite exponent of dependence on the dust viscosity over a substantially large range
of the latter. These results and scalings allow quantification of the notion of dusty plasma medium as a paradigm
for a wide range of natural flow processes having scales inaccessible to ordinary laboratory experiments.
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I. INTRODUCTION

Dynamics of particulate medium subjected to randomness
associated with stochastic processes, or turbulence in the sus-
pending medium, has been fundamental to the characteristics
of transport processes in the nature [1]. While the regime where
an assembly of Brownian particles is additionally subjected to
a combination of confining potential and sheared flow has been
explored in more recent studies [2], a more correlated fluidlike
phase of particles was considered in a nonplanar setup relevant
to many interesting experiments performed in the plasma
state of the matter [3]. Interesting observations of fluidlike
dynamics of the dust medium, with micron-size particles
electrostatistically suspended in a plasma, are made over the
recent past in various laboratory dusty plasma experiments.
Dust medium shows fluid-like behavior when suspended in
a plasma either under the microgravity [4–6] or in normal
conditions when a dust cloud is electrostatically levitated in
the plasma and is in the state of free flow [7,8]. Some of
the experiments also observed formation of the dust vortex
[9–12] in both these conditions; this includes a very recent
observation, in our laboratory, of the formation of a complete
toroidal dust structure in a glow discharge plasma with a
poloidal dust flow [12]. The mechanisms underlying the vortex
motion in these experiments include a range of possibilities
that result in forces on the suspended dust, either from its
direct or indirect interaction with the surrounding plasma [11]
or by external means, including boundaries [13,14], radiation
[15,16], magnetic field [10], or neutral flow [17–20]. Study
of vortex structures in such a complex medium presents an
attractive option for analyzing the dynamics of a fluid flow
in the limit of very low Reynolds numbers that interacts,
volumetrically, with another driver fluid, for example, a
background plasma flow of essentially large Reynolds numbers
[21]. While such a turbulent drive can result in the driven dust
flow exhibiting a corresponding composition of multiple scale
lengths, the dust flow must acquire additional length scales
from the boundaries that exist and restrict the dust motion
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(and dimensions) in the majority of dusty plasma setups where
the levitated dust medium is kept confined using a variety of
confining mechanisms [15,20,22–24].

A number of natural low-Reynolds-number processes that
involve flow relative to boundaries share the dynamical regime
with dust flow in the plasma, including swimming of microor-
ganisms [25], bacterial turbulence [26], flow of viscoelastic
fluids [27], as well as many robust life-saving biotechnology
applications based on networks of microchannels to achieve
enhanced rates of mixing, reactions, and conduction of fluid
flows [28,29], essentially in the absence of the macroscopic
turbulence [30]. This diverse range of applications, and the
fundamental structure of flow dynamics in the fluids having
a microscopic structure, motivated several recent studies
of dust vortex flow, including considerable first-principles
molecular dynamics simulations [31] and an approach using
numerical solutions of the hydrodynamic model involving an
incompressible Navier-Stokes equation solvable for the dust
fluid vorticity [3] with boundaries.

A typical laboratory dusty plasma setup has an assembly
of negatively charged dust particles electrostatically levitated
against the gravity by the electronegative sheath formed on
the electrode at the bottom, allowing a supersonic plasma to
continuously filter through it in order to let the latter reach
the electrode. This arrangement, given the slow time scales
of response of the dust in the plasma and very low Reynolds
number of its flow, resembles a microscopic semipermeable
mixing chamber that allows a colloidal solute to gradually
dissolve into a solvent filtering through it at a comparatively
high Reynolds number. Similar parallels also exist between
such a dusty plasma setup and, for example, artery congestion
by a cohesive lump of cholesterol, producing blockade to a
cardiac valve that would permit the blood flow of higher
Reynolds number but disallow the passage of relatively viscous
cholesterol. The lump must, in turn, be gradually dissolved in
the blood flow in order for the blockade to be cleared.

Under a systematic hydrodynamic formulation of the dust
medium suspended in the plasma, studying the analytic
structure of the dust vortex flow equilibria that are driven,
volumetrically, by a high-Reynolds-number plasma flow
(Re ∼ 106 and above [21]) would allow us to address many
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relevant dynamical issues [3], including interactions of dust
flow with limiting boundaries at low Reynolds number. The
fact that such a boundary phenomenon is essential to many
microscopic natural dynamical processes but difficult to ana-
lyze in ordinary laboratory experiments, given the microscopic
scales involved, makes the dusty fluid suspended in a plasma an
excellent macroscopic specimen of these microscopic systems
in addition to being a complex medium often displaying
spectacular flow dynamics in various laboratory experiments.
Harnessing the considerable analytic potential of the emerging
field of dusty plasmas requires a more formal and deterministic
analytic treatment that can quantitatively characterize the
parameter regimes of laboratory dusty plasma experiments that
are indeed relevant to useful microscopic situations in nature.
Such a systematic hydrodynamic formulation of the macro-
scopic fluidlike dust dynamics routinely observed in laboratory
plasma experiments long has been awaited and was attempted
by Laishram et al. [3] with the rather simple motivation of
obtaining the first two-dimensional (2D) solutions to describe
the dust vortex flow observed in the experiments carried out in
normal laboratory conditions (e.g., Ref. [12]) as well as in the
international space station under microgravity conditions [11].
These first systematic numerical solutions of the formulation,
apart from describing the basic dynamical observations,
demonstrated that various fundamental analytic aspects of
the dust flow dynamics observable in these experiments are
strongly related to natural microscopic flow processes and can
indeed be exploited or examined more deterministically by
means of the adopted formulation if the analytic version of
such solutions presenting the vortex flow can be obtained.
For example, the scale of the shear observable in the dust
vortex motion relates to the (often overlooked) physics of the
boundary phenomena and must follow a definite scaling with
respect to the fundamental parameters of the dynamics, e.g.,
the kinematic viscosity μ of the medium displaying them.
It thus becomes clear that once such an analytic character-
ization is accomplished, more meaningful experiments can
be performed where the macroscopic dynamics of the dusty
fluid in the laboratory experiments can directly correlate to the
microscopic flow processes in the nature that are often out of
bounds of the ordinary laboratory experiments.

Unlike the usual driven flow setups, the boundaries
confining dust in plasma are exclusively seen by the dust
medium while the medium providing the direct volumetric
drive is allowed to have a global flow profile. This unique
physics aspect of the dusty plasma systems, apart from
making it relevant to numerous microscopic semipermeable
flow setups in nature, enters the basic mathematical structure
of the formulation. Its solution, in turn, is complicated by
the inhomogeneity introduced by the driver modes that are
not essentially the eigenmodes of the confined dust flow.
Showing that the analytic solutions of the equilibrium are yet
obtainable in the region of confinement with the driving plasma
flows having spatial nonuniformities, the results for the cases
with the prescribed vorticity spectrum of the driving plasma
flow are obtained in the present treatment. The solutions are
characterized to show that the shear scales in the dust vortex
flow observable in the experiments follow a definite scaling
with respect to the kinematic viscosity of the dust medium
over a substantially wide range of the latter. This quantifies the

considerable capacity of the dusty plasma setups to represent
a range of low-Reynolds-number natural flow processes with
sufficient flexibility. It is additionally shown that the driven
flow of the dust medium in a plasma conveniently lies in the
linear regime (Re � 1) of the formalism over a substantially
wide parameter range. This property is usually desired in the
microscopic flow systems where the fundamental processes
of mixing, reactions, and convection must take place with
sufficient efficiency without a turbulent dynamics [30] that
necessitates dominance of the nonlinear effects, introducing
interaction between the normal modes of the dynamics.

In the present paper, the hydrodynamic formulation for
an incompressible dust medium confined by a conservative
potential in a nonplanar, cylindrical setup is introduced in
Sec. II. In Sec. III the boundary value problem is constructed
for a dust flow driven by a background plasma flow field
having a prescribed eigenmode spectrum of the flow shear.
The analytic solutions of the hydrodynamic model are obtained
in Sec. IV by treating the boundary value formulation as an
eigenvalue problem and by expressing the eigenmodes in terms
of a linearly independent set of Bessel modes where both
driving and driven flows follow valid flux conservation. The
solutions that admit use of a driving plasma flow field with a
multiple scale vorticity spectrum allow coupling of a multiple
scale plasma flow field to produce an associated, but essentially
nonidentical, vorticity scale spectrum for the driven dust flow
field. The deviation of spectral characteristics of dust vorticity
from that of the driver is analyzed as determined largely
by the boundary effects and a set of physical parameters,
including the dust kinematic viscosity, the coefficient of neutral
friction, and that of the ion drag, acting on the dust fluid.
The results are summarized and conclusions are presented in
Sec. V.

II. 2D HYDRODYNAMIC FORMULATION
OF THE CONFINED DUST FLUID

The setup of the confined dust fluid considered here is
identical to the recent experiments where a toroidal dust
structure is observed having a poloidal dust flow in a glow
discharge plasma [12]. The dust fluid in this setup is suspended
in the plasma and spatially confined or localized, effectively
by a combination of electrostatic and gravitational fields [3].
In normal laboratory setups the confinement of a dynamic
dust medium by a 2D or 3D conservative field Fc = −∇V is
achievable by use of various experimental means [15,20,22–
24]. The electrostatic contribution to the effective potential V

can be fairly time independent when both the factors entering
the electrostatic Poisson equation, namely the spatial dust
density distribution and boundary of the dust medium, are
time independent. This equilibrium can still have a strong
dynamic character and the associated 2D or 3D steady-state
flow field of the driven dust medium is allowed to be both
nontrivial and interesting in its nature [11]. The boundaries
in many cases may be structured and even self-imposed by a
distinct nonfluid or stationary phase of the dust medium having
an interface with the fluid phase being analyzed. Considering
further the cylindrical setup shown schematically in Fig. 1,
with azimuthal symmetry where the confining potential V (r,z)
jumps to a very high value Vb at the boundaries of the region
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FIG. 1. (Color online) Schematic of the setup in the cylindrical
geometry. Surface plot of an example effective confining potential
V (r,z) for the dust fluid (surface) is presented along with the flux
conserving velocity field vector v of the unconfined driving fluid in
the r-z plane (arrows) and radial profile of its z component vz(r) (2D
plot).

0 < r/Lr < 1 and −1 < z/Lz < 1 throughout the periodic
azimuthal dimension 0 < φ < 2π , the intersection of the dust
volume by an r-z plane is a rectangle.

For a uniform density dust fluid in the above azimuthally
symmetric setup, free from any dust source and sink, the basic
hydrodynamic equations include the r and z components of
the Navier-Stokes equation,

∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z
= − 1

ρ

∂P

∂r
− ∂V

∂r
+ μ∇2ur

− ξ (ur − vr ) − ν(ur − wr ), (1)

∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
= − 1

ρ

∂P

∂z
− ∂V

∂z
+ μ∇2uz

− ξ (uz − vz) − ν(uz − wz), (2)

and the equation of continuity for the incompressible dust
fluid, ∇ · u = 0, written in the cylindrical coordinates as

1

r

∂(rur )

∂r
+ ∂uz

∂z
= 0. (3)

where u is the dust flow velocity, v is the ion flow velocity,
and w is the flow velocity of the neutral fluid. P and ρ are the
pressure and mass density of the dust fluid, respectively; μ is
kinematic viscosity; and ξ and ν are the coefficients of the ion
drag and the friction with the neutral fluid acting on the dust
[32–34]. For the dust flow which is purely in the r-z plane,
the dust vorticity ω = ∇ × u is directed purely along φ̂. In
the limit of small Reynolds number Re = Lu/μ the nonlinear
convective terms in the left-hand sides of Eqs. (1) and (2) are

negligible compared to the diffusive terms in the right-hand
side and they can be combined to produce the equilibrium
equation for ω [3],

μ∇2ω − (ξ + ν)ω + ξωs = 0, (4)

where ωs = ∇ × v is the vorticity of the ion fluid. In the regime
of low Re where the dust flow can be assumed incompressible,
defining a stream function ψ such that u = ∇ × (ψφ̂) yields
in the cylindrical coordinates,

ω = −
(

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
− ψ

r2
+ ∂2ψ

∂z2

)
. (5)

Since a multiple mode analysis is desired only along r ,
following the considerations in Ref. [3] the dependence on z

in ψ can be treated via a separable function ψz(z) that allows
ψ to be expressed in the form of the product ψ = ψr (r)ψz(z).
When the coupling between individual Fourier modes of ψz

along ẑ of the two fluids is considered, the Eq. (4) reduces in
a form independent of ψz [3],

∂4ψr

∂r4
+ 2

r

∂3ψr

∂r3
−

[(
3

r2
+ K1

)
− 2k2

z

]
∂2ψr

∂r2

+
[(

3

r3
− K1

r

)
+ 2k2

z

r

]
∂ψr

∂r

−
[(

3

r4
− K1

r2

)
+

(
2

r2
+ K1

)
k2
z − k4

z

]
ψr − K2ωsr = 0,

(6)

where K1 = (ξ + ν)/μ, K2 = (ξ/μ) and the source vorticity
ωsr is determined by the form of the 2D velocity field v(r,z)
of the background ion flow. The above choice amounts to
including, for simplicity, only the contribution from the Fourier
eigenmodes of the setup along z. The contribution from the
modes other than the eigenmodes along z, due to its origin
in the inhomegeneity of the formulation, is recoverable as a
particular integral over the continuum of the Fourier modes
for the cases where the circulations with scale larger than
Lz are accounted for. It must, however, vanish in the interior
when a sufficiently large number of Fourier eigenmodes are
included. The Eq. (6) couples circulations in an unbounded
ion flow of finite vorticity on scale Lz to that of the dust
fluid confined within the boundaries −Lz < z < Lz and 0 <

r < Lr while allowing the existence of ion flow circulations of
scales larger than Lz. The analytic solutions of the Eq. (6) along
r need to be found in terms of eigenmodes of the present setup
satisfying the boundary conditions at axial boundaries ±Lz

and radial boundary Lr . We obtain and discuss these solutions
in Sec. IV.

III. CONSTRUCTION OF ANALYTIC RADIAL BOUNDARY
VALUE PROBLEM IN CYLINDRICAL SETUP

In order to construct the radial solutions bounded in the
region 0 < r < Lr we begin by casting the Eq. (6) as an eigen-
value problem, with an associated set of eigenfunctions ϕm

which satisfy the desired boundary conditions and can be as-
sembled in linear combinations to construct the radial parts of
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the driven fluid stream function and the driving fluid vorticity,

ψr =
∞∑

m=1

amϕm and (7)

ωsr =
∞∑

m=1

bmϕm, (8)

respectively, such that the Eq. (6) is transformed into

F

∞∑
m=1

amϕm = K2

∞∑
m=1

bmϕm, (9)

with the operator F representing,

F = ∂4

∂r4
+ 2

r

∂3

∂r3
−

[(
3

r2
+ K1

)
− 2k2

z

]
∂2

∂r2

+
[(

3

r3
− K1

r

)
+ 2k2

z

r

]
∂

∂r

−
[(

3

r4
− K1

r2

)
+

(
2

r2
+ K1

)
k2
z − k4

z

]
. (10)

Note that since the driver vorticity ωsr is prescribed, the
coefficients bm are known. Hence, if the eigenvalues of
the operator F corresponding to functions ϕm are known, the
coefficients am can be determined from (9), producing, in turn,
the desired solution (7).

A. Radial boundary conditions and choice of Eigenvectors

The solution procedure requires (i) selection of appropriate
of eigenvectors ϕm that satisfy the boundary conditions as well
as continuity equation for both, the dust and the ion fluid, and
(ii) subsequent expansion of the prescribed source vorticity
ωsr in the linear combination of eigenvectors ϕm. Note that,
however, the solutions are sought for the stream function ψ ,
the physical boundary conditions are essentially defined on the
z component of the flow velocity fields of the dust and the ion
fluid, chosen in accordance with the relation

uz = 1

r

∂(rψ)

∂r
(11)

such that the radial gradient of the eigenfunctions can govern
the value of the uz at the boundaries while in the interior 0 <

r < Lr it is governed by the source, via Eq. (6). From physical
considerations, while in the absence of any physical boundary
at r = 0, the flow velocity value there is again determined by
the driver and only its gradient can be set to zero by symmetry
argument; the choice, for example, of a no-slip flow at the outer
boundary (r = Lr ) can be made by setting uz(r = Lr ) = 0.
This latter choice is made in the present analysis in order to
allow for and study the formation of a boundary layer at this
boundary.

For most suitable imposition, as discussed below, of the
above physical boundary conditions in the present setup, we
choose to express the stream functions of both the dust and
the background ion flow in terms of ϕm that belong to a set of

Bessel functions,

ψr =
∞∑

m=1

amJn

(
αm

r

R

)
(12)

and

ωsr =
∞∑

m=1

bmJn

(
αm

r

R

)
. (13)

The set Jn(αmr/R) can additionally be a diagonalized set of
eigenvectors by ensuring that the αm are Bessel zeros, such
that the functions ϕm satisfy the orthogonality condition,∫ R

0
rJn

(
αi

r

R

)
Jn

(
αj

r

R

)
dr = δij . (14)

Further, since the radial boundary must confine dust with
ur , the stream function ψ must be a constant along z at
r = Lr while the radial derivative of the stream function can
be controlled to impose an appropriate boundary value of
the velocity uz at this boundary using (11). Accordingly, we
choose the set of first-order Bessel functions J1 (i.e., n = 1) as
eigenfunctions ϕm that satisfy the Jn(αmr/R) = 0 at both the
radial boundaries, r = 0 and r = R = Lr , while its derivative
J ′

1 can be determined under the following formulation to
achieve the solutions with desired boundary flow values.

B. Eigenvalues of the operator F

In order to evaluate the eigenvalues λm of F we write the
associated eigenvalue equation,

(F − λm)J1(xm) = 0, (15)

where xm = αmr/R. Substituting F from (10) in Eq. (15) we
get

x4
mJ ′′′′

1 (xm) + 2x3
mJ ′′′

1 (xm) − [
3 + K1r

2 − 2r2k2
z

]
x2

mJ ′′
1 (xm) + [

3 − K1r
2 + 2r2k2

z

]
xmJ ′

1(xm)

+ [−3 + K1r
2 − r4(2/r2 + K1)k2

z + r4k4
z

]
J1(xm)

= r4λmJ1(xm), (16)

where the prime denotes differentiation with respect to r .
Equation (16), upon using the appropriate recurrence relations
for the Bessel derivatives and eliminating J0 and J2, yields the
desired eigenvalues of the operator F ,

λm =
(

αm

R

)4

+ K1

(
αm

R

)2

−
[

2

(
αm

R

)2

+ K1

]
k2
z + k4

z .

(17)

Combining Eq. (9), (15), and (17) produces the equation for
the unknown coefficients am required for the solutions for the
dust flow field in terms of the radial dust stream function ψr

given by Eq. (12),
∞∑

m=1

(λmam − K2bm)Jn(xm) = 0. (18)

Representing sufficiently small scales of the radial variation
requires a large number m = M of the eigenfunctions Jn(xm)
for the stream function ψr . For the choice of orthogonal set of

063110-4



ANALYTIC STRUCTURE OF A DRAG-DRIVEN CONFINED . . . PHYSICAL REVIEW E 91, 063110 (2015)

finite number of eigenvectors satisfying (14) and a common,
nonzero boundary condition for J1, the coefficients am can be
determined generally as

am = K2bm

λm

, (19)

whereas the particular boundary conditions can be applied by
substituting the value of xm corresponding to the boundary in
the Eq. (18). For the general set of eigenfunctions, independent
of condition (14), it is, however, clear that substituting a chosen
value r = ri in Eq. (18) produces a single equation containing
total M unknown coefficients am. A set of minimum M values,
ri , must therefore be selected to construct a complete set of M

simultaneous equations for obtaining the coefficients am,

M∑
m=1

(λmam − K2bm)Jn(αmr1/R) = 0,

M∑
m=1

(λmam − K2bm)Jn(αmr2/R) = 0,

.......................................................

.......................................................

M∑
m=1

(λmam − K2bm)Jn(αmrM/R) = 0. (20)

The set of Eqs. (20) can be rearranged in a more familiar form,
⎡
⎢⎢⎣

A11 A12 . . . A1M

A21 A22 . . . A2M

...
...

. . .
...

AM1 AM2 . . . AMM

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a1

a2
...

aM

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

B1

B2
...

BM

⎤
⎥⎥⎦, (21)

where

Aij = λjJn(αj ri/R) (22)

and Bi = K2

M∑
j=1

bjJn(αj ri/R). (23)

The value am determined by solution of the set (21) corre-
sponds to the weight of the contribution of mth Bessel mode
to the eigenmode spectrum of the dust stream function ψr .

C. Implementation of the boundary conditions
and the spectral limit

Since the fourth-order Eq. (9) is solved in terms of eigen-
functions that already satisfy two of the required boundary
conditions at the boundaries r = 0 and R of the cylindrical
region, the rest of the procedure clearly admits only two
additional boundary conditions which need to be specified
in terms of the radial derivatives of the stream function ψr

at the two radial boundary locations. Note that the cylindrical
symmetry of the present setup also results in the eigenmodes J1

which naturally obey the condition that the radial derivatives
of all the physical variables, e.g., that of the velocity uz,
must vanish at r = 0. With dust flow velocity at r = 0 purely
determined by the driving source, no conditions are imposed at
this boundary on the uz value and, in turn, the only remaining

boundary condition is applied at r = R. Imposing the latter
as a no-slip boundary condition, such that the dust flow
velocity uz = 0 at r = R, and requiring that the solutions
must show no oscillations at the scales comparable to the grid
resolution, �r (<d, where d is the average particle separation)
effectively produces the following two additional equations to
replace two equations from the set of Eqs. (20), corresponding,
respectively, to rM−1 and rM ,

M∑
m=1

am

αm

R
Jn−1

(
αm

rM−1

R

)

−
M∑

m=1

am

(αm

R

)2
(rM − rM−1)Jn

(
αm

rM−1

R

)
= 0 (24)

and
M∑

m=1

am

αm

R
Jn−1

(
αm

rM

R

)
= 0, (25)

with the corresponding matrix coefficients,

AM−1,j =
(αj

R

)
Jn−1

(
αj

rM−1

R

)

−
(αj

R

)2
(rM − rM−1)Jn

(
αj

rM−1

R

)
, (26)

BM−1 = 0, (27)

and

AM,j =
(αj

R

)
Jn−1

(
αj

rM

R

)
, (28)

BM = 0. (29)

The desired matrix of Bessel coefficients a for ψr thus can be
evaluated as

a = A−1B. (30)

Determination of a for a flux conserving plasma flow, which
in the present analytic formulation can be prescribed in terms
of the source stream function ψsr or the vorticity ωsr, is thus
possible by simply ensuring that the source flow velocities are
pure eigenfunctions of the geometric setup. The formulation,
however, admits general cases, for example, those treated
numerically in Ref. [3] where the dust flow fields were deter-
mined to correspond to two cases of source stream functions
associated with monotonic and nonmonotonic source velocity
profiles. The present analytic formulation reproduces these
particular cases by allowing us to express the arbitrary source
vorticity functions as a detailed linear combination of the
eigenmodes J1(xm) represented by Eq. (13).

IV. ANALYTIC STREAM-FUNCTION SOLUTIONS
AND CHARACTERIZATION OF DUST FLOW FIELD

The analytic solutions in terms of linear combinations
of orthonormal Bessel modes representing the dust stream
function can now be obtained provided that the prescribed
driving plasma flow field is expressed in the terms of the
same set of orthonormal functions such that the coefficients
bm, required to determine the matrix A and B, are known.
Considering that for a known function ωsr(r) the set of
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coefficients bm can be obtained using the orthonomality
condition (14) of the Bessel functions as

bm = 2

R2[Jn+1(αm)]2

∫ R

0
rωsr(r)Jn

(
αm

r

R

)
dr, (31)

the corresponding set of desired coefficients am can be deter-
mined using (30) for recovering, for example, the solutions
presented in Ref. [3] with two kinds of driver velocity
profiles. In the present analysis, however, we limit ourselves
to the source vorticities ωsr that are pure eigenfunctions of
the cylindrical setup. Additionally, using a single eigenmode
as a driver stream function still produces a multiple mode
structure of the dust vorticity field in the confinement zone as
the resulting dust flow must additionally satisfy the no-slip
boundary condition at the boundary r = R. The signatures of
an associated multiple vorticity scale eigenmode spectrum of
the dust flow generated in the resulting boundary layer thus
can be analyzed effectively by means of the present analytic
eigenmode solutions.

In this bounded setup the diffusive effects included in
Eqs. (1) and (2) cause a finite magnitude of the dust flow
velocity u in the bulk to reduce in the boundary region and
approach zero at the boundary r = R. This is despite the flow
velocity v of the driving plasma which is finite at the boundary.
The corresponding solutions (30), in terms of coefficients am,
allow us to examine the spectral properties of the dust vorticity
field.

The present cases with single-eigenmode structure of the
driving plasma flow vorticity ωsr, given by Eq. (13), correspond
to the choice

bi =
{
AI if i = I ;
0 if i �= I ,

(32)

of the ion vorticity while the use of a large number (M = 200)
of eigenmodes is made to express the resulting dust stream
function ψr . The first set of analytic solutions is presented in
Fig. 2 for the case with I = 1 such that the boundary r = R

of the confinement zone corresponds to the first zero α1 of
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FIG. 2. (Color online) Radial functions for the flow profiles with
I = 1 at z = z0 = 0. (a) Driver vorticity ωs , (b) driver velocity vz,
(c) dust stream function ψ , and (d) dust flow velocity uz for μ =
0.1 U0Lr , ξ = 10−5 U0/Lr , and ν = 0.1 U0/Lr .

the single eigenmode J1(α1r/R) chosen to represent the ion
vorticity, as plotted in Fig. 2(a). The quantities in Fig. 2 and
beyond are presented using the system size Lr = R and the
ion acoustic velocity U0 as units of lengths and velocities,
respectively. Accordingly, ω and ψ have units U0/Lr and
U0Lr , respectively. The intensity of the driving velocity field
component vz plotted in Fig. 2(b) scales with the amplitude
A1 of the source vorticity in the confinement domain and has
a nonzero value at the boundary r = R as the radial derivative
of the stream function ψsr is nonzero at the boundary for
individual eigenmodes for the above choice. The boundary
condition of zero dust flow velocity, uz(R) = 0, is, however,
ensured by the Eqs. (24) and (25), as plotted in the Fig. 2(d).
This boundary condition directly corresponds to the radial
derivative of dust stream function, plotted in Fig. 2(c), that
approaches zero at the boundary r = R.

The complete 2D solutions yielding the stream function
ψ(r,z), consistent with the parameter regime associated with a
typical laboratory glow discharge argon plasma, are explored
below. Considering micron size dust in the plasma with
parameters, n = 109 cm−3, Te = 3 eV, and Ti = 1 eV, largely
at the sheath entrance where ions are streaming with a flow
velocity U0 equivalent to the ion acoustic velocity cs =√

Te/mi , the value of ion drag coefficient can be estimated to
be ξ ∼ 0.2 × 10−5 U0/Lr [32–34]. The equilibrium between
the two flows is accordingly explored for a range of ion drag
coefficient, ξ = 0.1, 0.4, 0.7, and 1.0 × 10−5 U0/Lr . For a
typical system size, Lr ∼ 10 cm, the range of parameter μ

can similarly be chosen keeping in view the small Reynolds
number (∼1) of the dust flow which is consistent with the
linear limit of the model. The resulting 2D solutions are
presented in Figs. 3(a), 3(c), and 3(e) for the radial mode
numbers I = 1, 3, and 5 of the driving plasma vorticity ωs .
These values correspond to the cases where the first, third, and
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FIG. 3. (Color online) 2D dust stream function ψ(r,z) for single-
eigenmode source vorticity with (a) I = 1, (c) I = 3, and (e) I =
5. Dust flow stream lines, or the contours of the product rψ , for
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fifth zeros of the stream-function eigenmode, J1, coincide with
the boundary location, Lr , respectively. Note that, similarly to
the I = 1 case presented in Fig. 2, while the radial derivative
of the dust stream function also approaches zero, ensuring a
zero z component of the dust flow velocity, uz = 0, at the
boundary for all these cases, a uniform boundary value of the
ψ along ẑ also ensures a zero r component for them such
that the dust fluid does not cross the radial boundary and
is confined in the domain r < Lr . The confinement in the
region −Lz < z < Lz is similarly ensured by the uniformity
of ψ along r at the top and bottom boundaries, z = ±Lz,
respectively. The alternate depression and bulges in the surface
plots indicate development of vortex structure in the flow
velocity field of the dust fluid. These vortices correspond to
appearance of circulations in the corresponding stream lines
of the dust flow given by the contours of the quantity rψ that
are presented for these cases with I = 1, 3, and 5 in Figs. 3(b),
3(d), and 3(f), respectively.

The radial profiles of the driver and the dust velocities at
z = 0 with increasing value of individual driver mode number
I are plotted in Fig. 4 in the left and the middle columns,
respectively. The corresponding intensity spectrum of the
constituent modes of the driven dust flow vorticity profiles,
Int(m) = a2

m is plotted in rightmost column of Fig. 4 as a
function of the corresponding mode number m. Although a
most dominant mode, with the mode number m = I of the
driver vorticity ωs , can be seen in the dust fluid mode number
spectrum in each of the cases with I = 1, 3, and 5 of the
source plotted in Figs. 4(c), 4(f), and 4(i), respectively, a finite
intensity at other m values is also recovered in the spectrum of
the dust flow. This finite intensity for m �= I dust modes, unlike
source intensity Int(m) = δmI , originates from the additional
spatial variation of the dust velocity profiles in Figs. 4(b), 4(e),
and 4(h) introduced by the no-slip boundary condition, forcing
the dust flow velocity to drop to zero at r = Lr . Considering
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FIG. 5. (Color online) Radial profiles of dust velocity u normal-
ized to the corresponding maximum values umax appearing at the the
edge of the boundary layer whose width shrinks with decreasing μ

values, ranging from 10−1 to 10−7 U0Lr arranged on a logarithmic
scale.

the above plasma parameters, such that U0 ∼ 2.5 × 105 cm
s−1, the resulting dust velocities presented in Figs. 4(b), 4(e),
and 4(h) agree with the observation of u ∼ 0.1–1 cm s−1 in a
typical dust vortex flow experiment [12].

The influence of increasing spatial variation, related to
the appearance of a boundary layer, on the dust vorticity
spectrum Int(m) characterizes the correlation between the dust
parameters and the intensity of the additional modes with
a range of length scales. The width of the boundary layer,
effectively the radial interval between the dust flow velocity
maximum and the boundary location, reduces gradually with
a decreasing value of dust viscosity μ as visible in the radial
variation of the dust flow velocity profile plotted in Fig. 5 for
I = 1 for different μ. The location of the maximum of the
normalized velocity is accordingly seen shifting close to the
radial boundary r = LR for the smaller μ, indicating that
the boundary layer shrinks and becomes steeper at smaller
values of μ, presented in Fig. 5 using a logarithmic scale
variation.

The complete intensity spectrum of the constituent modes
and the effect of the shrinking width of the boundary layer
associated with additional short scale modes that it generates
in the intensity spectrum can now be analyzed. The intensity
spectrum Int(m) is plotted in Fig. 6 for the case I = 1 and
values of coefficient of viscosity μ = 10−1,10−3,10−5, and
10−7 U0Lr . As seen from Figs. 5 and 6, steepening of the
flow velocity variation at the boundary with decreasing μ

corresponds to an increase in the contribution of the radial
modes with higher mode number m in the vorticity spectrum.
Note, for example, that for the case with μ = 0.1 (plotted
with “*” in Fig. 6), where the width of the boundary region
approximately corresponds to the scaled interval between the
zeros of m = 2 mode, there is a considerable intensity of
m = 2 mode in the spectrum. This intensity of the m = 2
mode, however, can be seen to drop with reduction in the
μ value, whereas the corresponding intensity of the modes
with large m increases. This transition is seen accompanied
by a proportional reduction in the width of the boundary
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μ = 10−1, 10−3, 10−5, and 10−7.

layer that rather corresponds to the shorter scale lengths
associated with the large m modes (m > 2) whose intensity,
relative to the m = 2 mode, indeed grows for smaller μ

values. The mode-number spectrum for varying values of
μ, displaying a dominant intensity of resonant scale and a
continuum of small scales, features a single exponent for
large values of μ but two distinct exponents for small μ

values. This indicates that in the regime when the boundary
layer is wider and has scale length comparable to that of the
driver flow the driver flow introduces a set of structures in
the flow having a definite power law with a single exponent.
However, in the regime where a thin boundary layer emerges,
the boundary may introduce a set of intermediate scales with
an exponent which can significantly differ from that of the
set of modes generated by the driver flow. Very small length
scales that are either comparable or finer than the average
inter-dust-particle separation, d, are obviously disallowed in
the existing macroscopic model by the conditions (24) and
(25). In presence of viscoelastic effects, with the possibility
of finite stochasticity at the microscopic level, such finer
scales are likely to be populated by modes with a power
law that in recent first-principles computer simulations have
been predicted to follow a Kolmogorov-like turbulent scaling
[31]. However, how these resulting finer-scale structures must
interact with the boundary layer that forms at similar scales
remains an interesting question for analytically determining
the nature of the spectrum at such finer scales. Correctly
addressing this region of spectrum under the hydrodynamic
formulation would therefore require extending the present
Navier-Stokes model to a generalized hydrodynamic model
by including the essential viscoelastic effects.

The width of the boundary layer �rb is plotted as function
of μ for a range of ξ values in Fig. 7(a) and the corresponding
dependence of an effective Reynolds number, described further
below, is plotted in Fig. 7(b). The boundary layer thickness
for this wide range of μ values is also found to be almost
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FIG. 7. (Color online) (a) Width �rb of the boundary layer and
(b) values of the Reynolds number Re for I = 1 and the cases with
various values of ξ .

independent of the coefficient of ion drag ξ as evident from
Fig. 7(a), where profiles of �rb(μ) evaluated with various ξ

values are seen to be overlapping. The shear scale length is,
in turn, not sensitive to the ξ and the driver strength remains
largely decoupled with the characteristics of the dust dynamics.
This behavior shows the neutrality of the dust dynamics with
respect to the driving mechanism and its strength. The shear
scale length does, however, show a strong response to the
nonuniformity or the presence of spatial stochasticity in the
plasma. This is further examined by means of characterizing
the boundary layer width in the cases of higher driver mode
numbers, I = 3 and 5, in addition to the smallest value I = 1
as plotted using a logarithmic scale in Fig. 8. It is evident that
the regions of separate exponents of μ are present in every
case. The boundary layer width is recovered clearly following
a definite exponent �rb ∝ μ1/3 in the small to intermediate
orders of μ values, e.g., ranging from 10−6–10−2 for the case
of I = 1. The range of μ exhibiting this definite power law
is, however, found to be rather limited in the cases of higher
driver mode numbers, for example, in the cases I = 3 and 5
presented in Figs. 8(b) and 8(c), respectively. The origin of
the observed scaling lies in the dust momentum diffusivity
largely balancing the momentum source from the driver in the
narrow boundary layer, in which the net dissipation via neutrals
approaches marginal values. The Eq. (4) at the boundary layer
therefore takes the following limiting form:

μ∇2(∇ × u) 	 ξ∇ × v. (33)

Considering, for I = 1, for example, that in the boundary layer
region the radial scale length of variation in the driver plasma
velocity is comparable to system size, |v|/|∇ × v| = v/v′ ∼
Lr , while that of the dust velocity variation approaches the
effective boundary layer width, |u|/|∇ × u| = u/u′ ∼ �rb, in
order to achieve the dust flow velocity ub ∼ u0 at the onset of
boundary layer using (33) requires

μu0

�r3
b

	 ξv

Lr

. (34)
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Therefore, treating the quantities ξ, u0, v, and Lr as pa-
rameters would yield the scaling observed in the above
characterization,

�rb 	 μ1/3. (35)

Estimated for I = 1, the scaling (35) is, however, obscured by
an increasing value of I as seen from Fig. 8, mainly because of
the reduction in the values of ub in comparison to u0 for I > 1
[see Figs. 4(b), 4(e), and 4(h), for example]. The modewise
dependence of (35) on μ obtained in the present analysis
makes it convenient to determine, from the spectral properties
of the driver flow spatial variation present in a particular
case, the range in which a corresponding modification of the
scaling (35) must be applied. In simpler terms, the considerable
range of driven setups where the driver background remains
largely free of spatial nonuniformities corresponds to a class of
systems analytically more tractable by (35) in comparison to
those where the flows may rather be driven by autonomous
mechanisms for the vortex dynamics, for example, those
involving temperature- or charge-density variations within the
structure region with sharper gradients. The regime of (35)
suitably covers alternate drivers like a thermophoratic force,
translating into a force γnωn by the neutral vorticity field
which frictionally couples to dust particles via coefficient γn,

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−10

10
−5

10
0

10
5

μ

R
e

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−10

10
−5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−10

10
−5

ξ = 2 × 10−6

ξ = 4 × 10−6

ξ = 6 × 10−6

ξ = 8 × 10−6

ξ = 1 × 10−5

10
0

10
5

μ

R
e

ξ = 2 × 10−6

ξ = 4 × 10−6

ξ = 6 × 10−6

ξ = 8 × 10−6

ξ = 1 × 10−5

10
0

10
5

μ

R
e

ξ = 2 × 10−6

ξ = 4 × 10−6

ξ = 6 × 10−6

ξ = 8 × 10−6

ξ = 1 × 10−5

μ−2/3

μ−2/3

μ−2/3I = 1

I = 3

I = 5

(a)

(b)

(c)
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number Re with various values of ξ for the cases with the driver
mode number (a) I = 1, (b) I = 3, and (c) I = 5. The broken line
represents the dependence Re ∝ μ−2/3.

and other generic mechanisms [18] that effectively yield a
nonconservative force field capable of entering Eq. (4).

Another important quantity that can additionally be esti-
mated and examined as function of μ and ξ is the Reynolds
number Re. Considering the recovery of an effective boundary
layer width, in the form of the interval �rb, allows us to define
and estimate the effective Reynolds number, Re = ub�rb/μ,
for various cases where ub = u(r = Lr − �rb). In view of the
large range of the parameter μ (1 < μ < 10−7U0Lr ) explored
in the present analysis covering the limit of considerably
small μ values, the ratio ub�rb/μ might shoot up unless a
corresponding variation is recovered in the product ub�rb

appearing in the numerator. Using the values of ub and �rb,
both of which are the output of the present analysis, it can
now be examined whether the values of Re associated with the
results presented above are well within the linear limit Re < 1
of the Eqs. (1) and (2) as required in order to reconfirm the
applicability of the analysis to the considered low-Reynolds-
number setups. The estimated values of Re are plotted in
Fig. 7(b) for the range of parameters μ and ξ relevant to
the general laboratory dusty plasma and other low-Reynolds-
number setups considered in the present analysis. The domain
Re < 1 in Fig. 7(b) thus can be considered to represent the
linear limit, suitably covered by the present analysis. While
sufficiently large values of drag coefficient ξ are admissible
at large μ without losing the self-similarity of the solutions,
for smaller values of μ a corresponding limiting ξ value
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can be estimated by finding the curve Re(μ) that intersects
the horizontal line Re = 1 at the chosen μ. A dependence
is recovered in Re < 1 profiles over the viscosity μ with a
definite exponent where Re ∝ μ−2/3 that suitably follows from
the scaling (35), as Re = ub�rb/μ, hence Re ∼ μ−2/3. This
dependence, as presented in the logarithmic plots in Fig. 9,
is once again pronounced in a longer range of μ values for
the small mode numbers (e.g., I = 1) and the profiles show
this definite ordering to be obscured by the increasing spatial
fluctuation in the driver for larger μ values, for example, in the
cases of I = 3 and 5. A rather stepwise change in the profiles
at small and large μ values in Fig. 8 are caused by the spatial
resolution, which is analytically limited by the maximum
number M of the dust eigenmodes in use, getting highlighted
over the logarithmic scale. It is estimated that for the cases
of relatively higher dust charge densities (∼4 × 104 e−) and
moderate dust flow velocities (∼0.5 cm s−1) achievable in
the existing systems displaying vortex dynamics, the lowest μ

value used in the present analysis (10−7 U0Lr ≡ 0.26 cm2 s−1)
approaches the results of the computer simulations yielding
the shear viscosity η for the Yukawa systems (e.g., μ =
η/mn ∼ 0.5

√
3ωEa2 ≡ 0.21 cm2 s−1 [35,36], where m and n

are dust mass and particle density, respectively; ωE is the
Einstein frequency; and a is the average interdust separation)
using the present dusty plasma parameters [12]. For these μ

values, the effective Re = ub�rb/μ ∼ 1 (using rb = 0.5 cm
and ub = 0.5 cm s−1) indicates that the associated cases having
Re < 1 can suitably be treated with the present results. A
nonlinear extension of the formulation might further extend
this applicability regime quite considerably.

V. SUMMARY AND CONCLUSIONS

For the majority of bounded setups of the dust medium
suspended in the plasmas with boundaries and friction, we
have analytically addressed the issue that in presence of a
background high-Reynolds-number driving plasma flow, what
are the characteristics of the 2D driven flow structure and
how do the spectral properties of the driver flow influence
equilibrium mode number spectrum of the driven flow it is
when subjected to important boundary phenomena. For the
analysis of driven confined dust fluid vortex flow a boundary
value problem was constructed in a nonplanar, cylindrical
geometry in terms of dust flow stream function.

The presented analytic treatment used the description of the
vorticity of both the dust and of the driving plasma in terms
of strength of eigenmodes of a curvilinear bounded setup in

the mode-number space. The analytic solutions for the dust
flow are obtained by treating the boundary value formulation
as an eigenvalue problem and using the linearly independent
set of Bessel functions as eigenmodes that allow both driving
and driven flows to follow valid flux conservation and have a
multiple scale vorticity spectrum. This choice allows a multiple
scale plasma flow field to produce a vorticity scale spectrum for
the driven dust flow field, essentially nonidentical to the driver
and the one that accommodates the effects of boundary with
the stationary dust. The spectral characteristics of dust vorticity
at higher mode numbers is shown to be determined predom-
inantly by the boundary effects that have additional impact
when combined with variation in the usual physical parameters
of the dust medium, including the kinematic viscosity and the
coefficients of neutral friction and ion drag acting on the dust
fluid. Among these effects is the formation of a boundary layer
whose width depends on the viscosity and allows the dust flow
to be in the low-Reynolds-number regime up to considerably
smaller values of the coefficient of the dust viscosity.

With the effect of increasing complexity in the driver setup
resolved in the orthogonal eigenfunctions and characterized
individually with increasing mode number, the independence
of effects associated with boundary could be identified and
shown to have definite exponents of variation with respect to
the medium viscosity μ. While the effective boundary layer
width is recovered to scale with μ1/3, the effective Reynolds
number for the setup is recovered to scale with μ−2/3. Both of
these orderings are seen to be obscured by an increasing spatial
complexity of the driving mechanism. The degree of the impact
of this complexity is estimated by systematically characteriz-
ing the effect of individual driver flow modes in various cases
with an increasing value of the cylindrical mode number.

We conclude by discussing that while the regime relevant to
present results includes the low-Reynolds-number processes
driven by the factors involving spatial complexity and the
microscopic setups that are dominated by the boundary effect,
following the present implementation of the 2D model, the
analysis of additional regimes covered by dusty plasmas
must now be more accessible. For example, the regime of
stronger coupling where the granularity effects persist in the
flowing medium and the Navier-Stokes model can perhaps
be modified to cover additionally the dynamics of driven
viscoelastic flows [37]. It is also of future interest to investigate
the vorticity spectrum structure in the nonlinear limit and
explore also its stability such that the possibility of a turbulent
spectrum correlating with the boundary effects in the rather
relevant nonplanar bounded setups can be addressed more
deterministically.
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