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Ionization rate coefficients in warm dense plasmas
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We recast the atomic processes in a warm, dense plasma using Fermi-Dirac statistics and compare them to the
rates of the usual Maxwell-Boltzmann approach of many collisional-radiative models. Population calculations
show insignificant differences to calculations assuming nondegenerate free electrons of plasmas at solid density
close to local thermodynamic equilibrium, but show departures in average ionization in the presence of strong
photoionization. For example, we show that electron degeneracy affects the evolution of plasmas created by
ultraviolet free electron laser interaction with solid targets.
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I. INTRODUCTION

Calculations of the degree of ionization of high density,
low temperature plasmas are important in inertial fusion [1],
free electron laser ablation of solids [2], and the modeling of
energy flow in astrophysical bodies such as brown dwarf stars
[3]. Inertial fusion seeks to isentropically compress deuterium
and tritium fuel to achieve fusion using a shell ablator so
that plasma material is both dense (� solid density) and at a
relatively low temperature (<1 keV). Ionization calculations
have been undertaken for short wavelength (<50 nm) free
electron laser interactions with solid targets where solid
density (>1 g cm−3) plasmas with “warm” to hot temperatures
(kBT <1 eV–1 keV) have been demonstrated [4,5]. Calcu-
lations of plasma ionization in such dense plasmas can be
significantly simplified if ionization and excitation processes
are balanced by recombination and deexcitation with equilib-
rium populations given, for example, by the Saha equation (for
ionization) and Boltzmann ratios (for excited ion populations).
The Saha equation can allow for effects such as free electron
degeneracy and ionization potential depression important in
warm dense plasmas [6,7], but is not valid when a process
such as photoionization is not balanced by a recombination
process. With unbalanced populating processes, it is necessary
to undertake collisional-radiative calculations where all the
significant populating and de-populating processes affecting
ionic population densities are evaluated.

Collisional-radiative models of plasma ionization [8–11]
usually employ collisional excitation, ionization and pho-
toionization rates calculated assuming a Maxwell-Boltzmann
distribution of free electrons. Collisional rates average cross
sections over a Maxwell-Boltzmann distribution of electron
energies, while collisional ionization and photoionization rates
are calculated assuming that ionized electrons can occupy
any free electron state. Such approaches are approximate and
valid only at low electron density and high temperature as
they neglect degeneracy effects due to the Pauli exclusion
principle which states that a maximum of one electron can
occupy a quantum state [12]. A plasma ionization calculation
where the degeneracy of free electrons is considered has shown
significant degeneracy effects can be expected for experiments
using extreme ultraviolet free electron laser irradiation of solid
aluminum targets [13,14].

In this article, we consider the effects of free electron de-
generacy on the rates of photoionization, collisional excitation,
ionization, and three-body recombination in high density, low
temperature plasmas. We show that it is necessary to allow
for electron degeneracy effects to stop divergent (infinitely
large) calculated rates for collisional-radiative processes as
electron temperatures drop towards zero. Our work shows how
collisional rates (e.g., for carbon [15,16]) can be extended, in
principle, to high density, low temperature ionization balance
calculations. In particular, we deduce a novel accurate method
to allow for three-body effects in degenerate plasmas during
collisional ionization and three-body recombination. Signif-
icantly, we confirm that electron degeneracy can affect the
evolution of plasmas as they are heated, particularly in extreme
ultraviolet free electron laser interactions with solid targets.

II. DEGENERATE RATE COEFFICIENTS

The free electrons in a degenerate plasma may be modeled
as a Fermi gas, interacting with the spatially confined bound
electrons through collisional processes only. The Fermi distri-
bution [17] for the occupation probability of a quantum state
is given by

F (ε,Te) = 1

1 + exp
(

ε−μ

kBTe

) , (1)

where μ is the chemical potential. This distribution is most
familiar in its asymptotic form for Te = 0, where it becomes
a step function of energy. Multiplying by the density of states
leads to the energy distribution

fFD(ε,Te) = G

ne

√
εF (ε,Te), (2)

where ne is the electron density and G = 4π (2me/h2)3/2,
where the constants have their usual meanings. The chemical
potential is calculated for a Fermi gas as a normalization factor
through the relation

∫ ∞
0 fFD(ε,Te)dε = 1. At Te = 0, the

chemical potential takes the value of the Fermi energy μ(0) =
EF = (3ne/2G)2/3; beyond this, μ decreases monotonically
with Te. We calculate that μ remains positive and hence
the plasma is degenerate when the electron density is high
(ne � 1022 cm−3) and temperature is low (kBTe < 20 eV).
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For μ/kBTe � −1, Eq. (2) reduces to the usual Maxwell-
Boltzmann distribution.

Using the Fermi-Dirac distribution requires that we take
account of the probability that the electrons involved in
photoionization and in collisions can occupy a free electron
state after the collision, via so-called blocking factors given by

F̃ (ε,Te) = 1 − F (ε,Te). (3)

We show that the additional computation in assuming a Fermi-
Dirac distribution is needed for high density, low temperature
ionization rate calculations.

The photoionization coefficient is normally independent
of plasma conditions, with the exception of modifications
of the ionization potential. However, Pauli blocking factors,
dependent on both free electron density and temperature,
can lower the rate of photoionization [18]: for a photon
energy Eγ and ionization potential Ei , photoionized electrons
must emerge with an energy of Eγ − Ei into an unoccupied
quantum state. We model the energy distribution of the photons
in a laser beam by a delta function, leading to a departure
from the photoionization cross section σ

γ

0 due to electron
degeneracy compared to an atom in free space, given by
σ

γ

FD = σ
γ

0 F̃ (Eγ − Ei,Te), where F̃ are blocking factors. The
change in cross section is plotted as a function of temperature
for differing photon energies in Fig. 1(a). Likewise, the
integrals used to calculate the rates of free-free absorption and
emission are modified by a similar factor; after carrying out the
integrals, there is no longer a simple relation between inverse
rates, unlike in the Maxwell-Boltzmann case where their ratio
is given by the black-body spectrum through detailed balance.
We have for the free-free absorption coefficient in units of
cm−1

κ free-free
FD = 1.462 × 10−15

Z∑
i=1

Nii
2

E3
γ

exp(E′
γ )

×
[
kBTe ln

(
exp(E′

γ − μ′) + 1

exp(2E′
γ − μ′) + 1

)
+ Eγ

]
,

(4)

where EF is the Fermi energy, energies are measured in eV,
and the primed quantities denote division by kBTe. Degeneracy
effects may lead to an increase in the free-free absorption
coefficient compared with the usual Maxwell-Boltzmann
expression, if the absorbed photon energy is large compared
with the chemical potential, and hence the absorbing electron
may freely transition to a higher energy state.

In order to calculate the collisional rates for atomic
processes involving one or more of both incoming and
outgoing electrons, we use the standard approach [19,20] of
integrating over the incoming and outgoing particle energies
(here ε0 and ε1) and appropriate quantum-mechanical cross
sections; microreversibility relations can be used to obtain
the cross section of an inverse process. The definite integrals
in these definitions of collisional rates are not analytic in
the case of the Fermi-Dirac electron distribution, unlike the
Maxwell-Boltzmann.

A Fermi-Dirac rate for collisional excitation in units of s−1,
with cross section denoted by �↑, can be calculated through

the formula

J
↑
FD(Ej ,Te,μ) = NiG

√
2

me

∫ ∞

Ej

�(ε0/Ej )

×F (ε0,Te)F̃ (ε0 − Ej ,Te)dε0, (5)

with Ej the excitation energy, G defined for Eq. (2), � the
collision strength of the particular transition, and Ni the density
of ions in units of cm−3. The collision strength is typically of
the form

�

(
ε0

Ej

)
= B0 ln

(
ε0

Ej

)
+

∑
k=1

Bk

(
ε0

Ej

)−(k−1)

, (6)

where Bk are constants [16]. The microreversibility rela-
tion[19] for the collisional deexcitation and excitation cross
sections, respectively, are

�↓(ε0) = g

g∗
ε0 + Ej

ε0
�↑(ε0 + Ej ), (7)

with g/g∗ the ratio of degeneracies. Substituting this into
the integral for the rate of collisional deexcitation, we see
that the rate can be calculated by repeating the process for
excitation while effectively shifting the chemical potential
by the excitation energy and multiplying by the ratio of
degeneracies to give

J
↓
FD(Ej ,Te,μ) = g

g∗ J
↑
FD(Ej ,Te,μ + Ej ). (8)

A full calculation of the rate of collisional ionization using
Fermi-Dirac statistics requires knowledge of the differential
cross section dσ/dε1—in effect the energy distribution of the
outgoing electrons after an inelastic collision. We have for the
collisional ionization rate in units of s−1

K
↑
FD = NiG

√
2

me

∫ ∞

Ei

∫ ε0−Ei

0
ε0

dσ ↑

dε1
F (ε0,Te)

×F̃ (ε1,Te)F̃ (ε0 − ε1 − Ei,Te)dε0dε1. (9)

The microreversibility relation [19] for the three-body
recombination and differential collisional ionization cross
sections, respectively, are

σ↓(ε1,ε2) = g

g∗

√
me

2

1

G

ε0

ε1ε2

dσ↑(ε0)

dε1
. (10)

Substituting this and the energy conservation condition
ε0 = ε1 + ε2 + Ei into the integral for three-body recombi-
nation, we obtain

K
↓
FD = Ni

g

g∗ G

√
2

me

∫ ∞

Ei

∫ ε0−Ei

0
ε0

dσ ↑

dε1
F (ε1,Te)

×F (ε0 − ε1 − Ei,Te)F̃ (ε0,Te)dε0dε1. (11)

The usual Maxwell-Boltzmann expressions emerge from
Eqs. (5)–(11) if the energy distribution is set to F (ε,Te) =
ne[2/G

√
π (kBTe)3/2] exp (−ε/kBTe) and F̃ = 1. To calculate

the rates of collisional ionization and three-body recombina-
tion, we have used a version of the Mott differential cross
section [21,22], modified to be consistent with established
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FIG. 1. (Color online) (a) Ratio of the photoionization cross section of atoms in a dense plasma with Pauli blocking factors from the value
of a free atom. Here 	E = Eγ − Ei and electron densities are as indicated. (b) Comparison of the three-body recombination rate of singly
ionized carbon, with electron densities as indicated, of Maxwell-Boltzmann (dashed line) to Fermi-Dirac (solid line) statistics.

collisional ionization cross sections of the form

σ ↑ = 1

Eiε0

[
C0 ln

(
ε0

Ei

)
+

∑
k=1

Ck

(
ε0 − Ei

ε0

)k
]
, (12)

where C are constants [16]. Keeping only the first term results
in the usual Lotz formula [23]. Taking the same functional form
as the Mott cross section and requiring that

∫ ε0−Ei

0
dσ↑
dε1

dε1 =
σ ↑, we propose for a reduced differential cross section, in units
of cm2 eV−1 with energies in eV,

dσ ↑

dε1
= 1

2Eiε0

[
C0Ei

(ε0 − ε1 − Ei + a)(ε0 − ε1 − Ei + b)

+ C0Ei

(ε1 + a)(ε1 + b)
+

∑
k=1

kCk

εk−1
1 + (ε0−ε1 − Ei)k−1

εk
0

]
,

(13)

where the quantities

a = 1

2

(√
ε2

0 + 4E2
i − ε0

)
,

b = a + Ei.

The functional form of this differential cross section, consistent
with the accurately verified total cross section, has been
compared to Mott’s in Fig. 2. The main feature of this
differential cross section, where one electron is likely to
emerge from the collision with the majority of the kinetic
energy, is maintained. Assuming the differential cross section
to be independent of outgoing electron energy[8] may lead to
a significant error in the calculation of the rates.

We have compared the rates in Eq. (11), using cross section
data from [16], to the rate from Maxwell-Boltzmann statistics
in Fig. 1(b); they deviate at low temperatures as expected.
In particular, the Fermi-Dirac rate does not diverge as the
Maxwell-Boltzmann rate, but tends to a finite value at zero
temperature despite a divergent recombination cross section,
due to the limited occupation at low energies. The Fermi-Dirac
rate is no longer linearly dependent on the free electron density
for a given temperature.

III. EFFECTS ON MACROSCOPIC PROPERTIES

We have compared the steady state ionization fraction of
carbon calculated using the Fermi-Dirac to the Maxwell-
Boltzmann rates calculated as discussed above, assuming
ionization potential depression using the Stewart-Pyatt for-
mula [24] (itself derived using Fermi-Dirac statistics) in

10-4

10-3

10-2

10-1

100

101

 0  0.2  0.4  0.6  0.8  1

[a
rb

. u
ni

ts
]

x

(a) Mott
Modified Mott

10-3

10-2

10-1

100

101

 0  0.2  0.4  0.6  0.8  1

[a
rb

. u
ni

ts
]

x

(b) Mott
Modified Mott

FIG. 2. (Color online) Comparison of the differential collisional
ionization cross section due to Mott (dashed) to the modified Mott
used in this work (solid) plotted as a function of the fraction of its
domain x = ε1/(ε0 − Ei) for the first ionization stage of carbon and
(a) ε0 = 50, (b) ε0 = 100.
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FIG. 3. (Color online) Comparison of the steady state ionization
fraction of a carbon plasma (density of 2.23 g cm−3, corresponding to
graphite) for Fermi-Dirac (solid) and Maxwell-Boltzmann (dashed)
statistics, irradiated by 50 eV photons at intensities indicated.

Fig. 3 for various incident laser intensities with Eγ = 50 eV.
The ionization fractions calculated in the Fermi-Dirac case
are nearly identical to that from Maxwell-Boltzmann in the
absence of radiation. However, we see a significant difference
in the two corresponding ionization fractions in the presence
of photoionizing radiation; the steady state ionization fraction
does not vanish as Te → 0, because the Fermi-Dirac three-
body recombination rate remains finite.

In practice a constant temperature cannot be maintained in
the presence of such high intensities, as given in Fig. 3, due to a
rise in thermal energy from free-free absorption. Nonetheless,
if the plasma temperature is raised by a flux of photons of
these energies and intensities to the range in Fig. 3, steady
state calculations can provide a reasonable approximation to
the transient plasma conditions during the heating. Even if
a laser pulse is expected to heat a plasma far beyond the
temperature range where degeneracy effects are important,
the initial deviation from Maxwell-Boltzmann statistics may
affect subsequent evolution.

We have performed a dynamic simulation, using a previ-
ously developed collisional-radiative code [11], of a carbon
plasma irradiated by 14 eV photons with the electron tem-
perature and density, resulting from a calculation of appro-
priate heat capacities and assuming free electrons instantly
equilibrate to Fermi-Dirac or Maxwell-Boltzmann statistics
as indicated, plotted in Fig. 4. The simulation begins with
the absence of free electrons, leading the first electrons to
be emitted with energies of Eγ − E1, where E1 is the first
ionization energy. As a result, the temperature is initially
high and begins to drop as further electrons are collisionally
ionized. The early temperatures differ due to the differences in
heat capacity between the two models, which converge as the
temperature rises; the difference in final temperature is due
to different overall absorption coefficients. The discrepancy
in temperature between the two models is lower in the case
of covalently bonded carbon, modeled initially as neutral,
compared to studies of metallically bonded aluminum [13,14],
which begins with an established large density of valence
electrons. We have neglected any heating of the ions, as the

 0

 2

 4

 6

 0  0.5  1  1.5  2  2.5
 0

 0.1

 0.2

 0.3

T
e 

(e
V

)

Io
ni

za
tio

n 
F

ra
ct

io
n 

Z
*

Time (fs)

Z*

Te

FIG. 4. (Color online) Evolution of the electron temperature and
ionization fraction of carbon (density of 3.53 g cm−3, corresponding
to diamond) irradiated by a laser beam with photon energies of
14 eV and Gaussian intensity as shown shaded with a full-width half
maximum of 1 fs and peak intensity of 1014 W cm−2 with Maxwell-
Boltzmann (dashed line) and Fermi-Dirac (solid line) statistics as
indicated.

time scale for this is significantly longer than the present
simulation.

IV. CONCLUSION

We have introduced formulas for collisional-radiative rates
consistent with Fermi-Dirac statistics, which form a low
temperature correction to the rates usually calculated with
a Maxwell-Boltzmann distribution. We have suggested a
differential collisional ionization cross section, required to
calculate ionization rates when the Pauli exclusion principle
has a significant effect on free electrons in a plasma. We have
calculated the ionization fraction of a degenerate plasma and
hence shown that degeneracy effects are important for ion
densities close to solid only with unbalanced processes such as
external ionizing radiation, but small otherwise. The chemical
potential of electrons rises with their density, and hence
degeneracy effects are more important for dense, compressed
plasmas.

This work has a relevance to plasmas produced by lasers
with photon energies just above an ionization potential,
which maximizes their photoionization cross section, with
high electron densities and low temperatures. It also has
implications for capsule compression in inertial fusion, where
carbon ablator material may mix with fuel during compression
[25]; the resulting difference in radiation absorption coefficient
between the Fermi-Dirac and Maxwell-Boltzmann models
may be significant.
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