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Wave modes in shear-deformed two-dimensional plasma crystals
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2CNRS, Aix Marseille Université, Laboratoire PIIM, 13397 Marseille Cedex 20, France

3Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Weßling, Germany
4College of Science, Donghua University, Shanghai 201620, People’s Republic of China

(Received 9 March 2015; published 25 June 2015)

A theory of wave modes in shear-deformed two-dimensional plasma crystals is presented. Modification of the
dispersion relations upon the pure and simple shear, and the resulting effect on the onset of the mode-coupling
instability, are studied. In particular, it is explained why the velocity fluctuation spectra measured in experiments
with sheared crystals exhibit asymmetric “hot spots”: It is shown that the coupling of the in-plane compressional
and the out-of-plane modes, leading to the formation of an unstable hybrid mode and generation of the hot spots,
is enhanced in a certain direction determined by deformation.
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I. INTRODUCTION

Experimental particle-resolved studies of generic strong-
coupling phenomena are carried out using natural model
systems, such as complex plasmas and colloidal dispersions
[1,2]. Two-dimensional (2D) model systems enable us to
observe the individual particle dynamics of the entire ensemble
in the greatest detail, both in space and time. In particular,
recent experiments with 2D complex plasmas made it pos-
sible to perform particle-resolved studies of equilibrium and
nonequilibrium melting [3,4], diffusion [5,6], onset of plastic
deformations [7], dynamics of dislocations [8], etc. Such
systems are usually obtained in radiofrequency (rf) plasma
discharge chambers [9–12], where the negatively charged
microparticles levitate above a flat horizontal rf electrode
due to the balance between gravity and electrostatic forces.
By tuning the experimental conditions, one can obtain a
crystalline monolayer, the so-called 2D plasma crystal, where
microparticles form a hexagonal lattice.

The use of complex plasmas as a model system requires that
certain plasma-specific phenomena, associated with the energy
and momentum exchange between charged microparticles and
ions or electrons of the surrounding discharge, play only
a minor role. For 2D complex plasmas, the most notable
phenomena include charge-fluctuation instabilities (associated
with the fact that the charge of a microparticle fluctuates around
the equilibrium value, which, in turn, varies in space) [13–16],
and mode-coupling instability (MCI) [17–21]. The effect of
charge fluctuations, leading to single-particle instabilities, is
easily made negligible by a slight increase of gas pressure (i.e.,
of frictional damping for particles) [15,16]. On the contrary,
the MCI is the collective nonequilibrium phenomenon, which
turns out to be the prime cause of the plasma-specific melting
of 2D crystals [21].

The MCI is associated with the wake-mediated interactions
between microparticles levitating in the sheath above the elec-
trode: In the presence of a strong vertical plasma flow driven by
the sheath field, the screening cloud around each charged parti-
cle becomes highly perturbed and asymmetric [22–25]. These
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clouds are usually referred to as “plasma wakes” [26–31]. The
wakes exert attractive forces on the neighboring particles and
make the pair interactions nonreciprocal [32–34]. The MCI is
triggered by a resonant coupling of the in-plane compressional
(acoustic) and out-of-plane (optical) wave modes, due to the
nonreciprocal particle-wake interactions [17,18,20]. The MCI
has a well-defined confinement-density threshold (determined
by a combination of the vertical confinement strength and the
particle number density in the monolayer), above which the
wave modes do not cross and, therefore, the MCI is completely
disabled [21,35].

Even in the most accurate experiments, 2D plasma crystals
never have a perfect crystalline order. One of the main reasons
for that is the presence of a weak horizontal confinement
(presumably exerted due to edge effects in the discharge)
[36–40]. Often, this confinement has azimuthal asymmetry
[41,42], which inevitably creates a weak shear strain in a
crystal. Even though such weak deformations may have only
a minor impact on some generic processes studied with 2D
complex plasmas, for the critical phenomena (in particular,
for the onset of the MCI) the effect can be profound. Recent
experiments [43] indicate that the development of the MCI in
a slightly sheared crystal becomes highly asymmetric.

In this paper, we present a theory of wave modes in shear-
deformed 2D plasma crystals. We study the effects of pure and
simple shear on the dispersion relations and on the onset of
the MCI. In particular, we explain the effect of asymmetric
hot spots seen in experimentally measured velocity fluctuation
spectra of sheared crystals: It is shown that resonant mode
coupling, which leads to the formation of an unstable hybrid
mode and generates the hot spots, is modified in a deformed
crystal. The wave modes participating in the coupling become
deformed in such a way that their crossing first occurs in a
certain direction determined by the applied shear.

II. DYNAMICAL MATRIX FOR A DEFORMED LATTICE

A homogeneous compression of a 2D plasma crystal does
not change the wave modes themselves—it only leads to
a trivial rescaling of the frequency ω and wave vector k,
and it changes the value of the MCI threshold [21,35]. In
typical experiments with 2D plasma crystals [4,8,19,35], the
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FIG. 1. Sheared hexagonal lattice cells (left) and the correspond-
ing reciprocal-lattice cells in k space (right). The upper row (a,b) and
lower row (c,d) show the cases of pure and simple shear, respectively.
Upon pure shear, the crystalline lattice is contracted (by the factor
μ = 0.924) along the x axis (a), so for the reciprocal lattice the
contraction is in the ky direction (b). Upon simple shear, the strain
(of τ = 0.08) is in the y direction (c), so in the reciprocal space the
strain is along the kx axis (d). The basis vectors b1,2 of the reciprocal
lattice are shown; the gray regions within the reciprocal cells are the
first Brillouin zones.

interparticle distance is practically constant in the center of
the monolayer. Therefore, here we shall assume the particle
density (and hence the particle charge) to be constant as well,
and we focus on shear deformations that can be generally
decomposed into the pure and simple shear [44], as shown in
Fig. 1.

We note that the dispersion relation ω(k) of wave modes in
a shear-deformed 2D plasma crystal can be straightforwardly
derived from the dynamical matrix D(k) for a perfect (regular)
hexagonal lattice (see Appendix): The dispersion and coupling
elements of D(k), Eqs. (A2) and (A3), are determined by
the normalized lattice vectors s∗ (measured in units of
the interparticle distance �). These vectors characterize the
equilibrium positions of particles in a regular lattice, so for
our problem they have to be replaced with the vectors s of a
deformed lattice.

In a general case, the shear transformation of the lattice
vectors has the following form:

s = TR s∗, (1)

where R is the rotation matrix in the lattice plane, which
depends on the angle between the applied shear and (one of) the
principal axes of the regular lattice, and T is the deformation
matrix due to the shear. Let us characterize the pure (p) shear
by the contraction (or extension) factor μ, and the simple (s)
shear by the strain τ . The corresponding lattice deformations
are illustrated in Figs. 1(a) and 1(c). In both cases, the shear is
applied along the principal lattice axes, so R is the unity matrix
and the respective deformation matrices have the following

form:

Tp =
(

μ 0

0 μ−1

)
, Ts =

(
1 0

τ 1

)
. (2)

For pure shear, we say the lattice is contracted (extended) when
μ < 1 (>1). Obviously, the contraction μ in one direction is
equivalent to the extension 1/μ in the perpendicular direction;
for simple shear, the effects of positive and negative strains (of
the same magnitude) are equivalent upon the switch θ → −θ .
Note that a combination of pure and simple shear with given
μ and τ is not commutative, since TpTs �= TsTp.

The resulting deformations of the reciprocal lattice in
k space are shown in Figs. 1(b) and 1(d). The reciprocal
deformation matrix is the inverse transpose of T. Therefore, the
basis vectors b1,2 of a deformed reciprocal lattice are related
to the basis b∗

1,2 = 2π�−1( 1√
3
, ± 1) of the regular lattice via

b1,2 = (T−1)T b∗
1,2.

The area of the first Brillouin zone naturally remains
unchanged by shear. Note, however, that the hexagonal zones
in real and reciprocal space are not similar: For instance, while
the x-to-y aspect ratio of the hexagon in real space varies upon
pure shear as ∝ μ2, the respective (ky-to-kx) ratio scaling in
reciprocal space is ∝ μ2 + 1/(3μ2).

III. EXPERIMENTAL EXAMPLE

In the experiment shown in Fig. 3 of Ref. [43], the
deformation was apparently caused by a combination of
the pure and simple shear. In Fig. 2 we present another
experiment, performed under similar discharge conditions (gas
pressure 0.9 Pa, forward rf power 20 W, and microparticle
diameter 9.19 μm). We were able to create the pure shear
deformation with practically no contribution of the simple
shear. Moreover, in this case the crystal was contracted along
the principal lattice direction, corresponding to the x axis in
Fig. 1. The contraction factor was μ = 0.924, as one can
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FIG. 2. (Color online) Example of a sheared 2D plasma crystal
observed in experiments. (a) The hexagonal lattice is subject to
pure shear, resulting in the contraction with μ = 0.924 along one
of the principal lattice axes [as in Fig. 1(a)]. The thin solid lines
drawn along the lattice axes are a guide for the eye. (b) The
velocity fluctuation spectrum integrated over frequency (in the range
18.5 < f < 21.5 Hz) demonstrates the asymmetric mode coupling—
generation of the hot spots in the direction of contraction (instead of
the regular patterns with a period of 60◦). The hot spots emerge
near the border of the first Brillouin zone, obtained from the lattice
structure factor (indicated by the dashed line).
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directly deduce from Fig. 2(a). The corresponding frequency-
integrated fluctuation spectrum, i.e., the intensity distribution
of the velocity fluctuations in the k plane, is plotted in Fig. 2(b).
We see that the “hot spots,” which are a signature of the
unstable hybrid mode [19,21,35], were generated for k parallel
to the direction of contraction. This is a clear manifestation of
the asymmetry introduced by the shear in the wake-induced
mode coupling.

To explain the observed behavior and understand general
principles governing modification of the wave modes upon
shear, let us separately consider the dispersion relations in a
crystal subject to pure and simple shear.

IV. MODIFICATION OF THE WAVE MODES

The dispersion relations ω(k) are obtained in a usual
way from Eq. (A4) using the dynamical matrix for shear-
deformed lattices. For the calculations below, we use the
point-wake interparticle interaction, Eq. (A5). The interactions
are characterized by the screening parameter κ = �/λ, and the
wake parameters are expressed in terms of the dimensionless
wake charge q̃ = q/Q and length δ̃ = δ/�. The wave vector
is normalized by the inverse of the lattice constant �, while
the frequency is in units of the effective dust-lattice (DL)
frequency scale 
DL [17,18], i.e., k� → k and ω/
DL → ω.
We define 
DL as [21,35]


DL =
√

(1 − q̃)Q2

Mλ3
.

Since the particle charge Q is expected to depend primarily on
the mean density in the monolayer (e.g., Ref. [15]), here we
assume that Q is not affected by shear deformation.

To illustrate the theoretical results, we chose the fol-
lowing dimensionless parameters: κ = 1, q̃ = 0.4, and δ̃ =
0.37, representing typical MCI experiments [21,45]. Different
regimes of the mode coupling are demonstrated by varying
the (normalized) confinement frequency, i.e., the value of
ω(0) = 
conf for the optical out-of-plane mode. For simplicity,
we show the undamped dispersion relations [35].

A. Pure shear

Figure 3 illustrates how the wave modes in a hexagonal
lattice are modified by the pure shear. The upper panel
shows how the theoretical dispersion relations change upon
the contraction by the factor μ = 0.924, corresponding to
the experiment in Fig. 2. As expected, the strongest effect
is on the in-plane shear (transverse) mode, whose frequency
is substantially increased for the waves propagating along the
two principal lattice axes. Another important effect is on the
relative shift of the in-plane compressional (longitudinal) and
the out-of-plane branches: We see that in the direction of
contraction (θ = 0◦), the branches slightly approach each other
near the border of the first Brillouin zone (primarily, due to
decrease of the out-of-plane wave frequency), whereas in the
perpendicular direction (θ = 90◦) the branches become more
separated (due to a substantial decrease of the compressional
wave frequency). The effect of extension by the factor μ =
1/0.924 = 1.08, shown in the lower panel, is also intuitive—it
is basically opposite to that of the contraction.

FIG. 3. Modification of the wave modes in a hexagonal lattice
under pure shear. The upper row (a,b) is for the contraction with μ =
0.924 (corresponding to the experiment in Fig. 2), while the lower row
(c,d) demonstrates the effect of extension with μ = 1/0.924 = 1.08.
The solid lines show the dispersion relations in the sheared crystal, and
the dashed lines are for the regular (unsheared) hexagonal lattice. The
upper and lower acoustic branches are the in-plane compressional and
shear modes, respectively, and the optical branch is the out-of-plane
mode. The left and right panels depict the dispersion relations for
θ = 0◦ and 90◦, respectively [see Fig. 1(a)].

The influence of pure shear on the wake-induced mode
coupling is presented in Fig. 4. Here, the confinement
frequency is set slightly lower than in the previous figure, so
the in-plane compressional and the out-of-plane modes may
intersect near the border of the first Brillouin zone, and thus the
asymmetry introduced in the mode coupling can be revealed.

FIG. 4. (Color online) Onset of the asymmetric wake-induced
mode coupling under pure shear (μ = 0.924). (a) The dispersion
relations for θ = 0◦ (solid lines) and θ = 60◦ (dashed lines) are
different due to the shear-induced asymmetry. Therefore, the in-
plane compressional (acoustic) and out-of-plane (optical) modes first
intersect in the direction of contraction, forming an unstable hybrid
mode with a nonzero imaginary part [the dotted line shows the growth
rate Imω(k) multiplied by 10]. (b) The contour plot of the growth rate
for the hybrid mode, emerging near the border of the first Brillouin
zone (indicated by the dashed line) and representing the hot spots
observed in the experiment [Fig. 2(b)].
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In a regular hexagonal lattice, the branches for θ = 0◦ and
60◦ are identical, but in a sheared lattice this symmetry is
broken and the modes approach closer to each other in the
direction of contraction. Therefore, in Fig. 4(a) we observe the
unstable hybrid mode formed for θ = 0◦, while for θ = 60◦
the branches are still separated. The contour plot of the MCI
growth rate Imω(k), shown in Fig. 4(b), provides an excellent
representation of the hot spots seen in experimental fluctuation
spectra [Fig. 2(b)].

The applied shear does not introduce any qualitative
changes in a coupling between the in-plane shear and the
out-of-plane modes: From the general dispersion relation,
Eqs. (A1) and (A4), we derive the condition of exact
decoupling of the shear mode,

βσxσy + γ
(
σ 2

x − σ 2
y

) = 0. (3)

Analysis of Eq. (3) shows that for a regular hexagonal lattice,
it is satisfied identically along the principal axes: Due to the
lattice symmetry, the dispersion element γ and one of coupling
elements, σx or σy , are equal to zero for θ = n × 30◦ (where
n is an integer). Upon pure shear, the lattice symmetry is
still preserved along the directions θ = 0◦ and 90◦, where
the modified shear mode remains decoupled; for intermediate
directions, the resulting hybrid mode is only slightly affected
by such deformation.

Finally, we discuss the anisotropy of the wave modes,
which is introduced by the pure shear. For a regular hexagonal
lattice, the long-wavelength dispersion relations of all three
modes are known to be independent on the direction of k
[44]; they have the form ω2

o(k)|k→0 = 
2
conf − C2

ok
2 for the

out-of-plane mode and ω2
s,c(k)|k→0 = C2

s,ck
2 for the in-plane

modes (where C2
s,c are the squared acoustic velocities of the

shear and compressional waves) [46–49]. In a deformed lattice,
the factors C2 (below we term them “squared velocities” for
all three modes) naturally become periodic functions of θ with
a period of 180◦, as shown in Figs. 5(a)–5(c). Due to the shear
symmetry, these are even functions whose extrema are attained
when k is parallel to one of the principal axes. As expected, the
lattice contraction (μ) and extension (1/μ) lead to the opposite
effects, but the resulting magnitudes are noticeably different.
To quantify the amplitude of the anisotropy, in Fig. 5(d) we plot
the parameter �C2 versus the shear factor μ, defined for each
mode as the difference C2(μ) − C2(1) measured at θ = 0◦. We
see that even for very small deformations, the anisotropy of the
squared velocities (in particular, of C2

c ) exhibits a significant
nonlinear (quadratic) dependence on μ.

B. Simple shear

All qualitative effects occurring with the wave modes upon
pure shear and discussed in the previous section are also
observed when simple shear is applied. The only difference
is that now the extrema of the squared velocities are located at
certain intermediate angles, �=0◦ or 90◦, determined (for each
mode) by the magnitude of strain τ . Since the x and y axes are
no longer the axes of symmetry, the shear mode is coupled to
the out-of-plane mode also in these directions.

Figure 6 illustrates the coupling between the in-plane shear
and the out-of-plane modes along the x and y axes. The con-
finement frequency is further lowered (as compared to Fig. 4)

FIG. 5. Anisotropy of the long-wavelength wave modes upon the
pure shear. Shown are the squared velocities C2, determining the
dispersion relations of the acoustic shear (a) and compressional (b)
wave modes as well as of the optical out-of-plane mode (c) in the limit
k → 0, plotted vs the angle θ . The solid and dashed lines illustrate
the contraction (μ = 0.924) and extension (μ = 1/0.924 = 1.08),
respectively, and the thin horizontal lines are for a regular lattice (μ =
1). The lower panel (d) presents the dependence of the anisotropy
amplitude �C2 on μ.

to allow the mode crossing and demonstrate that the “shear”
hybrid mode (in addition to the usual—“compressional”—
hybrid mode) is also formed in these directions. Apart from
this, the dispersion relations for the simple shear exhibit
exactly the same qualitative features as those presented for
the pure shear in Figs. 3 and 4.

In Figs. 7(a)–7(c) we present the squared velocities of the
three modes as functions of θ . For symmetry reasons, C2(θ ) for
a positive strain is equal to C2(180◦ − θ ) for a negative strain
of the same magnitude. The dependence of the anisotropy
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FIG. 6. Wake-induced coupling of the in-plane shear mode,
modified by simple shear with the strain τ = 0.08. The branches
for θ = 0◦ (a) and θ = 90◦ (b) are plotted; the solid lines show the
dispersion relations in the sheared crystal, and the dashed lines are
for the regular (unsheared) lattice. The out-of-plane (optical) mode
crosses both the compressional (upper acoustic) and shear (lower
acoustic) modes, and the dotted lines show the imaginary part of the
resulting hybrid modes, Imω(k), multiplied by 10.

FIG. 7. Same as in Fig. 5, plotted for the simple shear vs the
strain τ . The solid and dashed lines in (a)–(c) illustrate the positive
(τ = 0.08) and negative (τ = −0.08) strain, respectively.

amplitude �C2 on the strain τ is plotted in Fig. 7(d); for
simple shear, we define �C2 as the difference C2(τ ) − C2(1)
measured at the first extremum. Unlike the pure shear case,
now the anisotropy scales linearly with τ for deformations of
up to ∼10% (a weak quadratic correction is observed for C2

c ).

V. CONCLUSIONS

We presented the basic characterization of the wave modes
in shear-deformed 2D plasma crystals. The dynamical matrix
for a crystal under pure or simple shear can be directly obtained
from the matrix for a regular hexagonal lattice by performing
a shear transformation of the lattice vectors.

We showed that, both for simple and pure shear, the wave
modes exhibit qualitatively similar features: The dispersion
relations become asymmetric, i.e., the dependence ω(k) has
a period of 180◦ (instead of the 60◦ periodicity for the
regular lattice). Most notably, this asymmetry is revealed in the
asymmetric mode coupling, when the in-plane compressional
and the out-of-plane modes form an unstable hybrid mode in
a certain direction determined by deformation (e.g., along the
contraction upon the pure shear). This finding explains the
generation of asymmetric hot spots observed in experimental
fluctuation spectra for sheared crystals.

We expect that detailed verification of our theoretical
findings related to the critical modification of the wave modes
upon the shear (such as the mode-coupling asymmetry) can
be carried out in dedicated experiments with deformed plasma
crystals.
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APPENDIX: GENERAL FORM OF THE
DYNAMICAL MATRIX

Linear dispersion relations ω(k) of wave modes in a
crystal are determined by eigenvalues of a dynamical matrix
D(k). The latter is derived by considering small perturbations
of individual particles (with respect to a stable crystalline
configuration) of the form ∝ e−iωt+ik·r. Elements of D(k) are
given by the lattice sums determined by the particle potential
φ(r). If the interactions are reciprocal, then D is Hermitian,
the eigenvalues in this case are real (i.e., the modes are
stable), and the eigenvectors are orthogonal. For nonreciprocal
interactions, i.e., when ∂φ(rij )/∂ri �= −∂φ(rij )/∂rj for a pair
of particles i and j , the eigenvalues can be complex (so the
modes become unstable) [18,21,35].

For nonreciprocal interparticle interactions in 2D plasma
crystals, the dynamical matrix has the following form
[18,21,35]:

D =

⎛
⎜⎝

αh − β 2γ iσx

2γ αh + β iσy

iσx iσy 
2
conf − 2αv

⎞
⎟⎠. (A1)

The matrix is calculated for the reference frame shown in
Fig. 1, assuming that the particles are confined to the plane
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z = 0 in a parabolic potential well with the eigenfrequency

conf . The dispersion elements αh,v(k), β(k), and γ (k) are
given by the sums over integer m and n with excluded (0,0),

αh,β = Q

M

∑
m,n

(
∂2φ

∂y2
± ∂2φ

∂x2

)∣∣∣∣
r=s

sin2 1

2
k · s,

γ = Q

M

∑
m,n

∂2φ

∂x∂y

∣∣∣∣
r=s

sin2 1

2
k · s, (A2)

αv = − Q

M

∑
m,n

∂2φ

∂z2

∣∣∣∣
r=s

sin2 1

2
k · s,

and the coupling elements σx,y(k) are

σx,y = − Q

M

∑
m,n

∂2φ

∂{x,y}∂z

∣∣∣∣
r=s

sin k · s, (A3)

where Q and M are the particle charge and mass, respectively.
The normalized 2D lattice vectors s(m,n) (measured in units of
the interparticle distance �) identify the equilibrium positions
of neighboring particles in a crystal. In a regular hexagonal lat-
tice, s = s∗ with the components s∗

x =
√

3
2 m and s∗

y = 1
2m + n.

The dispersion relations ω(k) are obtained from the follow-
ing equation:

det[D − ω(ω + iν)I] = 0, (A4)

where I is the unit matrix and ν is the damping rate entering the
particle equation of motion. Thus, ω(ω + iν) is the eigenvalue
of the dynamical matrix.

Theoretical investigations of the MCI are often based on
a simple “Yukawa/point-wake model” [17,18,35], where the
wake is considered as a (positive) pointlike effective charge
q located at the distance δ below each (negatively charged)
particle. Thus, the total interaction between two particles is a
simple superposition of the particle-particle and particle-wake
interactions, both described by the (spherically symmetric)
Yukawa potentials with the effective screening length λ,

φ(r) = −Q

r
e−r/λ + q

rδ

e−rδ/λ, (A5)

where r = |r| and rδ = |r + δnz|. The elements of the dy-
namical matrix for such interactions have been calculated for
“weak” [18,35] and “strong” [21,50] wakes, determined by
the relative magnitude of the wake dipole qδ. Recently, it was
shown that more sophisticated kinetic models can provide a
better description of the dispersion relations, in particular for
the out-of-plane mode [45,51].
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