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Construction, in the framework of a nonequilibrium statistical ensemble formalism, of a higher-order
generalized hydrodynamics, also referred to as mesoscopic hydrothermodynamics, that is, covering phenomena
involving motion of fluids displaying variations short in space and fast in time—unrestricted values of Knudsen
numbers, is presented. In that way, an approach is provided enabling the coupling and simultaneous treatment of
the kinetics and hydrodynamic levels of descriptions. It is based on a complete thermostatistical approach in terms
of the densities of matter and energy and their fluxes of all orders covering systems arbitrarily driven away from
equilibrium. The set of coupled nonlinear integrodifferential hydrodynamic equations is derived. They are the
evolution equations of the Gradlike moments of all orders, derived from a generalized kinetic equation built in the
framework of the nonequilibrium statistical ensemble formalism. For illustration, the case of a system of particles
embedded in a fluid acting as a thermal bath is fully described. The resulting enormous set of coupled evolution
equations is of unmanageable proportions, thus requiring in practice to introduce an appropriate description using
the smallest possible number of variables. We have obtained a hierarchy of Maxwell times, associated to the set of
all the higher-order fluxes, which have a particular relevance in the process of providing criteria for establishing
the contraction of description.
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I. INTRODUCTION

It has been noticed that one of the complicated prob-
lems of the nonequilibrium theory of transport processes
in dense gases and liquids is the fact that their kinetics
and hydrodynamics are intimately coupled, and must be
treated simultaneously (e.g., see Refs. [1–6]). On this we may
say that microscopic descriptions of hydrodynamics, that is,
associated to a derivation of kinetic equations from classical
or quantum mechanics and containing kinetic (transport)
coefficients written in terms of correlation functions, is a
long standing traditional problem. An important aspect is the
derivation of constitutive laws which express thermodynamic
fluxes (or currents, as those of matter and energy) in terms
of appropriate thermodynamic forces (typically gradients of
densities as those of matter and energy). In their most general
form these laws are nonlocal in space and noninstantaneous in
time. A first kinetic-hydrodynamic approach can be considered
to be the so-called classical (or Onsagerian) hydrodynamics;
it gives foundations to, for example, the classical Fourier’s
and Fick’s diffusion laws. But it works under quite restrictive
conditions, namely, local equilibrium; linear relations between
fluxes and thermodynamic forces (meaning weak amplitudes
in the motion) with Onsager’s symmetry laws holding; near
homogeneous and static movement (meaning that the motion
can be well described with basically Fourier components with
long wavelengths and low frequencies, and then involves
only smooth variation in space and time); weak and rapidly
regressing fluctuations [3–7].
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Hence, more advanced approaches are required to lift these
restrictions. Consider first near homogeneity, which implies
validity in the limit of long wavelengths (or wave number Q

approaching zero). To go beyond it is necessary to introduce a
proper dependence on Q valid, in principle, for intermediate
and short wavelengths (intermediate to large wave numbers).
In phenomenological theories this corresponds to going from
classical irreversible thermodynamics to extended irreversible
thermodynamics [8–10].

A large extension of Onsagerian hydrodynamics to account
for such situations consists of the so-called mesoscopic hy-
drothermodynamics (MHT for short, meaning thermal physics
of fluid continua). MHT was initiated as a large expansion of
extended irreversible thermodynamics, as given foundations
and applications to a mesoscopic thermodynamic theory of fast
phenomena [11], centering the analysis on heat propagation.

A construction of a MHT at the statistical mechanical level
is highly desirable for covering a large class of hydrodynamic
situations obtaining an understanding of the physics involved
from the microscopic level, and in the last instance gaining
insights into technological and industrial processes as in, for
instance, hydraulic engineering, food engineering, soft-matter
engineering, oil production, and petrochemistry, etc., which
have a largely associated economic interest.

It can be noticed that nowadays two approaches appear to be
the most favorable for providing very satisfactory methods to
deal with hydrodynamics within an ample scope of nonequilib-
rium conditions. They are nonequilibrium molecular dynamics
(NMD) [12] and the kinetic theory based on the far reaching
generalization of Gibbs’ ensemble formalism, namely the
nonequilibrium statistical ensemble formalism (NESEF for
short) [13–17]. NMD is a computational method created for
modeling physical systems at the microscopic level, being a
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good technique to study the molecular behavior of several
physical processes. Together with the so-called Monte Carlo
method is part of what is known as numeric simulation methods
[18].

Here we present an extensive derivation of a MHT on the
basis of the kinetic theory founded on NESEF, quite appro-
priate to deal with systems in far-from-equilibrium conditions
involving the development of ultrafast relaxation processes,
and displaying nonlinear behavior leading, eventually, to
instabilities and synergetic self-organization [19–21]. Within
the framework of NESEF, but in a different approach to the
one used here, an alternative MHT was introduced by Zubarev
and Tishchenko [22,23].

It may be noticed that the formalism can be extended to
deal with the so-called nonconventional hydrodynamics which
is associated to disordered media [24], consisting of systems
showing a complex structure of a fractal-like (self-affine in
average) characteristics, whose range of applicability and of
physical interest is large [25]. Belong to this problem the
case of the distinctive behavior of polyatomic structures such
as colloidal particles, surfactant micelles, and polymers and
biopolymers (as DNA) in liquid solutions, which are classical
examples of what is presently referred to as soft-condensed
matter [26]. One particular case of apparently unusual behavior
is the one associated to hydrodynamic motion leading to a
so-called non-Fickian diffusion, described by a time evolution
following a kind of fractional-power law [27]. The nonequilib-
rium statistical thermomechanical aspects of complex systems
including illustrations is reported elsewhere [28]; a case
involving hydrothermodynamics is given in Ref. [29].

In the present paper the conventional NESEF-based MHT
is described in the next section, accompanied with the study
of a system consisting of particles embedded in a fluid which
acts as a thermal bath at rest and in thermal equilibrium with
an external reservoir. The general theory for the MHT is built
upon a generalization of Grad’s moments method for solution
of, in this case, a generalized kinetic equation derived in the
context of NESEF [30].

II. THEORETICAL BACKGROUND

For building a nonlinear higher-order (generalized) hy-
drothermodynamics on a mechanical statistical basis, one
needs to resort to a nonequilibrium statistical ensemble
formalism (NESEF) for open systems. Such formalism was
developed step by step along the past century by a number
of renowned scientists whose contributions have been system-
atized and generalized in a close structure, as described in
Refs. [13–17].

According to theory, immediately after the open system of
N particles, in contact with external sources and reservoirs, has
been driven out of equilibrium, the description of its nonequi-
librium state requires us to introduce all its observables,
their fluctuations, and, eventually, higher-order variances. In
most cases it suffices to take a reduced set of observables,
which implies having access to the so-called one-particle (or
single-particle) n̂1 and two-particle n̂2 dynamical operators
for any subset of the particles involved. This is so because
all observable quantities can be expressed at the microscopic

mechanical level in terms of these operators (e.g., Refs. [31]
and [32]).

On the basis of the construction of the nonequilibrium
statistical operator [13,14], and taking into account the noted
above fact that a complete description of the nonequilibrium
state of the system follows from the knowledge of the
single- and two-particle density operators (or equivalently
the associated reduced density matrices) which in classical
mechanics are

n̂1(r,p) =
N∑

j=1

δ(r − rj )δ(p − pj ), (1)

n̂2(r,p; r′,p′) =
N∑

j �=k=1

δ(r − rj )δ(p − pj )

×δ(r′ − rk)δ(p′ − pk) , (2)

where rj , pj are the coordinate and momentum of the j th
particle, and r, p are called field variables, the most complete
nonequilibrium statistical distribution [4,13–17] is the one
built in terms of the auxiliary statistical operator

R̄(t,0) = ρ̄(t,0)ρR, (3)

where ρ̄ refers to the system of N particles of mass m, and
ρR is the one associated to a thermal bath of NR particles of
mass M taken in equilibrium at temperature T0. The first one
is given by

ρ̄(t,0) = exp

{
− φ(t) −

∫
d3rd3p F1(r,p; t)n̂1(r,p)

−
∫

d3rd3p

∫
d3r ′d3p′ F2(r,p,r′,p′; t)

×n̂2(r,p,r′,p′)
}
. (4)

Hence, ρ̄(t,0) depends on the variables of the system of
interest and ρR on the variables of the thermal bath; both
distributions are taken as normalized, as it should, with φ(t)
ensuring the normalization of ρ̄, that is,

φ(t) =
∫

d� exp

{
−

∫
d3rd3p F1(r,p; t)n̂1(r,p)

−
∫

d3rd3p

∫
d3r ′d3p′ F2(r,p,r′,p′; t)

×n̂2(r,p,r′,p′)
}
, (5)

and F1 and F2 are the nonequilibrium thermodynamic vari-
ables conjugated to n̂1 and n̂2 meaning that

δ ln Z(t)

δF1(r,p; t)
= −Tr{̂n1(r,p)ρ̄(t,0)}, (6)

δ ln Z(t)

δF2(r,p,r′,p′; t)
= −Tr{̂n2(r,p; r,,p,)ρ̄(t,0)}, (7)

where ln Z(t) = φ(t) with Z(t) playing the role of a
nonequilibrium partition function and δ stands for functional
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derivative, in complete analogy with the equilibrium case.
Moreover, we introduce Tr ≡ ∫

d�, where d� is the element
of volume in the phase space of the system, and for simplicity
we have neglected to indicate the dependence on � of n̂1, n̂2,
ρ̄, R̄, and that ρR depends on the phase point �R in the phase
space of the bath.

We stress that ρ̄ of Eq. (4) is not the statistical operator of the
nonequilibrium system, but an auxiliary one—called the “in-
stantaneously frozen quasiequilibrium statistical operator”—
that allows the proper nonequilibrium statistical operator to
be built, which needs to include historicity and irreversibility
not present in ρ̄, hence it does not account for dissipative
processes, and besides it does not provide correct average
values in the calculation of transport coefficients and response
functions.

We recall that the nonequilibrium statistical operator is
given by [4,13–17]

Rε(t) = exp

{
ln ρ̄(t,0)

−
∫ t

−∞
dt ′eε(t ′−t) d

dt ′
ln ρ̄(t ′,t ′ − t)

}
× ρR (8)

with ρ̄(t,0) of Eq. (4), and where

ρ̄(t ′,t ′ − t) = exp{i(t − t ′)L}ρ̄(t ′,0), (9)

is the auxiliary operator carrying on the mechanical evolution
of the system under Hamiltonian Ĥ (L is the Liouvillian
operator of the system meaning iLÂ = {Â,Ĥ }). The system’s
Hamiltonian is separated out into two terms, namely,

Ĥ = Ĥ0 + Ĥ ′, (10)

where Ĥ0 is the kinetic energy operator and

Ĥ ′ = Ĥ1 + Ŵ + ĤP (11)

contains the internal interactions energy operator Ĥ1, while
Ŵ accounts for the interaction of the system with the thermal
bath, and ĤP is the energy operator associated to the coupling
of the system with external pumping sources. Finally, ε is
an infinitesimal positive real number which is taken going
to zero after the traces in the calculation of averages have
been performed (it is present in a kernel that introduces
irreversibility in the calculations, in a Krylov-Bogoliubov
sense [13–15]). We stress that the second contribution in the
exponent in Eq. (8) accounts for historicity and irreversible
evolution from the initial time (taken in the remote past,
t0 → −∞, implying in adiabatic coupling of correlations
(see for example Ref. [13]), or alternatively, can be seen
as the adiabatic coupling of the interactions responsible for
relaxation processes [33]). Moreover we notice that the time
derivative in Eq. (8) takes care of the change in time of
the thermodynamic state of the system (the first term in the
argument, i.e., t ′) and of the microscopic mechanical evolution
[second term in the argument, i.e., t ′ − t , see Eq. (9)], and that
the initial value condition is �ε(t0) = ρ̄(t0,0) for t0 → −∞.

The nonequilibrium thermodynamic space of states [34]
associated with the basic dynamic variables n̂1 and n̂2 is

composed by the one-particle and two-particle distribution
functions

f1(r,p; t) = Tr{̂n1(r,p)�ε(t)} = Tr{̂n1(r,p)ρ(t,0)}, (12)

f2(r,p,r′,p′; t) = Tr{̂n2(r,p,r′,p′)�ε(t)}
= Tr{̂n2(r,p,r′,p′)ρ(t,0)}, (13)

where we indicate that for the basic variables, and only for
them, the average with the statistical operator �ε is equal to
the one taken with the auxiliary operator ρ [13–15]. The trace
operation Tr is in this classical approach to be understood as an
integration over phase space; n̂1 and n̂2 are functions on phase
space and ρ and �ε functionals of these two. The knowledge of
the two distribution functions f1 and f2 allows us to determine
the value and evolution of any observable of the system as well
as of response functions and transport coefficients.

The knowledge of f1(r,p; t) implies complete information
about the actual distribution of particles, and therefore of
the physical properties of the system. Alternatively, knowing
all the moments of the distribution allows us to have a
complete knowledge of its characteristics. A knowledge of
some moments is not sufficient to determine the distribution
completely; it implies in only possessing partial knowledge
of the characteristics of this distribution [35]. Grad noticed
that the question of the general solutions of the standard
Boltzmann equation can be tackled along two distinct lines.
One is to attempt to solve the Boltzmann equation for the
distribution f1 itself in specific problems. The other is to obtain
new phenomenological equations in an approach initiated by
Maxwell [36] and continued by Grad [37,38] (it was called
Grad’s moments procedure [39]). These moments produce
quantities with a clear physical meaning, namely, the densities
of particles and of energy and the fluxes of particles of first
and second order in a restricted 14-moments approach.

In brief, the rth-order moment is the flux of order r ,

I[r]
s (r,t) =

∫
d3p u[r]

s (p)f1(r,p; t), (14)

where u[r]
s is the r-rank tensor, s ≡ n for particle motion, and

s ≡ h for energy motion,

u[r]
n (p) =

[ p
m

. . . (r times) . . .
p
m

]
,

(15)

u
[r]
h (p) = p2

2m
u[r]

n (p),

that is, the tensorial product of r times the vector p/m; for
s ≡ n, r = 0 stands for the density, r = 1 for the vector flux
(or current), r = 2 for the flux of the flux which is related to the
pressure tensor field, and r > 2 for all the other higher-order
fluxes. For s ≡ h, r = 0 stands for the density of energy and
r � 1 for the respective fluxes. The density of energy h(r,t)
follows from the trace of mI[2]

n , namely

h(r,t) =
∫

d3p
p2

2m
f1(r,p; t). (16)

The set composed by n(r,t), In(r,t), I[2]
n (r,t), and h(r,t)

is the one corresponding to Grad’s 14-moments approach. It
may be noticed that our moments approach is in terms of
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the mechanical quantities in a Galilean reference frame. The
one of Grad is in a barycentric frame of reference with an
admixture of mechanical and hydrothermodynamic variables.
Finally, the hydrodynamic equations are

∂

∂t
I[r]
s (r,t) =

∫
d3p u[r]

s (p)
∂

∂t
f1(r,p; t), (17)

with r = 0,1,2, . . . , and where is to be introduced Eq. (27)
shown below. Equations (17) consist of an enormous set of
coupled nonlinear integrodifferential equations. Evidently, it
can be handled only in a contracted version, introducing the
hydrodynamics of order 0, 1, 2, etc...., thus classified according
to the last flux that is retained in the contraction of the
description. Criteria for deciding the order of the contraction
must be established (see Ref. [40]). Hydrodynamics of order
0 leads for the density to satisfy Fick’s standard diffusion
equation, the one of order 1 to Maxwell-Cattaneo equation, and
the other orders to generalized Burnett and super-Burnett-like
equations.

To proceed further, and give a clear illustration of the
functioning of the theory, we consider, as noticed, the case of
a solution of N particles of mass m (the solute) in a fluid (the
solvent) of NR particles of mass M . The former is subjected
to external forces—driving it out of equilibrium—and the
latter (the thermal bath) is taken in a steady state of constant
equilibrium with an external reservoir at temperature T0. An
analogous case, but at the quantum mechanical level, is the
one of carriers embedded in the ionic lattice in doped or
photoinjected semiconductors (see for example Refs. [41–
48]).

We write for the Hamiltonian

Ĥ = ĤS + ĤR + Ŵ + ĤP , (18)

where the first term on the right,

ĤS =
N∑

j=1

p2
j

2m
+ 1

2

N∑
j �=k

V (|rj − rk|), (19)

is the Hamiltonian of the particles in the solute, consisting of
their kinetic energy and their pair interaction via a central force
potential; the second term is

ĤR =
NR∑
μ=1

P 2
μ

2M
+ 1

2

NR∑
μ �=ν=1


R(|Rμ − Rν |), (20)

which is the Hamiltonian of the particles in the solvent, acting
as a thermal bath, consisting of their kinetic energy plus their
pair interaction via a central force potential; moreover

Ŵ =
N∑

j=1

NR∑
μ=1

w(|rj − Rμ|) (21)

is the interaction Hamiltonian of the particles with the thermal
bath, and HP = ∑

i Vext(ri ,pi ,t) is the Hamiltonian associated
with the external force acting on the particles of the system.

Under the stated condition that the bath is in constant
thermal equilibrium with an external reservoir at temperature
T0, its macroscopic state is characterized by the canonical
distribution

ρR = Z−1e−β0ĤR , (22)

where β0 = [kBT0]−1 and Z is the corresponding partition
function. The auxiliary nonequilibrium statistical operator
of the whole system is the one of Eqs. (3) and (4). But,
for simplicity, considering a dilute solution (large distance
in average between the particles) or that the potential V is
screened (e.g., molecules in an ionized saline solvent, e.g.,
[49]), we can disregard the influence of the two particle
potential, and then ignore n̂2, that is, taking F2 = 0 in Eq. (4)
retaining only n̂1. In that case, we choose the single-particle
reduced density, n̂1(r,p | �), as the only relevant dynamical
variable required. Hence, ρ(t,0), of Eq. (4), the auxiliary
nonequilibrium statistical operator for the particles embedded
in the bath, is

�(t,0) = exp

{
− φ(t) −

∫
d3rd3pF1(r,p; t )̂n1(r,p)

}

=
N∏

j=1

ρj (t,0), (23)

where

ρj (t,0) = exp

{
− φj (t) −

∫
d3rd3pF1(r,p; t)δ(r − rj )

×δ(p − pj )

}
(24)

is a probability distribution for an individual particle, with φ(t)
and φj (t) ensuring the normalization conditions of ρ and ρj .

The nonequilibrium equation of state [34], that is, the one
relating the variables f1(r,p; t) and F1(r,p; t), is

f1(r,p; t) = Tr{̂n1(r,p)ρ(t,0)} = exp {−F1(r,p; t)}, (25)

or

F1(r,p; t) = − ln f1(r,p; t). (26)

On the other hand, the evolution equation for f1 following
from the NESEF-based kinetic theory, derived as shown in
Ref. [30], is the generalized kinetic equation

∂

∂t
f1(r,p; t) + P(r,p; t)

m
· ∇f1(r,p; t)

+ F(r,p; t) · ∇pf1(r,p; t) − B(p)f1(r,p; t)

−A
[2]
2 (p) � [∇p∇]f1(r,p; t)

−B
[2]
2 (p) � [∇p∇p]f1(r,p; t) = 0, (27)

obtained in the Markovian approximation [13,15,50,51],
where

P(r,p; t)

m
= p

m
− A1(p), (28)

F(r,p; t) = −∇Vext(r,p; t) − B1(p) − FNL(r; t), (29)

with the explicit expressions, for the vectorial quantities A1(p),
B1(p), FNL(r; t), the second-rank tensors A

[2]
2 (p), B

[2]
2 (p), and

the scalar B(p), together with a description of the physical
meaning of the several contributions, given in Ref. [30]. We
also wrote the symbol � for full contraction of tensors.

The distribution f1(r,p; t) that follows solving Eq. (27)
provides a complete information about the actual distribution
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of particles, and therefore of the physical properties of
the system. As previously noticed, if one knows all the
moments of the distribution we do have a knowledge of its
characteristics. This is related to Tchebychef’s procedure for
obtaining characteristics of a probability distribution when we
do possess the moments of successive order, e.g., [52]. On this
Grad noticed that the question of the general solutions of the
standard Boltzmann kinetic equation can be tackled obtaining
new phenomenological equations which generalize the usual
(classical-Onsagerian) fluid dynamical equations. The object
is to show the transition from the Boltzmann equation in which
a state is described by f1(r,p; t) to the conventional fluid
description in which a state is given by the density n(r,t),
the velocity field v(r,t), and the stress tensor T [2](r,t), in a
sufficient generality to cover a broad class of problems. This
approach was initiated by Maxwell [36] and continued by Grad
[37] (it was called Grad’s 14-moments procedure) [39].

We perform here an extensive generalization of the mo-
ments procedure, consisting of introducing the full set of
moments of f1(r,p; t), of Eq. (27), in the variable p. These
moments produce quantities with a clear physical meaning,
namely, the densities of particles and of energy and their fluxes
of all orders: the two vectorial fluxes, or currents, the tensorial
fluxes, beginning with the second-order one which is the flux of
the first-order flux (the current of particles) which is related to
the pressure tensor, and all the other higher-order fluxes. In that
way we obtain a quite generalized mesoscopic hydrodynamics
coupled to a nonequilibrium thermodynamics, all together in
the kinetic approach provided by NESEF, as described in the
next section.

III. MESOSCOPIC HYDRO-THERMODYNAMICS
IN NESEF

Let us introduce, in the variable p, the moments of the
distribution f1(r,p; t), namely

n(r,t) =
∫

d3p f1(r,p; t), (30)

which is the density of particles;

In(r,t) =
∫

d3p u(p)f1(r,p; t), (31)

where

u(p) = p/m, (32)

with In being the flux (current) of particles;

I [2]
n (r,t) =

∫
d3p u[2](p)f1(r,p; t), (33)

where u[2] = [uu] is the tensorial product of vectors u, with
I [2]
n being the second-order flux (or flux of the first flux), a

rank-2 tensor, which multiplied by the mass is related to the
pressure tensor, and

I [l]
n (r,t) =

∫
d3p u[l](p)f1(r,p; t) (34)

are the higher-order fluxes of order l � 3 [the previous three
of Eqs. (30), (31), and (33) are those for l = 0, 1, and 2

respectively), where u[l] is the l-rank tensor consisting of the
tensorial product of l vectors u of Eq. (32), that is,

u[l](p) =
[ p
m

p
m

. . . (l times) . . .
p
m

]
. (35)

We do have what can be called the family of hydrodynamical
variables describing the material motion, i.e., the set{

n(r,t), In(r,t), {I [l]
n (r,t)}}, (36)

with l = 2,3, . . . .

On the other hand, we have the family of hydrodynamical
variables describing the thermal motion, consisting of

h(r,t) =
∫

d3p
p2

2m
f1(r,p; t), (37)

Ih(r,t) =
∫

d3p
p2

2m

p
m

f1(r,p; t), (38)

I
[l]
h (r,t) =

∫
d3p

p2

2m
u[l](p)f1(r,p; t), (39)

with l = 2, 3, . . .; that is, in compact form those in the set{
h(r,t), Ih(r,t),

{
I

[l]
h (r,t)

}}
, (40)

which are, respectively, the density of energy, its first vectorial
flux (current), and the higher-order tensorial fluxes. It can be
noticed that in this case of a parabolic type energy-momentum
dispersion relation, E(p) = p2/2m, the set of Eq. (40) is
encompassed in the previous one: in fact

h(r,t) = m

2
Tr

{
I [2]
n (r,t)

}
, (41)

Ih(r,t) = m

2
Tr2

{
I [3]
n (r,t)

}
, (42)

where Tr2 stands for the contraction of two indexes, and, in
general

I
[l]
h (r,t) = m

2
Tr2

{
I [l+2]
n (r,t)

}
, (43)

for all the other higher-order fluxes of energy. Hence, any flux
of energy of order l is contained in the flux of matter of order
l + 2. In what follows we concentrate the attention on the
study of the hydrodynamic motion of the particles, with heat
transport to be dealt with in a future communication in this
series.

IV. MHT EVOLUTION EQUATIONS IN NESEF

We proceed now to the derivation of the MHT equations,
that is, the equations of evolutions for the basic macrovariables
of the family of material motion, i.e., those in the set of
Eq. (36).

Let us consider the flux of order l (l = 0,1,2, . . .); its
evolution equation is

∂

∂t
I [l]
n (r,t) =

∫
d3p u[l](p)

∂

∂t
f1(r,p; t). (44)

Using Eq. (27), but excluding a dependence on p of the
external force, after lengthy but straightforward calculations

063011-5



SILVA, RODRIGUES, RAMOS, AND LUZZI PHYSICAL REVIEW E 91, 063011 (2015)

we arrive at the general set of coupled equations for the density,
l = 0, the current, l = 1, and all the other higher-order fluxes,
l � 2, given by

∂

∂t
I [l]
n (r,t) + ∇ · I [l+1]

n (r,t)

= 1

m

l∑
s=1

℘(1,s)[F ext(r,t)I [l−1]
n (r,t)]

+ J [l]
τ (r,t) + J

[l]
L (r,t) + J

[l]
NL(r,t), (45)

where ℘(1,s) means that we must take a permutation of the
first free index (1) with the sth (s = 1,2,3, . . . ,l) free index
of the Cartesian tensor [F ext(r,t)I [l−1]

n (r,t)], when written in
the indicial notation. Observe that the number of terms in the
sum is given by the number of all permutations of l symbols in
which l − 1 is repeated. All this ensures the correct symmetry
of this contribution, that is, a fully symmetrical tensor of
order l.

The several terms on the right of Eq. (45) are

F ext(r,t) = −∇Vext(r; t), (46)

that is the applied external force, created by the action of the
potential Vext, and the terms with A1(p), B1(p), and FNL(r; t)
present in Eqs. (28) and (29) are encompassed in J [l]

τ , J
[l]
L ,

and J
[l]
NL, which are described in Appendix A: they have

cumbersome expressions which we do not include in the main
text to facilitate the reading of the paper.

According to the results presented in Appendix A we can
see that the expressions for J [l]

τ and J
[l]
L are linear in the

hydrodynamic basic variables of the set of Eq. (36) with ten-
sorial coefficients �[r]. The first one contains contributions of
a relaxation character, and the second involves local couplings
with the different fluxes. On the other hand J

[l]
NL, nonlinear

(bilinear) in the fluxes, accounts for nonlocal correlations
involving all of them. Next, we reorganize these expressions
evidencing the contributions that contain the neighboring
fluxes to the one of order l, namely I [l−1]

n (r,t) and I [l+1]
n (r,t),

that is, arising out of the terms with k = 0 and k = 1 in the
sum over k in Eqs. (A11) and (A12), to rewrite Eq. (45) in the
form

∂

∂t
I [l]
n (r,t) + ∇ · I [l+1]

n (r,t)

= 1

m

l∑
s=1

℘(1,s)
[
F ext(r,t)I [l−1]

n (r,t)
] − θ−1

l I [l]
n (r,t)

+ aL0

l∑
s=1

℘(1,s)
[∇I [l−1]

n (r,t)
] + 2laL1∇ · I [l+1]

n (r,t)

+ bτ0
{
℘̂l

[
1[2]I [l−2]

n (r,t)
]} + J

[l]
NL(r,t) + S[l]

n (r,t). (47)

The last term on the right of Eq. (47) is given by

S[l]
n (r,t) = bτ1

2

m

{
℘̂l

[
1[2]I

[l−2]
h (r,t)

]} + 3laτ1
2

m
I

[l]
h (r,t)

+ aL1
2

m

l∑
s=1

℘(1,s)
[∇I

[l−1]
h (r,t)

] + R[l]
n (r,t),

(48)

where R[l]
n (r,t), given in Appendix A, contains the contribu-

tions of the fluxes of order higher than l + 2, and the kinetic
coefficients aτ1, aL0, aL1, bτ0, bτ1 are given in Appendix B.
The first three contributions on the right of Eq. (48) are
associated with the fluxes of energy of orders l − 2, l − 1, and
l, terms that can be considered consisting of thermostriction
effects and which, then, couple these equations with the set of
kinetic equations describing the motion of energy, i.e., the
hydrodynamical variables of the set of Eq. (40). However
it can be noticed, as already mentioned, that the fluxes of
energy can be given in terms of those of particles, namely,
I

[l]
h = (m/2)T r2{I [l+2]

n }, [cf. Eqs. (41)–(43)]. Moreover,

θ−1
l = l[|aτ0| + (l − 1)|bτ1|], (49)

with θl playing the role of a Maxwell-characteristic time
associated to the lth flux.

We stress that l = 0 corresponds to the density n(r,t), l =
1 to the first flux (current) In(r,t), l = 2 to the second flux
I [2]
n (r,t) which, as already stated, multiplied by the mass m is

related to the pressure tensor P [2](r,t)], and l > 2 to the other
higher-order fluxes. Hence, Eq. (47) represents the coupled set
of evolution equations involving the density and all its fluxes
in its most general form. It must be noticed that it is linear
in the basic variables; no approximation has been introduced.
Nonlinearities should arise out of the interparticle interaction
which we have disregarded in the present paper (the case of
a dilute solution). However, as already noticed, such a set of
equations is intractable, and, of course, we need to look in
each case at how to find the best description using the smallest
possible number of variables, in other words to introduce an
appropriate—for each case—contraction of description: this
contraction implies retaining the information considered as
relevant for the problem in hand, and to disregard nonrelevant
information [53].

Elsewhere [40] we have discussed the question of the
contraction of description (reduction of the dimensions of the
nonequilibrium thermodynamic space of states). As shown in
Ref. [40], a criterion for justifying the different levels of con-
traction can be derived: It depends on the range of wavelengths
and frequencies which are relevant for the characterization, in
terms of normal modes, of the hydrothermodynamic motion
in the nonequilibrium open system. Maxwell times have a
particular relevance and we proceed to analyze them.

V. HIERARCHY OF MAXWELL CHARACTERISTIC
TIMES

Let us now analyze Maxwell characteristics times of
Eq. (49) to show that they follow a hierarchy of values. First
we note that, using Eq. (B7) in Eq. (49) and the definition in
Eq. (B1) we can write

θ−1
l = l

[
1 + 1

5

M

m + M
(l − 1)

]
θ−1

1 , (50)

which tells us that any characteristic time for l � 2 is
proportional to the one of l = 1, that is the one for the first
flux which multiplied by the mass m is the linear momentum
density and then all are proportional to the linear momentum
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relaxation time. On the other hand we do have that

θl+1

θl

= l

l + 1

5(1 + x) + l − 1

5(1 + x) + l
, (51)

for l = 1,2,3, . . . and where x = m/M , and then the ordering
sequence

θ1 > θ2 > θ3 > · · · > θl > θl+1 > · · · (52)

is verified, and we can see that θl → 0 as l → ∞. Moreover
according to Eq. (50) it follows that

θl = 5(1 + x)

l[5(1 + x) + (l − 1)]
θ1. (53)

Comparing with the second flux (l = 2), the one related to
the pressure tensor, it follows that for the Brownian particles
(x � 1) θ2 	 θ1/2 and for the Lorentz particles (x 
 1) θ2 	
5θ1/12. A comparison with the third flux leads to the results
that θ3 	 θ1/3 and θ3 	 5θ1/21 for the Brownian and Lorentz
particles respectively. For any l we do have approximately

(1) for the Brownian particle (m/M � 1)

θl 	 θ1/l, (54)

(2) for the Lorentz particle (m/M 
 1)

θl 	 [5/(4 + l)l]θ1, (55)

or θl 	 5θ1/l2 for large l.
Moreover according to Eq. (51) as the order of flux largely

increases, its characteristic Maxwell time approaches zero,
and θl+1/θl 	 1, with both being practically null. In Fig. 1 is
displayed the ratio of characteristic Maxwell times, for flux of
order �, with the momentum relaxation time, as a function of
m/M , i.e., the quotient of the masses m of the particles in the
system and M of those in the thermal bath.

It can be noticed that in Fig. 1 the quotient of masses has
little effect on θl/θ1 but it varies significantly with the order �

of the flux and plays a particular relevance in the criteria for
establishing the contraction of description discussed next.

FIG. 1. The quotient between several Maxwell characteristic
times and the one of the first flux as a function of m/M.

VI. CRITERION OF CONTRACTED DESCRIPTION AND
AN APPLICATION

Returning to the question of the contracted description it
can be shown [40] that a truncation criterion can be derived,
which rests on the characteristics of the hydrodynamic motion
that develops under the given experimental procedure.

Since inclusion of higher and higher-order fluxes implies
describing a motion involving increasing Knudsen numbers
per hydrodynamic mode (that is governed by smaller and
smaller wavelengths—larger and larger wave numbers—
accompanied by higher and higher frequencies), in a quali-
tative manner, we can say that, as a general “thumb rule,” the
criterion indicates that a more and more restricted contraction
can be used when the prevalent wavelengths in the motion
are larger and larger. Therefore, in simpler words, when the
motion becomes more and more smooth in space and time, the
more reduced can be the dimension of the basic macrovariables
space to be used for the description of the nonequilibrium
thermodynamic state of the system.

As shown elsewhere [40], we can conjecture a general
contraction criterion, namely, a contraction of order r (meaning
keeping the densities and their fluxes up to order r) can
be introduced, once we can show that in the spectrum of
wavelengths, which characterize the motion, predominate
those larger than a “frontier” one, λ2

(r,r+1) = v2θrθr+1, where
v is of the order of the thermal velocity and θr and θr+1

are the corresponding Maxwell times. We shall try to illustrate
the matter using a contraction of order 2.

Let us first write down the equations of evolution [whose
general expression is given in Eq. (47) corresponding to the
density and its fluxes of all order] for � = 0: the density, for
� = 1: the first flux of the density, � = 2: the flux of the
first flux which multiplied by m is related to the pressure
tensor field, and � = 3: the flux of the pressure. We do have,
respectively,

∂

∂t
n(r,t) + ∇ · In(r,t) = 0, (56)

∂

∂t
In(r,t) + ∇ · I [2]

n (r,t)

= n(r,t)
m

F (r,t) − θ−1
1 In(r,t) + aL0∇n(r,t)

+ 2aL1∇ · I [2]
n (r,t) + Sn(r,t), (57)

∂

∂t
I [2]
n (r,t) + ∇ · I [3]

n (r,t)

= 1

m
{[F (r,t)In(r,t)] + [In(r,t)F (r,t)]}

− θ−1
2 I [2]

n (r,t) + aL0{∇In(r,t) + [∇In(r,t)]tr}
+ 4aL1∇ · I [3]

n (r,t) + bτ0n(r,t)1[2] + S[2]
n (r,t), (58)

∂

∂t
I [3]
n (r,t) + ∇ · I [4]

n (r,t)

= 1

m

3∑
s=1

℘(1,s)
[
F (r,t)I [2]

n (r,t)
] − θ−1

3 I [3]
n (r,t)
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+ aL0

3∑
s=1

℘(1,s)
[∇I [2]

n (r,t)
] + 6aL1∇ · I [4]

n (r,t)

+ bτ0{℘̂3[1[2]In(r,t)]} + S[3]
n (r,t), (59)

where F (r,t) and the expressions for Sn(r,t), S[2]
n (r,t), and

S[3]
n (r,t) are given in Appendix C. The Maxwell times θ1 and

θ2 are obtained from Eq. (49) respectively for l = 1, 2, and 3.
Moreover, as noticed, if we multiply Eq. (58) by the mass m,
we do have an equation for the pressure field tensor,

P [2](r,t) = mI [2]
n (r,t), (60)

composed of the hydrostatic contribution (the diagonal terms)
and the shear stress (the nondiagonal terms) and the convective
pressure. We also mention that taking into account Eq. (74)
below relating In(r,t) with the barycentric velocity v(r,t),
Eq. (57) can be transformed in an evolution equation for the
latter to obtain a generalized Navier-Stokes equation (future
publication).

Let us now, for illustration, consider the case when we can
perform a truncation in a second order, that is, to consider as
basic variables n(r,t) its flux In(r,t) and the pressure tensor
mI [2]

n (r,t). In this contracted description we consider Eqs. (56)
and (57) but with the further restrictions of neglecting (1) the
shear stress contribution, more precisely introducing the trace
of the pressure tensor which is proportional to the energy
density h(r,t), that is,

Tr{P [2](r,t)} = 2h(r,t), (61)

where convective pressure has been disconsidered, cf. Eq. (75)
below; (2) the terms with coefficients aL whose origin is in
self-energy corrections, which simply would renormalize the
kinetic coefficients; and (3) the terms Sn(r,t) and S[2]

n (r,t)
which contain the energy density h(r,t) and its flux Ih(r,t)
thus disregarding thermostriction effects.

The evolution equations for the chosen hydrodynamic
variables, n(r,t), In(r,t), and I [2]

n (r,t), in the conditions stated
above, take the form

∂

∂t
n(r,t) + ∇ · In(r,t) = 0, (62)

∂

∂t
In(r,t) + ∇ · I [2]

n (r,t) = n(r,t)
m

F (r,t) − θ−1
1 In(r,t),

(63)
∂

∂t
I [2]
n (r,t) + ∇ · I [3]

n (r,t)

= bτ0n(r,t)1[2] − θ−1
2 I [2]

n (r,t)

+ 1

m
{[F (r,t)In(r,t)] + [In(r,t)F (r,t)]}. (64)

Deriving in time Eq. (62) and, next, in the ensuing result
inserting ∂In(r,t)/∂t , and using Eq. (63) we arrive at the
hyperbolic (Maxwell-Cattaneo type) evolution equation for
n(r,t)

∂2

∂t2
n(r,t) + 1

θ1

∂

∂t
n(r,t)

= ∇ · ∇ · I [2]
n (r,t) − ∇ ·

[
n(r,t)

m
F (r,t)

]
. (65)

Furthermore, deriving in time this Eq. (65) and using Eq. (64)
it follows that

∂3

∂t3
n(r,t) +

[
1

θ1
+ 1

θ2

]
∂2

∂t2
n(r,t) + 1

θ1θ2

∂

∂t
n(r,t)

= bτ0∇2n(r,t) − ∇ · ∇ · ∇ · I [3]
n (r,t)

− 1

θ2
∇ ·

[
n(r,t)

m
F (r,t)

]
+ 1

m
∇ · ∇ · {[F (r,t)In(r,t)] + [In(r,t)F (r,t)]}

− ∂

∂t
∇ ·

[
n(r,t)

m
F (r,t)

]
. (66)

The divergence of the third-order flux, ∇ · I [3]
n , in terms

of the basic variables, is evaluated on the basis of Eq. (64),
the evolution equation for the second-order flux which, we
recall, is related to the pressure tensor [cf. Eq. (60)]. For
that purpose we consider conditions such that the pressure
is changing slowly in time (θ2∂I [2]

n /∂t 
 I [2]
n or ω θ2 
 1

along the evolution), and then from Eq. (64) it follows that

∇ · I [3]
n (r,t) = bτ0n(r,t)1[2] − θ−1

2 I [2]
n (r,t)

+ 1

m
{[F (r,t)In(r,t)] + [In(r,t)F (r,t)]},

(67)

and using this result in Eq. (66) we arrive at the equation

∂3

∂t3
n(r,t) +

[
1

θ1
+ 1

θ2

]
∂2

∂t2
n(r,t) + 1

θ1θ2

∂

∂t
n(r,t)

= 1

θ2
∇ · ∇ · I [2]

n (r,t) − 1

θ2
∇ ·

[
n(r,t)

m
F (r,t)

]
− ∂

∂t
∇ ·

[
n(r,t)

m
F (r,t)

]
. (68)

To close this Eq. (68) it is necessary to evaluate I [2]
n which, we

recall, is given by

I [2]
n (r,t) =

∫
d3p

[ p
m

p
m

]
f1(r,p; t). (69)

We resort now to the use of Eq. (25) and for F1(r,p,t) we
use an expansion in variable p, namely

F1(r,p,t)

= F1n(r,t) + ∂F1(r,p,t)

∂p

∣∣∣∣
0

· p + 1

2

∂2F1(r,p,t)

∂p2

∣∣∣∣
0

p2

2m

+ 1

2

∂2F1(r,p,t)

∂p∂p

∣∣∣∣
0

� [
◦

pp] + · · · , (70)

where lower-index 0 indicates that the derivative is taken at
p = 0, and [

◦
pp] is the traceless part of the tensor. We rewrite

F1 in the form

F1(r,p,t) 	 ϕn(r,t) + Fn(r,t) · p
m

+ Fh(r,t)
p2

2m
, (71)

that is, keeping terms up to second order in p. This is
consistent with the contracted description we used, and of
disregarding the shear stress, and where ϕn, Fn and Fh are the
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nonequilibrium thermodynamic variables conjugated to the
density, the flux, and the trace of I [2]

n which is proportional to
the energy. Moreover, introducing the alternative forms

Fn(r,t) ≡ −mβ(r,t)v(r,t), (72)

Fh(r,t) ≡ β(r,t), (73)

it follows that

In(r,t) = n(r,t)v(r,t), (74)

defining the barycentric velocity v(r,t). From Eqs. (30), (31),
and (33) there follows that

h(r,t) = m

2
Tr

{
I [2]
n (r,t)

}
= 3

2
n(r,t)β−1(r,t) + m

2
n(r,t)v2(r,t), (75)

where we can write β−1(r,t)=kBT ∗(r,t) introducing a
nonequilibrium temperature (called quasitemperature
[54,55]), as well as

Ih(r,t) = 5

2
n(r,t)β−1(r,t)v(r,t) + m

2
n(r,t)v2(r,t)v(r,t),

(76)
and

I [2]
n (r,t) = 1

m
β−1(r,t)n(r,t)1[2] + n(r,t)v(r,t)v(r,t). (77)

Introducing Eq. (77) in Eq. (68), if

∇ ·
[
n(r,t)

m
F (r,t)

]
� θ2

∂

∂t
∇ ·

[
n(r,t)

m
F (r,t)

]
we finally arrive at

θ1θ2
∂3

∂t3
n(r,t) + [θ1 + θ2]

∂2

∂t2
n(r,t) + ∂

∂t
n(r,t)

= −∇ · jn(r,t), (78)

where

jn(r,t) = −D[2](r,t) · ∇n(r,t) − n(r,t)V(r,t) (79)

plays the role of a generalized flux with at the right being
present a generalized thermodynamic force, and where

D[2](r,t) = θ1

[
kBT ∗(r,t)

m
1[2] + [v(r,t)v(r,t)]

]
(80)

is playing the role of a generalized diffusion tensor (composed
of two parts, a first one of thermal origin and a second
associated to the drift kinetic energy) and

V(r,t) = θ1

[
∇

(
kBT ∗(r,t)

m

)]
+ θ1

[
∇ · [vv] − 1

m
F (r,t)

]
,

(81)

composed of three terms, one of thermal origin another coming
from the drifting movement and a third from the applied force.

Moreover, in the steady state (∂n/∂t = 0 and then j = 0)
there follows that the density satisfies the equation

D[2](r) · ∇n(r) = −n(r)V(r). (82)

Returning to Eq. (78), its Fourier transform reads

iω[−ω2θ1θ2 − iω(θ1 + θ2) + 1]n(Q,ω) = iQ · jn(Q,ω),

(83)

which give us an illustration on the criterion of contraction
of description: (1) In conditions such that ω2θ1θ2 
 1, the
term with the third time derivative can be neglected and
the evolution equation acquires the form of a generalized
hyperbolic Maxwell-Cattaneo one. (2) If further ω(θ1 + θ2) 

1 the second time derivative also can be neglected and we are
left with a generalized parabolic diffusionlike equation, and
in that way there follows a chain of increasing contractions of
description of the hydrodynamic motion.

Finally, to perform numerical calculations and analyze
the results we introduce a central force interaction between
particles in the system with those in the bath of the Gaussian
form, called the Gaussian core model (GCM) [56],

w(r) = U√
2πr2

0

e−r2/r2
0 , (84)

with the open parameters U and r0 (r0 is a length scale
playing the role of a range length and U/r0 being the
interaction strength). It has been noticed that this kind of
potential belongs to the class of interactions which do not
diverge at the origin, i.e., are bounded. They are potentials
corresponding to effective interactions between the centers
of mass of soft, flexible macromolecules such as polymer
chains [57], dendrimers [58], and others. The centers of mass
of two macromolecules can coincide without violation of
the excluded volume conditions, hence implying a bounded
interaction [59]. Several studies of this potential can be
consulted, for example, in Refs. [60–63].

It can be noticed that GCM of Eq. (84) roughly mimics a
hard sphere potential with radius r0, and that in the limit of r0

going to zero goes over a contact potential Uδ(r). The Fourier
transform is

ψ(Q) = π√
2
Ur2

0 e−r2
0 Q2/4. (85)

In terms of these results we find that

θ−1
1 =

√
π

6
√

2

nR

M1/2

M

m

(
1 + M

m

)
β

3/2
0 U 2, (86)

which tells us that the momentum relaxation time becomes
very large for the Brownian particle when m � M , and very
small for the Lorentz particle when m 
 M . Furthermore,
θ1 increases with the power 3/2 of the temperature T0 and,
as expected, with the reciprocal of the density of scattering
centers.

Moreover, it can also be noticed that in the limit of a contact
potential (r0 → 0), the quantity

1

κ
=

√
π

23/2

[
1 + m

M

]−1
r0 (87)

tells us that κ−1 goes to zero and then [cf. Eqs. (B4) and (B8)]
the kinetic coefficients aL0 and aL1 approach zero, i.e., JL(r,t)
does not contribute.
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VII. SUMMARY OF SOME APPLICATIONS

An interesting application of MHT, that provides a good
illustration of the formalism at work, is in the study of
the the so-called thermal-laser stereolithography. This is a
process which allows solid physical parts to be made directly
and rapidly from computer data without the necessity of
tooling or cutting machining. A first apparatus for industrial
use was patented in 1987 by 3D-Systems Inc. It enables
the production of complex three-dimensional models by the
successive solidifying of layers of liquids resin. The liquid
plastic hardens only where touched by the laser beam, and the
model is built layer by layer. The metamorphic transition from
computer designed models to physical parts takes place in a
short time and, hence, the process is sometimes called rapid
phototyping, a better denomination than the rather metaphoric
use of the term lithography. More details are in Ref. [64].

Presently, thermal lithography is used to transcribe patterns
or images to a surface at the micro- or nanoscale, and
in the fabrication of nanomaterials, as well as in bone
implant in three dimensions [65,66]. The thermal prototyping
method was based on the use of a CO2 laser (photon
wavelength of 10.6 μm) which introduces local heating of the
thermosensible resin inducing surface curing. The sintering
process results in a localized solidification which can be quite
rapid.

Experimental observations of thermal-laser phototyping, a
study to probe quality characteristics in different experimental
protocols, was interpreted in terms of MHT, more precisely in
a contracted description of order 1 (i.e., the one which includes
the densities of matter and of energy, and their fluxes of first
order. The detailed study is present in Ref. [64].

The experimental observations studied, in the framework of
a MHT of order 1 as noticed, led to obtaining for the motion of
matter and heat a damped wave propagation (solutions of the
hyperbolic form of the equations of evolution in a generalized
aspect of a Maxwell-Cattaneo equation). It may be noticed
that the wave propagation of matter may be simply observed
by the eye using an amplifying lens (sometimes by the unaided
eye), and the propagation of heat through interpretation of the
curing (sintering) process.

The experimental results showed that the resulting models
that were at first quite imperfect were improved using a
modification of the texture of the thermally sensible resin,
consisting of adding to it silica powder (this is shown in Fig. 4
in Ref. [64]). This fact was a result, as shown in [64], that
the addition of impurities modifies (decreases) Maxwell time
for the flux (current) of energy (and then of nonequilibrium
temperature) thus modifying the frontier that separates the
damped wave and the diffusion regimes, characterized by the
wave number kM = [chθIh

]−1 (ch the velocity of propagation
of the flux—of the order of the thermal velocity—and the
flux-Maxwell time θIh

). Depending on the domain of relevant
values of wave numbers k contributing to the movement, for
k > kM the motion is basically a damped oscillatory one,
while for k < kM there follows overdamped movement, i.e., a
diffusive one (see Fig. 2 in [64]). Thus, with the predominance
of the diffusive motion the heat generated at the spot of the
laser illumination there remains localized at sufficient times to
get cooled in the impurified resin.

As already stated this technoindustrial process provides a
good illustration of the working of MHT, with a, say, visual
characterization of the question of contraction of description
in MHT [67], as well as the important role of Maxwell time
for determining the character of the motion [68].

Furthermore, MHT has been used in the study of optical
and transport properties in polar semiconductors, then at
a quantum mechanical level. But electrons, in conditions
in which they are in electronic and optoelectronic devices,
behave as classical fluids, that is, are well described by a
Maxwell-Boltzmann distribution. No description is given
here, and we simply refer the reader to the publications on the
subject (for example Refs. [69,70]. It may be noticed that the
change of description from the standard one to the MHT of
order 1 shows that when the latter one is used it is evidenced
an extreme modification (orders of magnitude decrease) in the
thermal conductivity when the size of the sample approaches
the nanometric space scale.

Moreover, as noticed in the Introduction, nonequilibrium
molecular dynamics [12,18] is an alternative formalism based
on computing modeling, and a comparison with the present
one is reported in Ref. [71] involving studies of electron
conductivity in doped polar semiconductors where is reported
a good agreement between the results obtained in both
formalisms, and with experimental data when available.

VIII. CONCLUDING REMARKS

We have here shown that a statistical nonequilibrium
ensemble formalism (applicable to the study of systems even
in conditions far from equilibrium) provides a microscopic
foundation for a higher-order generalized hydrodynamics
(HOGH). Its description is based on the set of hydrodynamic
variables consisting of the densities of energy and matter
(particles) and their fluxes of all orders.

The construction of this HOGH was based on the use of
the moments method for the solution of the single-particle
kinetic equation (generalization of Boltzmann equation [72]
in a way akin to Grad’s 14-moments approach. In our theory
are in principle involved the moments of all order. Moreover
we recall, as noticed in the main text, that we deal at a
purely mechanical level in a Galilean frame of reference. In
Grad’s 14-moments approach is used a barycentric frame of
reference, and the evolution equation presents an admixture of
mechanical and hydrothermodynamical variables.

It may be noticed that our construction is in the spirit
of Truesdell’s principle of equipresence [73], namely, in the
evolution equation for the density appears the divergence of
the first flux which then is to be incorporated as a basic
variable, in the evolution equation for this first flux is present
the divergence of the second flux which then it is incorporated
as a basic variable, and so on and so forth.

There follows a set consisting of an enormous number of
coupled evolution equations for all the fluxes, which is of
unmanageable proportions. A contraction of description is
required [40,53] that is, to keep a small number of fluxes
as basic variables. What is involved is that introduction of
an ever increasing number of fluxes is necessary to describe
hydrodynamic motion characterized by smaller and smaller
wavelengths (accompanied by larger and larger frequencies).
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We may say that this is in the spirit of the Burnett approach
[74]. For large wavelengths a HOGH of order 0 can be applied,
and the moments follow a diffusionlike parabolic equation;
when increasing wavelengths are involved a HOGH of order 1
is required, and the movement follows a hyperbolic Maxwell-
Cattaneo-like equation. When ever increasing wavelengths are
involved HOGH of order 2 and higher would be required,
and the evolution equations are of order 3 and higher in
time.

All these hydrodynamic variables are the average value
over the nonequilibrium ensemble of the corresponding
microscopic mechanical operators. Once the complete set
of macrovariables is given we can obtain the nonlinear
hydrodynamic equations, which are the average value over
the nonequilibrium ensemble of Hamilton equations of motion
(in the classical level or Heisenberg equations at the quantum
level) of the basic microvariables (mechanical observables).
Once all these hydrodynamical variables, cf. Eqs. (30)–(34)
and (37)–(39), involve the single-particle distribution function
f1(r,p; t), their evolution equations follow from the evolution
equation for f1 [cf. Eq. (27)]. The set of evolution equations
given in Eq. (45) is obtained: l = 0 for the density, l = 1 for
the first (vectorial) flux, l � 2 for the higher-order tensorial
fluxes, all of which are coupled together.

These generalized hydrodynamic equations on the left side
present the conserving part of the corresponding quantity, and
on the right-hand side present the collision integrals which
include the action of external sources and the contributions of
scattering processes responsible for dissipative effects.

In that way we do have a quite generalized hydrodynamics
under any arbitrary condition of excitation, which, as noticed,
can be referred to as mesoscopic hydrothermodynamics.
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APPENDIX A: SCATTERING INTEGRALS IN EQ. (45)

The three scattering integrals J [l]
τ , J

[l]
L , and J

[l]
NL in Eq. (45)

are

J [l]
τ (r,t)

= nR

V

√
2πMβo

m2

∑
Q

|ψ(Q)|2
Q

×
∫

d3p
∑
P

[
QQu[l−2](p)

]
e−α[(Q/Q)·p]2

f1(r,p; t)

− nR

V
(Mβ0)3/2π√

2πm2

∑
Q

|ψ(Q)|2
Q

(
1

M
+ 1

m

) ∫
d3p

×
∑
P

[Qu[l−1](p)]Q · p e−α[(Q/Q)·p]2
f1(r,p; t), (A1)

with α = Mβ0/2m2; ψ(Q) is the Fourier transform of the
interaction potential between the particles and the thermal
bath, i.e., Eq. (21), and according to Eq. (35)

[QQu[l−2](p)] =
[
QQ

p
m

. . . (l − 2) times . . .
p
m

]
, (A2)

J
[l]
L (r,t) = −nR

V
Mβ0

m2

∑
Q

|ψ(Q)|2
Q2

Q · ∇
∫

d3p

×
∑
P

[
Qu[l−1](p)

]
F (p,Q)f1(r,p; t), (A3)

where

F (p,Q) = 1 +
∞∑

n=1

(−1)n

(2n − 1)!!
2nαn

(
Q
Q

· p
)2n

. (A4)

J
[l]
NL(r,t) = − 1

m

l∑
s=1

℘(1,s)
[
FNL(r,t)I [l−1]

n (r,t)
]
, (A5)

FNL(r; t) =
∫

d3r ′
∫

d3p′GNL(r′ − r,p′)f1(r′,p′; t), (A6)

GNL(r′ − r,p′) = nRβ0

V
∑

Q

Q|ψ(Q)|2
{
iF (Q,p′)

+
(

Mβ0

2π

)1/2
π

m

Q · p′

Q
e
−α( Q

Q
·p′)2

}
× eiQ·(r′−r). (A7)

The notation∑
P

[Qu[l−1](p)] ≡
∑
P

[
Q

p
m

. . . (l − 1) times . . .
p
m

]
(A8)

means that one has to sum all permutations of the vectors in
order to ensure that the tensor has the same symmetry of the
tensor I [l]

n on the left hand side of Eq. (45).
Next, making a Taylor series expansion of the exponential

in both contributions in Eq. (A1) and in Eq. (A7), i.e.,

exp

[
−α

(
Q
Q

· p
)2

]
=

∞∑
k=0

(−1)kαk

k!
Q[2k] � p[2k], (A9)

where Q[l] stands for

Q[l] = [Q . . . (l times) . . . Q], (A10)

and we recall that � stands for full contraction of the two
tensors of rank 2k. Then using Eq. (A4) for F (p,Q), we can
rewrite Eqs. (A1), (A5), and (A3) in a closed form in terms of
all the fluxes, namely

J [l]
τ (r,t) =

∞∑
k=0

℘̂l

[
�

[2k+2]
τ0 � I [2k+l−2]

n (r,t)
]

+
∞∑

k=0

l∑
s=1

℘(1,s)
[
�[2k+2]

τ � I [2k+l]
n (r,t)

]
(A11)
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J
[l]
L (r,t) =

∞∑
k=0

l∑
s=1

℘(1,s)
[
�

[2k+2]
L � ∇I [2k+l−1]

n (r,t)
]
, (A12)

J
[l]
NL(r,t) = − 1

m

l∑
s=1

℘(1,s)
∞∑

k=0

∫
d3r′

×{[[
�

[2k+1]
NL1 (r′ − r) � I [2k]

n (r′,t)]I [l−1]
n (r,t)

]

+ [[
�

[2k+2]
NL2 (r′ − r) � I [2k+1]

n (r′,t)
]
I [l−1]
n (r,t)

]}
,

(A13)

where

℘̂l =
l∑

s=2

℘(2,s) +
l∑

r=3

℘(1,r) +
l−1∑
r=3

l∑
s=r+1

℘(1,r; 2,s)

(A14)

is an operator involving the set of permutations that ensures
the proper symmetry of the tensor on which it acts. Here the
operation �[r] � �[s] indicates the contraction of some indexes
in order to give the right tensorial order of the equation. For
example in Eqs. (A11) and (A12) it indicates the contraction
of (r + s − l)/2 indexes as to produce a tensor of rank l. The
several tensorial kinetic coefficients of Eqs. (A11)–(A13) are

�
[2k+2]
τ0 =

∑
Q

gτk(Q)Q[2k+2], (A15)

�[2k+2]
τ =

∑
Q

fτk(Q)Q[2k+2], (A16)

�
[2k+2]
L =

∑
Q

fLk(Q)Q[2k+2], (A17)

�
[2k+1]
NL1 (r′ − r) = i

nRβ0

V
∑

Q

|ψ(Q)|2eiQ·(r′−r)

× (−1)k

(2k − 1)!!

(
Mβ0

Q2

)k

Q[2k+1], (A18)

�
[2k+2]
NL2 (r′ − r) = nRβ0

V
(Mβ0)1/2π√

2π

∑
Q

|ψ(Q)|2
Q

×eiQ·(r′−r) (−1)k

k!

(
Mβ0

2Q2

)k

Q[2k+2]. (A19)

where we have defined

gτk(Q) = nR

V

√
2πMβ0

m2

|ψ(Q)|2
Q

(−1)k

k!

(
Mβ0

2Q2

)k

, (A20)

fτk(Q) = nR

V
(Mβ0)3/2π√

2πm

|ψ(Q)|2
Q

(
1

M
+ 1

m

)
× (−1)k+1

k!

(
Mβ0

2Q2

)k

, (A21)

fLk(Q) = nR

V
Mβ0

m2

|ψ(Q)|2
Q2

(−1)k+1

(2k − 1)!!

(
Mβ0

Q2

)k

. (A22)

The last term on the right of Eq. (48) is given by

R[l]
n (r,t) = JτR

[l](r,t) + J
[l]
LR(r,t), (A23)

J
[l]
LR(r,t) =

∞∑
k=2

l∑
s=1

℘(1,s)
[
�

[2k+2]
L � ∇I [2k+l−1]

n (r,t)
]
,

(A24)

JτR
[l](r,t) =

∞∑
k=2

l∑
s=1

℘(1,s)
[
�[2k+2]

τ � I [2k+l]
n (r,t)

]
+

∞∑
k=2

{
℘̂l

[
�

[2k+2]
τ0 � I [2k+l−2]

n (r,t)
]}

, (A25)

where the operators ℘(1,s) and ℘̂l are defined in the main
text.

APPENDIX B: KINETIC COEFFICIENTS IN EQS. (47)
AND (48)

We do have that

aτ0 = V
(2π )3

4π

3

∫
dQQ4fτ0(Q), (B1)

with k = 0 in Eq. (11), and

fτ0(Q) = −nR

V
(Mβ0)3/2π√

2πm2

|ψ(Q)|2
Q

(
m

M
+ 1

)
, (B2)

where ψ(Q) is the Fourier transform of the potential energy
w(|rj − Rμ|), nR is the density of particles in the thermal bath,
V is the volume, and β−1

0 = kBT0. Moreover,

aτ1 = −Mβ0

10
aτ0, (B3)

aL0 =
√

2

Mβoπ

1

κ
aτ0, (B4)

1

κ
=

∫
dQQ2|ψ(Q)|2∫

dQQ3|ψ(Q)|2(1 + m
M

) , (B5)

bτ0 = − 2

Mβ0
aτ0

(
1 + m

M

)−1
, (B6)

bτ1 = aτ0

5

(
1 + m

M

)−1
, (B7)

aL1 = − 1

5κ

√
2Mβ0

π
aτ0. (B8)

APPENDIX C: LAST TERMS OF EQS. (57)–(59)

The contributions present in Eqs. (57)–(59) in Sec. VI are

F (r,t) = −∇Vext(r; t) − FNL(r; t), (C1)

Sn(r,t) = 3aτ1
2

m
Ih(r,t) + 2

m
aL1∇h(r,t) + Rn(r,t), (C2)
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S[2]
n (r,t) = 2

m
bτ1h(r,t)1[2] + 6aτ1

2

m
I

[2]
h (r,t)

+ aL1
2

m
{∇Ih(r,t) + [∇Ih(r,t)]tr} + R[2]

n (r,t),

(C3)

where the upper index tr stands for transpose,

S[3]
n (r,t) = bτ1

2

m

{
℘̂3

[
1[2]Ih(r,t)

]}
+ aL1

2

m

3∑
s=1

℘(1,s)
[∇I

[2]
h (r,t)

]
+ 9aτ1

2

m
I

[3]
h (r,t) + R[3]

n (r,t). (C4)

In which

Rn(r,t) =
∞∑

k=2

{
�[2k+2]

τ � I [2k+1]
n (r,t)

+�
[2k+2]
L � ∇I [2k]

n (r,t)
}
, (C5)

R[2]
n (r,t) =

∞∑
k=2

{
�

[2k+2]
τ0 � I [2k]

n (r,t) + �[2k+2]
τ � I [2k+2]

n (r,t)

+ I [2k+2]
n (r,t) � �[2k+2]

τ + �
[2k+2]
L � ∇I [2k+1]

n (r,t)

+ [
�

[2k+2]
L � ∇I [2k+1]

n (r,t)
]tr}

, (C6)

R[3]
n (r,t) = J

[3]
τR (r,t) + J

[3]
LR(r,t), (C7)

J
[3]
LR(r,t) =

∞∑
k=2

3∑
s=1

℘(1,s)
[
�

[2k+2]
L � ∇I [2k+2]

n (r,t)
]
, (C8)

J
[3]
τR (r,t) =

∞∑
k=2

℘̂3
[
�

[2k+2]
τ0 � I [2k+1]

n (r,t)
]

+
∞∑

k=2

3∑
s=1

℘(1,s)
[
�[2k+2]

τ � I [2k+3]
n (r,t)

]
. (C9)

The several kinetic tensorial coefficients �[r] are given in
Appendix A.

[1] Yu. L. Klimontovich, A unified approach to kinetic description
of processes in active systems, in Statistical Theory of Open
Systems (Kluwer Academic, Dordrecht, The Netherlands, 1995),
Vol. 1.

[2] J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill,
New York, 1980; reprinted by Dover, New York, 1991).

[3] H. J. Kreuzer, Nonequilibrium Thermodynamics and its Statis-
tical Foundations (Clarendon, Oxford, UK, 1981).

[4] D. N. Zubarev, V. G. Morosov, and G. Röpke, Statisti-
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