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Ergodicity and spectral cascades in point vortex flows on the sphere

David G. Dritschel,1 Marcello Lucia,2 and Andrew C. Poje2

1Mathematical Institute, University of St Andrews, St Andrews KY16 9SS, United Kingdom
2Graduate Faculty in Physics & Department of Mathematics, City University of New York–CSI, Staten Island, New York 10314, USA

(Received 9 July 2014; revised manuscript received 4 May 2015; published 29 June 2015)

We present results for the equilibrium statistics and dynamic evolution of moderately large [n = O(102−103)]
numbers of interacting point vortices on the sphere under the constraint of zero mean angular momentum. For
systems with equal numbers of positive and negative identical circulations, the density of rescaled energies,
p(E), converges rapidly with n to a function with a single maximum with maximum entropy. Ensemble-averaged
wave-number spectra of the nonsingular velocity field induced by the vortices exhibit the expected k−1 behavior
at small scales for all energies. Spectra at the largest scales vary continuously with the inverse temperature of the
system. For positive temperatures, spectra peak at finite intermediate wave numbers; for negative temperatures,
spectra decrease everywhere. Comparisons of time and ensemble averages, over a large range of energies,
strongly support ergodicity in the dynamics even for highly atypical initial vortex configurations. Crucially, rapid
relaxation of spectra toward the microcanonical average implies that the direction of any spectral cascade process
depends only on the relative difference between the initial spectrum and the ensemble mean spectrum at that
energy, not on the energy, or temperature, of the system.
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I. INTRODUCTION

The point vortex model, originally developed by Kir-
choff [1] as a limiting form of Euler’s equations in two dimen-
sions, continues to provide a conceptual and computational
tool for understanding inviscid, nonlinear vortex dynamics
in both traditional and superfluid turbulence [2–4]. The
multibody Hamiltonian describing the dynamics of idealized
point vortices serves as a paradigm for developing kinetic
theories in systems dominated by long-range interactions [5,6].

The statistical mechanics of point vortex systems was first
addressed in the seminal work of Onsager [7], who observed
that in a finite domain, the Hamiltonian structure of a system
of sufficiently large numbers of positive and negative vortices
implies the existence of “negative temperature” equilibrium
states that naturally exhibit clustering of like-signed vor-
tices [8]. Onsager’s statistical approach has inspired a wealth
of subsequent work on vortex-based, mean-field turbulence
closures [9], and the existence of negative temperature states
has been interpreted (see, e.g., [3,4,10,11]) as an energy-
conserving analog of self-organization via “vortex merger”
commonly observed in two-dimensional turbulence [12,13].
To date, however, direct connections between Onsager’s
equilibrium prediction for the inviscid point vortex system
and the up-scaling, inverse-energy cascade in two-dimensional
Navier-Stokes turbulence have proved elusive.

Underpinning the equilibrium statistical mechanics ap-
proach are the assumptions that the system is both energy-
isolated (inviscid) and ergodic, i.e., that as t → ∞, the system
samples all possible configurations on a fixed energy surface.
While the inviscid assumption is clearly violated by Navier-
Stokes vortices, two-dimensional turbulence cascades energy
to the largest scales where viscous effects are less pronounced.
In addition, as long as the relaxation to equilibrium of the
inviscid system takes place on time scales much shorter than
those imposed by viscosity, the equilibrium statistics of the
inviscid model should approximate those of the full system

on these time scales [14]. Ergodicity of point vortex systems
remains an open issue. The assumption was questioned by
Onsager [7], and it has been questioned repeatedly since
then [15,16].

In the present work, we directly examine both ergodicity
and the connection between equilibrium statistical properties
and dynamic kinetic energy cascades for two-dimensional
point vortex systems on the unit sphere [17]. The sphere
has the distinct advantage of providing a bounded domain
without the complications of imposing explicit boundary
conditions via image particles (infinitely many for doubly
periodic domains). Despite its apparent attraction, there has
been relatively little work addressing the statistical mechanics
of point vortices on the sphere. Recently, for spherical systems
with skewed distributions of vortex strengths, Kiessling and
Wang [18] proved convergence to continuous solutions of
Euler’s equations. The scaling limits considered, however,
assume the existence of large-scale mean flows and thus have
singular structure in the zero mean, zero angular momentum
limit.

In closer analogy with turbulence studies, we study
fluctuations in zero angular momentum states of binary
populations of vortices with zero mean circulation (see, for
example, [10,11,15]). We find that the kinetic energy spectrum
of flows induced by such systems scales as k−1, for sufficiently
large degree (or wave number) k, independent of the system
energy. As Onsager conjectured, increasing the energy of
the system necessarily increases the kinetic energy content
at the largest allowable scales. However, comparisons of
microcanonical and time-averaged two-point statistics show
clear evidence of ergodicity in the vortex dynamics, implying
that the direction of any dynamic spectral evolution depends
solely on the shape of the initial spectrum relative to the
ensemble mean. Therefore, for the spherical system, there is
no a priori association between negative temperature states
and the inverse energy cascade.
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II. EQUILIBRIUM STATISTICS

Point vortices on a unit sphere evolve according to Hamil-
ton’s equations, with conserved Hamiltonian

H = −
n∑

i=1

∑
j �=i

κiκj ln[(1 − ri · rj )/2]. (1)

Here κi is the “strength” (circulation/4π ) of vortex i, and ri

is its position (|ri | = 1). The evolution equations are

dri

dt
= 2

∑
j �=i

κj

rj × ri

1 − ri · rj

. (2)

In addition to H , the vector angular impulse, I = ∑n
i=1 κiri ,

is also conserved, although only the angular momentum, |I|,
affects the statistical properties.

We consider systems with κi = ±1, and zero net circula-
tion. The pairwise interaction energies are

qij = ± ln[(1 − ri · rj )/2]. (3)

For randomly placed vortices, the argument of the logarithm
is uniformly distributed over (0,1). Thus, qij is exponentially
distributed over (0,∞), where 〈qij 〉 = 1, and over (−∞,0),
where 〈qij 〉 = −1. In particular,

〈H 〉 =
n∑

i=1

∑
j �=i

〈qij 〉 = 2

[
n

2

(
n

2
− 1

)
−

(
n

2

)2]
= −n.

For any distribution of vortex strengths with identical numbers
of opposite-signed circulations, similar cancellations occur
and 〈H 〉 = O(n) [10,11,19] rather than 〈H 〉 = O(n2) [18].
Given exponential q statistics, the standard deviation of H is
also O(n). In this case, the joint density of states, WH (Ẽ,J̃ ),
which is equal to∫

S2n

δ(Ẽ − H (r1, . . . ,rn)) δ(J̃ − |I(r1, . . . ,rn)|)dr1 . . . drn,

has a limiting function p(E,J ) = limn→∞ nWH/n(Ẽ,J̃ ) for
the specific energy E = Ẽ/n and rescaled angular momentum
J = J̃ /

√
n.

The rescaled density has been computed numerically by
sampling 109 uniformly distributed placements of n = 200
vortices. In this case, 〈E〉 = −1.0000, as expected, with 〈J 〉 =
0.9215. The observed distribution is asymmetric with a single
maximum at (E,J ) = (−1.684,0.824), significantly different
from the mean.

Direct extraction of p(E) := p(E,J = 0) from the joint
density is computationally expensive; estimates can be ob-
tained more efficiently by adjusting random states toward
J = 0. From a single realization of n randomly generated
vortex positions, we compute I and then displace each vortex
by −κiI/n. This sets J = 0, but the vortices no longer reside
on the spherical surface. Rescaling each ri by |ri | produces
a new I, and the process is iterated until convergence. For
n = 200, p(E) computed this way was found to be identical
within sampling errors to p(E,J < 0.2) estimated from the
joint density.

For fixed n, p(E) was estimated by binning 107 sam-
ples of n uniformly distributed vortex positions iterated to
J < 10−14. The resulting density and inverse temperature,
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FIG. 1. (a) Distribution function p(E) computed from 107 sam-
ples for different numbers of vortices n. Vertical lines correspond
to the nine energy levels for n = 200 considered in the text.
(b) Corresponding inverse temperatures β(E).

β = d ln p(E)/dE, are shown for varying n in Fig. 1. While
nearly symmetric for small n, the scaled density converges
rapidly to a skewed distribution as n increases. The scaled
inverse temperature asymptotes to a fixed negative value at
large positive energies [11,19,20]. There is little difference in
either the density of states or the temperature when n increases
beyond 200.

III. KINETIC ENERGY SPECTRA

Much has been intimated about Onsager’s statistical theory
of self-organization and the widely observed scale cascade
of kinetic energy in direct simulations of two-dimensional
turbulence [8,10,11]. The scale cascade results in the accu-
mulation of energy at the domain scale, i.e., a global-scale
flow [21].

To compare the dynamic evolution of point vortices to mi-
crocanonical ensemble predictions, we consider two statistical
measures of the vortex population. Both quantify any scale
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FIG. 2. Microcanonical kinetic energy spectra, K(k), for the nine
energies considered. K at low wave numbers increases monotonically
with energy E from A to B. β > 0 states shown in solid, β < 0 states
dashed, and β ∼ 0 in bold. Solid circles indicate time averages of
dynamical evolution.

cascade or statistical change in the vortex population, though
neither have been examined before in this context. First, as in
nearly all studies of two-dimensional turbulence, we examine
the kinetic energy spectrum K(k), where k is the wave-number
magnitude (spherical harmonic degree). K(k) is calculated by
evaluating the stream function

ψ(r) =
n∑

i=1

κi ln [(1 − ri · r)/2] (4)

induced by the vortices at every point r on a regular latitude-
longitude grid (1024 × 2048 points). The Fourier-Legendre
transform of ψ and its (power) spectrum P (k) are then
computed, and we obtain K(k) from k(k + 1)P (k). While the
total kinetic energy is singular as a result of the k−1 spectral
tail, the spectrum K(k) is well behaved for finite k.

A complementary Lagrangian measure of the vortex pop-
ulation is given by the probability distribution pint(q) of
the pairwise energy (3). To explicitly highlight anomalous
distributions of dipoles or like-signed clusters, we consider
the residual probability p′

int ≡ pint − e−|q|/2 by subtracting
the exponential distribution produced by uniform, random
placement.

For n = 200, these two statistics are computed by sampling
104 states within each of nine energy ranges centered around
the vertical lines shown in Fig. 1(a). The energy ranges include
both positive and negative temperature states, and they are
narrow—the probability of finding a state in a given range
never exceeds 3.7 × 10−5.

All nine individual kinetic energy spectra shown in Fig. 2
converge to the expected k−1 form at small scales. Consistent
with Onsager’s predictions, positive temperature (strongly
negative E) states have the least kinetic energy at largest
scales. The kinetic energy content at the largest scales increases
continuously as E increases and the system transitions to
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FIG. 3. The residual probability p′
int vs normalized vortex inter-

action energy, q, for (a) a lower range of energies considered and (b)
a higher range of energies (note change of scales).

negative temperature states. Notably, the spectral slope at small
k changes from values above −1 to below −1 near β = 0.

The low-energy (β > 0) spectra are consistent with dipole
spectra produced by randomly placing pairs of opposite-signed
vortices. Such spectra are depleted at low k and, as E decreases,
approach k1 at the large scales. The surplus of dipoles for
positive β states is seen in p′

int(q) shown in Fig. 3. Like the
kinetic energy spectrum, p′

int exhibits a monotonic dependence
on E with a surplus of closely spaced dipoles having q �
−1 at low E, while at high E (β < 0) there is a surplus
of closely spaced like-signed pairs (binaries) having q � 1
together with a deficit of closely spaced dipoles. Importantly,
both complementary statistics, 〈K〉(k) and 〈p′

int〉(q), vary
continuously with the inverse system temperature β. There
is no abrupt change in either at the transition from positive to
negative temperatures.
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IV. ERGODICITY AND SPECTRAL CASCADE

We now turn our attention to the question of ergodicity by
quantifying the connection between time-averaged statistics
of dynamically evolved states and microcanonical ensemble
measures. The evolution equation (2) is solved in parallel
using a fourth-order Runge-Kutta scheme with an adaptive
time step to ensure exact conservation of momentum and
energy preservation to 10−7. As such, numerical variations
in the dynamically evolved energy are always smaller than
the width of the energy bins used to construct microcanonical
statistics. With n = 200, a single state in each of the nine
energy ranges was evolved for 400 time units. Redefining
the vortex strengths as κi = ±1/

√
n gives E = H directly

from (1). A characteristic time scale, based on the average
separation distance, d̄ = √

4π/n, is then τ = πd̄2/|κi | =
4π2/

√
n, approximately 2.79 for n = 200.

The kinetic energy spectra and 〈p′
int〉(q), time-averaged over

the entire evolution, were found to be almost identical to the
microcanonical ensemble results. The resulting time-averaged
kinetic energy spectra, K(k), for the two extreme energies
E = −4.42 and 1.66 indicated by solid symbols in Fig. 2, are
virtually indistinguishable from the microcanonical estimates.
The same is found for 〈p′

int〉(q). In contrast to previous results
for n = 6 vortices in a doubly periodic domain [15], here for
n = 200 vortices on the sphere there is strong evidence of
ergodicity, independent of the energy or temperature of the
system.

As an even stronger test of ergodicity, we consider the
evolution of states with atypical initial spectra for a given
energy. First, an ensemble of 111 states was generated
in the strongly positive temperature (E ∼ −4.42) system
by randomly placing vortex dipoles (opposite signed pairs
separated by d̄/

√
2) instead of single vortices. For such

dipole states, the kinetic energy spectrum 〈K〉(k) (averaged
over the 111 states), shown by the + symbols in Fig. 4(b),
differs significantly (beyond several microcanonical standard
deviations) from the microcanonical mean (thick solid line).
However, upon evolution the dipole initial states rapidly
relax toward the microcanonical mean. The dipole spectrum
time-averaged over 2 � t � 4 is shown by the dashed line, and
the late time-averaged spectrum (392 � t � 400, open circles)
is statistically indistinguishable from the microcanonical
estimate. In addition, the standard deviation in the spectrum
also converges to that of the microcanonical ensemble (not
shown).

Vortex interactions immediately destroy the initial equal
vortex-pair separation, and the distribution of pair separations
continues to spread until the state resembles a randomly chosen
collection of vortices for this energy. As shown in the lower
panel of Fig. 4, the initial residual probability p′

int(q) spikes
at the q value of the dipole separation, but then it relaxes to
the microcanonical estimate (open circles show the late time
average). This relaxation can be seen directly in the stream
function of any dipole initial condition. The left panels of
Fig. 5 shows the evolution of ψ(θ,φ) from an initial dipole
state (a1) to t = 400 (a2) along with the stream function of
a randomly chosen member of the microcanonical ensemble
(a3). For this positive temperature state, there is an inverse
cascade of kinetic energy to large scales.
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FIG. 4. Top panels: Evolution of the kinetic energy spectra, K(k),
for (a) low-energy, positive temperature (E = −4.42) and (b) high-
energy, negative temperature (E = 1.66) marked by A and B in Fig. 2.
The initial spectra are shown by +, the long-time spectra by ◦, and the
microcanonical estimate (from Fig. 2) is bold. Dashed lines indicate
results for short times. (c) Evolution of residual probability p′

int for
case A. Symbols are the same as above.

Similar results have been found starting from atypical states
in the highest energy range, E ∼ 1.66, where the temperature
is negative. By randomly placing vortices with an increased
probability to project on the k = 2 spherical harmonic, a
surplus of kinetic energy is created at the largest permissible
scale for J = 0. As seen in Fig. 4(b), the initial 〈K〉(k) (+
symbols) again rapidly relaxes back to the microcanonical
estimate (bold line) with the dashed line showing the spectrum
at times 2 � t � 4 and the open circles the late time spectrum.
Corresponding behavior in real space for an individual initial
condition is shown in the right column of Fig. 5, with an initial
atypical state in (b1) (the pattern closely matches a spherical
harmonic), the same state at t = 400 (b2), and a randomly
selected member of the microcanonical ensemble (b3). The
images in (b2) and (b3) exhibit more smaller-scale features
than the image in (b1), and, as shown in the spectral evolution,
there is a forward cascade of kinetic energy despite the negative
system temperature.

For n = 200, relaxation of atypical states to the mi-
crocanonical average occurs on a short time scale, O(τ ),
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FIG. 5. (Color online) Left panels: Evolution of the dipole
stream function at E = −4.42. (a1) Initial dipole stream function.
(a2) Dipole stream function at t = 400. (a3) Initial stream function
for a representative ensemble member at the same energy. Right
panels: same as left but for the forward cascade case, E = 1.66. The
projection shows the entire sphere, and the color scale is constant for
each energy.

comparable to the mean collision time for dipole pairs. That is,
any special order in the initial conditions is rapidly destroyed
by the ensuing dynamical evolution. This is a strong indication
of ergodic dynamics in this geometry, and it appears to contrast
with the results of [15] in a doubly periodic domain. On the
other hand, Ref. [15] considered just six vortices. It might
be that so few vortices have insufficient freedom to fully
randomize and resemble typical, microcanonical states.

To test this, we repeated the analysis above for n = 8
vortices on the sphere. Accounting for the additional con-
straints imposed by the conservation of angular impulse I,
the n = 8 spherical system and the n = 6 vortex system on
the torus have a similar number of degrees of freedom. We
focus on the evolution of atypical low-energy states with
E ≈ −4.42. These states were generated by placing four pairs
of dipoles at random, with the halves of each pair separated
by d = 2eE/2 ≈ 0.22. At this distance, the individual energies
of the dipoles sum to E. The additional energy contributed by
interpair interactions is O(d2/d̄2) � 1 and is easily canceled
by appropriate placement of the pairs.

The upper panels of Fig. 6 contrast the ensemble-averaged
spectral evolution of atypical states for (a) n = 200 (seen
before) with that for n = 8 in (b). For n = 8, the ensemble
consists of 1000 states [an increase on the 111 states used
for n = 200 to reduce the variance in K(k)]. Both systems
clearly show spectral relaxation to the microcanonical mean.
The relaxation rate, however, is much slower in the dilute,
n = 8 case.

An additional measure of relaxation is obtained by ana-
lyzing the probability distribution pint(q) of the normalized
pairwise interaction energies in (3). Denote p̄int(q) as the
microcanonical ensemble mean, and δ̄int as the mean integrated
standard deviation of individual members of the ensemble from
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FIG. 6. Evolution of the kinetic energy spectrum for dipole initial
conditions at E = −4.42 for n = 200 (a) and n = 8 (b). Lower panel
(c) shows the temporal evolution of the Q measure for the two cases.

p̄int(q), i.e.,

δ̄int = 1

NMC

NMC∑
m=1

∫ ∞

−∞
(pm

int − p̄int)
2dq, (5)
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where NMC is the size of the microcanonical ensemble, and a
superscript m denotes a particular member of the ensemble.
We measure the relaxation of the dynamical ensemble to the
microcanonical one by

Q(t) = 1

δ̄int

∫ ∞

−∞

(
p̄

dyn
int − p̄int

)2
dq, (6)

where

p̄
dyn
int (q,t) ≡ 1

Ndyn

Ndyn∑
m=1

pm
int(q,t) (7)

is the dynamical ensemble mean value of pint(q,t), and Ndyn is
the size of the dynamical ensemble. This measure is shown in
the bottom panel of Fig. 6 (note logarithmic scales). Consistent
with the spectral evolution, Q(t) for n = 200 decreases rapidly
to a low, fluctuating level (the logarithmic scaling accentuates
the size of the relative fluctuation level). By contrast, the decay
of Q(t) is much slower for n = 8, although it still approaches
a roughly constant level at late times. The higher equilibrated
level for n = 8 is predominantly due to differences in the
statistical sample size. The calculation of pint(q) involves
n(n − 1)/2 separate vortex interactions. This is substantially
larger for n = 200 than for n = 8, and while nine times more
cases were considered for n = 8, the sample size is still
approximately 80 times larger for n = 200 than for n = 8.

The results show that atypical dynamical states inevitably
relax to the equilibrium microcanonical distribution, indepen-
dent of the system size (at least for n � 8). Equilibration is
observed in both the kinetic energy spectra K(k) and in the
complementary measure Q using pint(q).

Although relaxation is observed both for n = 8 and 200,
there is a striking difference in the rate of relaxation in the two
cases. For n = 200, relaxation occurs on the characteristic time
scale τ , comparable here to the mean collision time of dipole
pairs. For n = 8, however, relaxation is considerably slower.
Given that the circulations are scaled by

√
n, the characteristic

collision time scale is independent of the system size, and
the observed difference in relaxation time scales cannot be
explained simply by differences in the dipole collision rates in
the two systems.

Movies of the vortex motion in the dilute dipole case
indicate that a majority of dipole interactions involve only
simple particle exchange, producing no discernible change in
the dipole separation distance after collision. Such interac-
tions preserve the structure of the initial conditions—rapid
statistical evolution requires higher-order collisions involving
interactions between three or more dipole pairs. Evidence that
such interactions occur far less frequently in the n = 8 case is
provided in Fig. 7. Here we show the early time evolution of the
pairwise energy, qij , of four initial dipoles—the complete set
when n = 8, and four randomly selected from the 100 available
when n = 200. Particle exchange collisions are clearly evident
in the dilute case (n = 8, upper panel), where individual pair
energies spike to zero before consistently returning to the
negative energy level associated with their initial separations.
Two dipole pairs repeat this process more than five times
in the first 10 time units. The time distribution of pairwise
energies is bimodal, highly concentrated at −|q0| and 0. By
contrast, initial pairs in the n = 200 case are rapidly scattered,
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FIG. 7. (Color online) Evolution of the pairwise energy for the

four initial dipoles for n = 8 (a), and four initial dipoles in the n = 200
case (b).

and information about the interaction energy of the initial
configuration is quickly lost. This is true not only for the
four selected dipole pairs shown here, but for all pairs in the
n = 200 case.

V. CONCLUSIONS

Due to the universal k−1 behavior of point vortex kinetic
energy spectra at small scales, increasing the system energy
preferentially increases the kinetic energy content at the
largest allowable scales. While this is entirely consistent with
Onsager’s conjecture concerning the increased likelihood of
observing large-scale structure at sufficiently high energies,
notably it is also independent of the thermodynamic tempera-
ture of the system. In addition, the results indicate that point
vortex dynamics, at least on the isotropic sphere, are ergodic
and therefore statistical measures derived from the dynamics
of almost all initial states simply relax to those given by the
microcanonical ensemble. This phenomenon is observed even
in the case of a very dilute dipole gas.

The rescaled macrocanonical distribution of states,
WH (Ẽ,J̃ ), is found to converge rapidly with system size with
little differences observed once n > 200. For such moderately
large systems, relaxation of the kinetic energy spectra [equiva-
lently pint(q) distributions] to microcanonical mean estimates
takes place on time scales comparable to a characteristic
vortex collision time scale. Relaxation is independent of both
the system temperature and the initial vortex distribution. As
such, for the simplest bounded domain, there is no a priori
relationship between the sign of the statistical temperature and
the direction of any dynamic cascade process in the velocity
field induced by a finite number of point vortices.
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