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Investigation of an entropic stabilizer for the lattice-Boltzmann method
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The lattice-Boltzmann (LB) method is commonly used for the simulation of fluid flows at the hydrodynamic
level of description. Due to its kinetic theory origins, the standard LB schemes carry more degrees of freedom
than strictly needed, e.g., for the approximation of solutions to the Navier-stokes equation. In particular, there
is freedom in the details of the so-called collision operator. This aspect was recently utilized when an entropic
stabilizer, based on the principle of maximizing local entropy, was proposed for the LB method [I. V. Karlin, F.
Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014)]. The proposed stabilizer can be considered
as an add-on or extension to basic LB schemes. Here the entropic stabilizer is investigated numerically using the
perturbed double periodic shear layer flow as a benchmark case. The investigation is carried out by comparing
numerical results obtained with six distinct LB schemes. The main observation is that the unbounded, and not
explicitly controllable, relaxation time for the higher-order moments will directly influence the leading-order
error terms. As a consequence, the order of accuracy and, in general, the numerical behavior of LB schemes are
substantially altered. Hence, in addition to systematic numerical validation, more detailed theoretical analysis of
the entropic stabilizer is still required in order to properly understand its properties.
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I. INTRODUCTION

The classical numerical methods for the simulation of
hydrodynamic fluid flows rely explicitly on the macroscopic
target equations. An alternative, implicit or indirect way of
computing approximate solutions for these target equations
is provided by the lattice-Boltzmann (LB) method [1,2]. It
is based on the kinetic theory and relies on mesoscopic,
Boltzmann model equations. In the standard schemes, the dy-
namic variables, single-particle distribution functions, evolve
via Lagrangian dynamics: evolution of the distribution func-
tions mimic the alternating collision and propagation events
experienced by the underlying particles. It can then be
shown, using, e.g., a multiple-scale analysis, that the collective
evolution of the distributions gives rise to macroscopic balance
equations which conform with the original target equations.

Due to its kinetic origins, the standard LB schemes carry
more degrees of freedom than strictly needed, e.g., for the
approximation of solutions to the Navier-stokes equation. To
put it simply, these LB schemes involve more distributions than
there are independent, hydrodynamic variables present in the
target equations. Interestingly enough, many important method
developments have emerged when this fact is embraced instead
of considering the spare degrees of freedom just as an extra bur-
den on computational resources. Notable examples include LB
models for fluctuating hydrodynamics [3–5], recoloring steps
of the color-gradient based LB multicomponent models [6–8],
and tuning of the relaxation parameters for the high-order
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moments in multiple-relaxation-time (MRT) as well as in
two-relaxation-time (TRT) schemes [9–11].

Tuning the independent relaxation parameters often aims
at improving stability of LB schemes. Other stabilization
techniques for LB schemes include utilization of Ehrenfest’s
coarse-graining idea [12], addition of artificial dissipation [13],
nonequilibrium entropy limiters [14], and application of
selective viscosity filters [15]. A review of some stabilization
techniques is provided in Ref. [16]. In particular, the entropic
LB-BGK (Bhatnagar-Gross-Krook) model [17] maximizes
the entropy by locally tuning the single relaxation time. It
can be perceived as a kind of subgrid-scale model altering
the local viscosity wherever the computational grid is under-
resolved [18,19].

Recently a new extension to LB schemes was proposed:
namely, the entropic stabilizer [20]. Unlike the entropic LB-
BGK model mentioned above, this extension does not locally
alter the viscosity, but rather relies on modifying the relaxation
time for the higher-order moments (i.e., the moments beyond
the stress tensor) which do not contribute to the viscosity. In
this respect, the extension is akin to the already discussed
relaxation parameter tuning for MRT and TRT schemes. For
example, in TRT schemes the relaxation time for the odd
moments is, in principle, and for isothermal flows, a free
parameter [21]. The specific aspect of the entropic stabilizer is
that the common relaxation time for the higher-order moments
is not fixed, but locally computed so as to maximize the
entropy in the post-collisional state. That is, this relaxation
time varies both in space and time; it self-adapts according to
the maximum entropy condition which, at first glance, seems
convenient from a simulation point of view.
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In fact, the entropic stabilizer is very liberal: due to
the proposed self-adaption mechanism, the relaxation time
for the higher-order moments is not bounded nor explicitly
controllable. Our aim here is to numerically investigate the
ramifications of the extreme freedom granted for this relax-
ation time. We proceed by first reviewing the lattice-Boltzmann
method and the entropic stabilizer in Sec. II. There we also
present how the well-known regularized LB scheme [3,22–25]
can be extended with the entropic stabilizer. The numerical
experiments based on the perturbed double periodic shear
layer flow, and the related observations, are then explained
in Sec. III. Finally, some conclusions are presented.

II. LATTICE-BOLTZMANN METHOD

In accordance with its kinetic roots, the LB method operates
by evolving a single-particle distribution function fi(r,t) ≡
f (r,ci ,t). The distribution function describes the probability
of finding a particle, traveling with a velocity ci , from a position
r at a given instant t . The standard LB-BGK scheme, for
example, follows the governing equation

fi(r + �t ci ,t + �t) = f
eq
i (r,t) +

(
1 − �t

τ

)
f

neq
i (r,t),

(1)

where f
eq
i is an equilibrium function, f

neq
i = fi − f

eq
i , the

discrete time step is �t while τ is the relaxation time, and
i = 0, . . . ,q − 1.

For isothermal flows, the standard second-order equilibrium
function is

f
eq
i = ρ

(
K

(0)
i + K

(1)
iα uα + K

(2)
iαβuαuβ

)
, (2)

with the kinetic projectors

K
(0)
i = wi, K

(1)
iα = wiciα

c2
T

,

K
(2)
iαβ = wi

2c4
T

(
ciαciβ − c2

T δαβ

)
;

wi denote the lattice-dependent weight coefficients, δαβ is
the Kronecker delta, and the Einstein summation convention
is implied with the repeated indexes. The so-called thermal
velocity cT = cr/as , also the speed of sound for isothermal
flows, depends on the reference velocity, cr = �r/�t , where
�r is the lattice spacing, and as is the lattice dependent scaling
factor [26,27].

The local mass and momentum density, ρ and ρu, are
obtained as the first moments of the distribution function:

ρ =
q−1∑
i=0

fi, ρu =
q−1∑
i=0

cifi .

This simple scheme provides approximate solutions for the
Navier-Stokes equation with the kinematic viscosity ν =
c2
T (τ − �t/2) [26] and pressure p = c2

T ρ (an ideal gas
equation of state).

Finally, it is common to decompose, at least conceptually,
the evolution equation into streaming and collision steps.
The collision step is completely local and involves only the

relaxation procedure:

f out
i (r,t) := f

eq
i (r,t) +

(
1 − �t

τ

)
f

neq
i (r,t).

Then, the streaming step is merely a shift of the distribution
values and does not involve any computation:

fi(r + �t ci ,t + �t) = f out
i (r,t)

or, equivalently,

fi(r,t) ≡ f in
i (r,t) = f out

i (r − �t ci ,t − �t).

A. Regularized LB scheme

A simple modification of the LB-BGK scheme operates
according to the equation

f out
i = f

eq
i +

(
1 − �t

τ

)
s

neq
i , (3)

where

s
neq
i = K

(2)
iαβ 	

neq
αβ , 	

neq
αβ =

q−1∑
i=0

ciαciβf
neq
i ; (4)

the nonequilibrium part f neq
i is computed at the pre-collisional

state, i.e., from f in
i . This update procedure has been proposed

by several authors [3,22–25], and is here referred to as the
(original) regularized LB scheme.

The zeroth, first, and third moments of s
neq
i are identically

zero while
q−1∑
i=0

ci ci s
neq
i = �neq.

The equilibrium function in Eq. (2) is only a second-order
Hermite polynomial expansion of the true Maxwell-
Boltzmann distribution f MB . In other words, it is a projection
of only the first three moments of f MB onto the kinetic space.
Equations (3) and (4) specify an equivalent projection of the
nonequilibrium moments (the zeroth and first moments are
zero).

To summarize, Eq. (3) describes propagation of filtered
information along the ith characteristic line, i.e., a projection
of the full distribution onto the velocity space generated by the
first three Hermite polynomials when the discrete velocity sets
are of second order (like the D2Q9 and D3Q19 velocity sets).
In particular, all the third- and high-order ghost moments are
filtered out. This does not happen, e.g., with the original BGK
model.

B. Entropic stabilizer

In order to improve stability of the standard LB-BGK
scheme, Karlin et al. [20] proposed a modification of Eq. (1):
the essence is to relax the nonequilibrium part related to
the stress tensor using τ while the remaining part, related
to higher-order nonequilibrium moments, is relaxed using a
separate relaxation time.

To begin with, a suitable moment space is constructed by
defining q linearly independent combinations of fi . Using
the inverse transformation, the distribution functions can now
be represented as fi = ki + si + hi , where ki , si , and hi
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depend only on the kinematic or conserved variables, the
stress tensor, and the higher-order moments, respectively.
Moment spaces for the D2Q9 LB model, based on both natural
and central moments computed with the microscopic ci and
peculiar (ci − u) velocities, respectively, are presented in the
Supplemental Material of Ref. [20]. Below the corresponding
schemes are referred to as the natural and central moment
space LB schemes.

Then the LB equation is reformulated in a general way:

f out
i = (

ki + s
eq
i + h

eq
i

) + (1 − 2β)sneq
i + (1 − βγ )hneq

i ,

(5)

where β = �t/2τ and the dimensionless relaxation param-
eter γ is associated with the higher-order moments. This
formulation reduces to the LB-BGK scheme when γ = 2.
A regularized LB scheme is obtained when γ = 1/β, not
with γ = 1 as suggested previously [20]. However, in the
low-viscosity case, where β ≈ 1, the latter choice is a good
approximation of the correct value.

Now comes the pivotal aspect of the entropic stabilizer: γ

is computed locally and at every time step so as to maximize
the entropy in the post-collisional state. An approximation for
the optimal relaxation parameter γ is given in Ref. [20]:

γ � = 1

β
−

(
2 − 1

β

)
φ, (6)

where

φ = 〈sneq | hneq〉
〈hneq | hneq〉 , and 〈X | Y 〉 =

q−1∑
i=0

XiYi

f
eq
i

(7)

is an entropic scalar product. We will utilize Eq. (6) in
all our numerical experiments and, accordingly, consider
γ ≡ γ �. Karlin et al. compared the above approximation
with the numerically solved optimal γ and found excellent
agreement [20]. Hence, the use of this approximation has no
influence on our conclusions.

By substituting Eq. (6) into Eq. (5), we obtain

f out
i = (

ki + s
eq
i + h

eq
i

) + (1 − 2β)sneq
i − (1 − 2β)φ h

neq
i ,

(8)

meaning that the higher-order nonequilibrium part is first
carried over to the mirror state, −h

neq
i , and then relaxed towards

zero while φ scales the resulting value. Stability is typically
compromised in low-viscosity cases, i.e. β ≈ 1, where the
post-collisional value of the higher-order nonequilibrium part
is well approximated with φ h

neq
i . Note that φ is not bounded

and it cannot be controlled in the proposed setting.
Therefore, in contrast with the regularized scheme, the

high-order part of the distribution, hi , responsible for the
third- and higher-order ghost moments, is not filtered out
but instead relaxed towards equilibrium with a parameter
γ . This high-order contribution can be further decomposed
into two parts, hi = gi + ri , where gi is related to the third-
and fourth-order moments, as presented in the Supplemental
Material of Ref. [20], and ri to the higher-order moments that
do not fit into the moment space of a second-order discrete
velocity set. Since second-order sets are not able to retrieve the
macroscopic equations without third-order errors (u3) [27–29],

both the regularized and entropic stabilizer schemes require
simulations to be performed at low Mach number regime.
The inclusion of third- and fourth-order moments into the
moment space of a second-order velocity set can be beneficial
to stability [30]. Nevertheless, these third- and fourth-order
moments do not affect the macroscopic behavior of a LB
scheme, up to the usual Navier-Stokes level of description,
and hence they must be considered as ghost moments.

C. Regularized LB scheme with entropic stabilizer

The above presented entropic stabilizer can be considered
as an add-on or extension to LB schemes. It is composed
of three main ingredients: (1) contributions from high-order
moments, the so-called nonhydrodynamic or ghost modes,
are collected into hi , (2) the high-order part hi is relaxed
with a specific relaxation coefficient, and (3) this relaxation
coefficient is dynamically computed so as to maximize the
entropy in the post-collisional state.

As an add-on, the entropic stabilizer can be plugged into
various basic LB schemes. Here we extend the regularized
LB scheme of Sec. II A with the stabilizer. In the following
numerical investigation, results computed with this alternative
LB scheme are compared with those obtained with the schemes
of Sec. II B in an effort to better understand the properties of
the entropic stabilizer.

First, the construction of a suitable moment space is
an inconvenience of the schemes presented in Sec. II B.
It has to be done separately for each discrete-velocity set;
particular labor is required with sets including large number
of velocities [27,28,31]. Instead, the Hermite polynomial
based kinetic projectors could be utilized. Specifically, the
equilibrium part in Eq. (5), ki + s

eq
i + h

eq
i , is represented with

f
eq
i given by Eq. (2). Furthermore, sneq

i is defined according to
Eq. (4), and h

neq
i := f

neq
i − s

neq
i . Equation (5) is then applied

with these definitions.
The first three moments of the newly defined h

neq
i are zero.

In addition, these definitions are not dependent on a particular
discrete-velocity set. The presented procedure for defining
h

neq
i can also be extended to thermal LB models. Recall that

this schemes reduces to the original regularized LB scheme
presented in Sec. II A when γ = 1/β.

III. NUMERICAL EXPERIMENTS

In order to numerically investigate the properties of the
entropic stabilizer, we will set up a perturbed double periodic
shear layer flow as a benchmark case. There a small velocity
perturbation, perpendicular to the shear flow direction, initiates
a Kelvin-Helmholtz instability, and causes roll up of the
antiparallel shear layers. Periodic boundary conditions are
applied. The initial velocity field is given by

ux =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U0 tanh

[
λ

(
y

L
− 1

4

)]
, y � L

2
,

U0 tanh

[
λ

(
3

4
− y

L

)]
, y >

L

2
,

uy = ε U0 sin

[
2π

(
x

L
+ 1

4

)]
;
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U0 defines amplitude of the inital velocities, x and y refer
to node index coordinates, while L is the number of nodes
in both x and y directions. The parameters λ and ε control
width of the shear layer and the initial velocity perturbation,
respectively [32]. Here we consider only the thin layer case:
we set λ = 80 and ε = 0.05. The Reynolds number is defined
as Re = U0L/ν and the characteristic time T = L/U0. The
D2Q9 LB model is used in all numerical experiments presented
below, and time is given in dimensionless units, i.e., t∗ = t/T .

A. Initialization procedure

In order to fully specify fi at t = 0, the initial density ρ0

and the nonequilibrium part remain to be defined. For the
density initialization, the simplest choice is a constant value,
e.g., ρ0 = 1. However, as was pointed out by Skordos [33], a
consistent initial density field is obtained by solving the related
pressure-Poisson equation (for an incompressible fluid). Mei
et al. [34] proposed that both the consistent initial density field
and the nonequilibrium part can be obtained simultaneously
within the lattice-Boltzmann framework via a specific initial
iteration procedure. Here this iteration procedure is not
practical because the relatively low viscosity in the benchmark
simulations leads to very slow convergence. An additional
difficulty with the entropic stabilizers is that during the
initial iteration procedure, the complicated interplay between
the evolving density field and the adaptive γ may lead to
divergence. A possible solution is to fix γ in the initialization
procedure, but here this option is not investigated further.

Instead, we choose to solve the related pressure-Poisson
equation with a non-LB, iterative scheme based on the pseudo-
unsteady method or the method of false transients [35,36];
the spatial derivatives are approximated with second-order-
accurate, isotropic finite differences (see, e.g., Ref. [37] and
references therein). From the code structure point of view,
a straightforward implementation of this iterative scheme is
identical to a typical implementation of a LB scheme. Hence,
incorporating it as an initialization routine into an existing LB
code requires a relatively small amount of work.

Compared to the Mei et al. approach, using a non-LB,
iterative scheme benefits from the fact that the pressure-
Poisson equation itself does not depend on the viscosity: here
the equation is solved only for each combination of L and
U0. Numerical solution of the pressure-Poisson equation for
L = 512 and U0 = 1/32 is presented in Fig. 1. The nonequi-
librium part is then defined separately. The simplest choice
is to set f

neq
i = 0, i.e., distributions are initialized with the

equilibrium part only. However, a more refined approach for
initializing f

neq
i exists [33,38]. First, based on the Chapman-

Enskog analysis, the viscous stress tensor is measured,

	str
αβ := −τc2

s ρ(∂αuβ + ∂βuα), (9)

using second-order-accurate, isotropic finite-differences [37].
For the LB-BGK and regularized LB schemes we then set
	

neq
αβ := 	str

αβ and use Eq. (4) in order to define s
neq
i at the

pre-collisional state.
For the natural and central moment space LB schemes of

Sec. II B, we set

	neq
xy := 	str

xy , T neq := 	str
xx + 	str

yy , Nneq := 	str
xx − 	str

yy ,

FIG. 1. (Color online) Numerical solution of the pressure-
Poisson equation for L = 512 and U0 = 1/32: isolines of the pressure
field are presented.

which will define s
neq
i at the pre-collisional state (above we

have used a notation for the moments from Ref. [20] and
the related supplementary material). Note that in the moment
space representation 	̃

neq
xy = 	

neq
xy ,T̃ neq = T neq, and Ñneq =

Nneq, where variables with and without tilde refer to cental
and natural moments, respectively. Finally, for all schemes,
we initialize h

neq
i = 0.

In order to investigate the influence of various initialization
procedures, we setup a simulation with L = 128 and Re =
8×104. Figures 2 and 3 plot the average density variation
per time step for the central moment space LB scheme
(Sec. II B) and the original regularized LB scheme (Sec. II A),
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FIG. 2. Average density variation for the central moment
space LB scheme (Sec. II B): L = 128, U0 = 1/16, and ν = 10−4

(Re = 8×104).
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FIG. 3. Average density variation for the original regular-
ized LB scheme (Sec. II A): L = 128, U0 = 1/16, and ν = 10−4

(Re = 8×104).

respectively. For both schemes, initialization with a constant
density, ρ0 = 1, leads to high-amplitude, long-wavelength
oscillations while the consistent initial density field results
in smooth variations. The same observation was made for
the Taylor-Green vortex flow in Ref. [34]. In addition, the
central moment space LB scheme seems to be sensitive to the
initialization of s

neq
i ; the density variations for the regularized

LB scheme (Sec. II A) are very little affected by the initial
s

neq
i .

Figures 4 and 5 plot the average kinetic energy in the same
setup and for the same two schemes. Again, for both schemes,
initialization with a constant density, ρ0 = 1, leads to large,
long-wavelength oscillations which, in addition, appear to
grow in time. On the other hand, the initialization s

neq
i = 0

gives rise to high-frequency oscillations at the very beginning
of the simulations for both schemes. After these early-stage
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FIG. 4. Average kinetic energy (normalized) for the central
moment space LB scheme (Sec. II B): L = 128, U0 = 1/16, and
ν = 10−4 (Re = 8×104). The average values are normalized with
ρrU

2
0 /2, where ρr = 1.
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FIG. 5. Average kinetic energy (normalized) for the original
Regularized LB scheme (Sec. II A): L = 128, U0 = 1/16, and ν =
10−4 (Re = 8×104). The average values are normalized with ρrU

2
0 /2,

where ρr = 1.

oscillations, the related average kinetic energy curves are
effectively shifted downwards compared to the corresponding
smooth curves obtained when s

neq
i is initialized using Eq. (9).

Mei et al. [34] made a similar observation for the Taylor-Green
vortex flow.

In summary, based on the observed average density vari-
ations and kinetic energies, initialization with a consistent
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FIG. 6. Decay of average kinetic energy for Re = 3×104: L =
128, U0 = 1/32, and ν = 4/30000. The average values are normal-
ized with ρrU

2
0 /2, where ρr = 1. The LB-BGK scheme becomes

unstable early on, around time t∗ = 0.3. The central moment space
LB scheme (Sec. II B) with γ = 1/β experiences instability close
to t∗ = 2.5. The natural and central moment space LB schemes
(Sec. II B, γ �= 1/β) as well as both regularized LB schemes remain
stable.
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density field and nonequilibrium part, according to Eq. (9),
results in smooth evolution of the system state as expected.
Hence, such an initialization procedure is adopted for all
simulations presented below.

B. Stability

We continue with a simple stability experiment and measure
the decay of the average kinetic energy for L = 128 and
Re = 3×104. The results are presented in Fig. 6: the LB-BGK
becomes unstable very early, around t∗ = 0.3, while the
central moment space LB scheme (Sec. II B) with γ = 1/β

experiences instability close to t∗ = 2.5. The natural and
central moment space LB schemes (Sec. II B, γ �= 1/β) remain
stable. These observations agree with the previously reported
results (see Fig. 2 in Ref. [20]).

Moreover, both regularized LB schemes are also free from
stability problems. This in turn conforms with the published
results, where the original regularized LB scheme (Sec. II A)
is shown to significantly improve stability of the LB-BGK
scheme [24,39]. The evolution of the average kinetic energy
appears almost identical for the four stable schemes.

In fact, in this benchmark case, all three LB schemes
utilizing the entropic stabilizer seem virtually indestructible in
the sense that the simulated flow fields do not appear to diverge,
i.e., to blow up, which is usually considered the tell-tale sign
of instability. In support of this observation, a staggering
improvement of four orders of magnitude in stability was
reported (till at least Re ∼ 107 with L = 128) when the central
moment space LB scheme (Sec. II B) was utilized instead of
the LB-BGK scheme [20]. Such an improvement is of course
astounding and warrants further investigation.

As was pointed out by Minion et al. [32], a global measure
like the average kinetic energy above, does not capture well
the differences between local flow features produced by the
schemes under inspection. Here a hint of the differences
is given in Fig. 7 where the simulated vorticity field, at
t∗ = 1, is presented for L = 256,Re = 8×104, and the six
schemes considered; the LB-BKG case is simulated with Re =
3.2×104 due to stability reasons: the locus of instabilities is
at the small secondary vortices. The five other cases remain
stable.

At the same time, the vorticity fields are visibly distorted for
all three schemes utilizing the entropic stabilizer. On the other

BGK (Re = 32000) Regularized (Sec. II C) Regularized (Sec. II A, orig.)

Central moment space (Sec. II B) Natural moment space (Sec. II B) Central mom. space (Sec. II B, = 1/ )

FIG. 7. (Color online) Isolines of the vorticity field for Re = 8×104 at t∗ = 1: L = 256, U0 = 1/16, and ν = 2×10−4. The simulation
with the LB-BGK scheme is for Re = 3.2×104 (ν = 5×10−4) due to stability reasons: instabilities arise from the small secondary vortices.
The five other cases remain stable. However, the vorticity fields appear visibly distorted for all three schemes utilizing the entropic stabilizer.
Computations with the two LB schemes which filter out the high-order nonequilibrium moments, i.e., the original regularized LB scheme
(Sec. II A) and the central moment space LB scheme (Sec. II B) with γ = 1/β result in undisturbed fields.
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hand, the fields appear undisturbed when the computation
is carried out using the two LB schemes which filter out
the high-order nonequilibrium moments, i.e., the original
regularized LB scheme (Sec. II A) and the central moment
space LB scheme (Sec. II B) with γ = 1/β.

The appearance of additional, spurious vortices has been
previously investigated in Ref. [32]: the three LB schemes
utilizing the entropic stabilizer would there be categorized as
robust schemes implying that, while remaining stable, they can
produce unphysical results whenever the computational grid
is under-resolved.

Here the spurious vortices seem to be dependent on the
initial velocity U0 in particular. This would suggest that, with
LB schemes, the vortices are related to compressibility issues
as was proposed by Dellar [40]. Furthermore, the central
moment space LB scheme (Sec. II B) is especially sensitive to
the initial conditions: the scheme has a distinct dependence on
the simulation parameters with each of the four initialization
procedures discussed in Sec. III A and the observed spurious
vortices are markedly different in all four cases.

C. Magnitude of γ

The peculiar variable related to the entropic stabilizer
is the relaxation parameter γ for the high-order moments.
Figure 8 presents its relative magnitude for the LB scheme
based on the central moments space (Sec. II B) and for various
Reynolds numbers. The result, with a maximum in |γ |/L ∼ 1,
implies that the maximum |γ | is inversely proportional to the
lattice spacing �r . If the leading-order error terms of schemes
utilizing the entropic stabilizer are proportional to γ�r2, i.e.,
in the same way as the error is dependent on τ in the LB-BGK
scheme [41], the result would immediately suggest first-order
spatial accuracy.

However, the isolated maximum values do not necessarily
determine the global behavior of a simulated system. But it is
clear from Fig. 8 that the maximum values of γ are far beyond
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Number of lattice nodes per axis

Re = 1 × 104

Re = 2 × 104

Re = 4 × 104

Re = 8 × 104

FIG. 8. Relative magnitude of the maximum |γ | for the central
moment space LB scheme (Sec. II B): U0 = 1/32, ν is varied in order
to enforce the prescribed Reynolds number, and the simulations are
run until t∗ = 1.

the linear stability range [0,2] even in well-resolved simulation
cases. This is not so surprising. First of all, it is reasonable to
assume that lowering the Reynolds number or, in particular,
improving the grid resolution will reduce the nonequilibrium
part of the distribution. Hence the value 〈hneq | hneq〉 in Eq. (7)
can become small. At the same time, in the hydrodynamic
regime with well-resolved gradients, the low-order moments,
including the stress tensor, should be much greater than
the higher-order, nonhydrodynamic moments [42,43]. This
allows, in particular, 〈sneq | hneq〉 	 〈hneq | hneq〉, i.e., γ (φ)
can become large.

D. Convergence of error

In order to measure the effect of very large values of
γ on the numerical behavior of a scheme at the system
scale, we will determine the convergence rates of error with
lattice-refinement studies. First, separately for each scheme
and Reynolds number, a reference solution for the velocity
field, uR = √

uR · uR , is computed using L = 2048. Then a
relative L2-error norm is computed:

L2 =
√∑

r (uS − uR)2∑
r u2

R

,

where uS is the velocity field simulated with a lower reso-
lution, and the summations involve only those nodes which
correspond to the nodes of the coarsest lattice (L = 64).

Figure 9 plots the numerical errors for LB-BGK, the natural
and central moment space LB schemes (Sec. II B), and for
the regularized LB schemes when Re = 2×104. The schemes
share a common convergence rate in the high-resolution cases,
i.e., L = 512 and L = 1024. The numerical errors for the
original regularized scheme (Sec. II A) and LB-BGK continue
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64 128 256 512 1024
Number of lattice nodes per axis

BGK
Central mom. (Sec. II B)
Natural mom. (Sec. II B)
Regul. (Sec. II A, orig.)
Regul. (Sec. II C)

O(Δr2.36)

FIG. 9. Convergence of the numerical error for LB-BGK, the
natural and central moment space LB schemes (Sec. II B), and for
the regularized LB schemes; Re = 2×104, U0 = 1/32, ν is varied in
order to enforce the prescribed Reynolds number, and the errors are
measured at t∗ = 1.
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FIG. 10. Convergence of the numerical error for the natural and
central moment space LB schemes (Sec. II B), and for the regularized
LB schemes; Re = 4×104, U0 = 1/32, ν is varied in order to
enforce the prescribed Reynolds number, and the errors are measured
at t∗ = 1.

to converge with the same rate in the low-resolution cases; the
LB-BGK becomes unstable at L = 128.

The natural and central moment space LB schemes, on
the other hand, experience a steep increase in the numerical
error when going from L = 512 to L = 256. Furthermore, at
L = 128 the numerical error with natural moments is greater
than with Central moments. The simulations on the coarsest
lattice, L = 64, are under-resolved to such an extent that all
schemes struggle to capture the proper flow dynamics. The
measured base or reference convergence rate is ∼�r2.36.

The same story is repeated in Fig. 10 where the numerical
errors are plotted for Re = 4×104. However, now the error
for the central moment space LB scheme (Sec. II B) deviates
from the common value already at L = 512. Moreover, the
natural moment space LB scheme (Sec. II B) experiences an
even greater increase in the error when going from L = 512
to L = 128. In all cases, the errors of the natural moment
space LB scheme (Sec. II B) and the regularized LB scheme
(Sec. II C) are very close to each other. All these observations
clearly indicate that the value of the relaxation parameter γ has
an effect on the leading-order error term and, hence, influences
the order of accuracy of a scheme in a complex way. At the
same time, the original regularized LB scheme (Sec. II A)
appears to behave consistently over the full range of simulation
parameters experimented.

E. Discussion

In an attempt to find a correlation between the values of γ

and the numerical behavior of a scheme at the system scale, we
measured the average magnitude of the relaxation parameter
for the higher-order moments. The measured values for the
central moment space LB scheme (Sec. II B) are presented in
Fig. 11. The first observation is that in well-resolved cases the
average value of γ ≈ 1/β. That is, in these cases the entropic
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O Δr0.92

FIG. 11. Average magnitude of the relaxation parameter for
the higher-order moments: the central moment space LB scheme
(Sec. II B) is utilized, U0 = 1/32, ν is varied in order to enforce the
prescribed Reynolds number, and the simulations are run until t∗ = 1.

stabilizer filters out, on average, the high-order nonequilibrium
moments similarly to the original regularized LB scheme.
An analogous observation was already made above from the
numerical error measurements.

From Fig. 11 it is clear that the average value grows
when the resolution is decreased or the Reynolds number
is increased. When further comparing the average relaxation
parameter and numerical error measurements for the central
moment space LB scheme (Sec. II B), it is observed that
when the magnitude of the average value exceeds 0.02 or
0.03, anomalies in the numerical error begin to emerge in
this particular simulation setup. Moreover, the proportion
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FIG. 12. Relative occurrence of the distribution updates where the
higher-order moments are amplified, i.e., |1 − βγ | > 1: the central
moment space LB scheme (Sec. II B) is utilized, U0 = 1/32, ν is
varied in order to enforce the prescribed Reynolds number, and the
simulations are run until t∗ = 1.
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of distribution updates where the higher-order moments are
amplified, i.e., |1 − βγ | > 1, is plotted in Fig. 12. After a
comparison with the error measurements, it is observed that
about 1% of such updates is tolerated; a larger number of
amplification occurrences will be manifested adversely in the
numerical error.

Numerical analysis of LB schemes utilizing the entropic
stabilizer, by theoretical means, is intricate. The main chal-
lenge is to estimate the order of magnitude of γ . For example,
the standard Chapman-Enskog (CE) multiple scale analysis
requires an estimate for the magnitude of γ with respect to the
small expansion parameter ε. With the assumption γ ∼ ε0,
the usual Navier-Stokes level CE analysis does not reveal any
contribution from the entropic stabilizer to the hydrodynamic
approximation. However, the maximum values of γ observed
in Sec. III C clearly compromise such an assumption. Based
on the above presented results, estimating the magnitude of γ

using observed maximum values is perhaps overly restrictive
while the relevance of the average value as an order of
magnitude estimate remains unclear. Hence, more theoretical
work on the numerical analysis is required.

IV. CONCLUSIONS

We have reviewed the entropic stabilizer recently proposed
for improving the stability of LB schemes. The entropic
stabilizer can be considered as an add-on or extension to basic
LB schemes. For example, here we extended the well-known
Regularized LB scheme with the entropic stabilizer. The main
advantage offered by this extended regularization scheme is
that it does not require the construction of a moment space.
This is convenient especially with LB models involving a large
number of discrete velocity vectors.

Using the perturbed double periodic shear layer flow as
a benchmark case, we numerically investigated the behavior
of the entropic stabilizer. The investigation was carried out
by comparing numerical results from total of six distinct
LB schemes: LB-BGK, the original regularized LB scheme
(Sec. II A), the natural and central moment space LB schemes
(Sec. II B), the central moment space LB scheme (Sec. II B)
with γ = 1/β, and the extended regularized LB scheme
(Sec. II C).

It is verified that all three LB schemes which utilize the
entropic stabilizer seem unconditionally stable in the sense that
the simulated flow fields do not appear to diverge. Our main
objective, however, was to inspect how the unbounded, and

not explicitly controllable, relaxation parameter for the higher-
order moments influences simulated local flow features and the
numerical accuracy of a scheme. It was observed that the freely
evolving relaxation parameter can have an undesirable effect
on both, especially in the under-resolved simulation cases for
which the stabilizer is targeted.

In particular, the entropic stabilizer can degrade the order
of accuracy of a LB scheme, and promote unphysical flow
features like spurious vortexes in perturbed double periodic
shear layer flows. Furthermore, it was observed that the natural
and central moment space LB schemes (Sec. II B) differ in their
behavior: the central moment space LB scheme appears as the
most sensitive to initialization, the natural moment space LB
scheme (Sec. II B) and the extended regularized LB scheme
(Sec. II C) behave alike, and the central moment space LB
scheme (Sec. II B) with γ = 1/β is less stable than the original
regularized LB scheme (Sec. II A). Moreover, the original
regularized LB scheme (Sec. II A) performed consistently over
the whole range of simulation parameters used.

In summary, the extreme stability provided by the entropic
stabilizer can potentially deceive users into simulating fluid
flows with improper configuration parameters. To avoid
mixing features that are genuine with those that are numerical
artifacts, careful convergence studies must be carried out
per case. This can be inconvenient and expensive. Hence,
in addition to systematic numerical validation, more detailed
theoretical analysis of the entropic stabilizer is still required
in order to clearly understand its effect on the numerical
properties of a scheme.

On the other hand, the adaptive relaxation parameter for
higher-order moments could perhaps be used as an indicator.
For example, it could indicate the need for grid refinement or it
could simply act as a gauge for the validity of the simulations.
This is a prospect for future work. Another option would be
to explicitly enforce the adaptive relaxation parameter into a
limited range, say, the linear stability range. The behavior of
the entropic stabilizer in this case could also be a topic for
future work.

ACKNOWLEDGMENTS

We acknowledge financial support from the European Com-
munity’s Seventh Framework Programme NMP.2013.1.4-1
under Grant Agreement No. 604005. In addition, we thank
Professor I. Karlin for his fruitful comments on our manuscript,
and for sharing his unpublished results on the same topic.

[1] R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145
(1992).

[2] C. Aidun and J. Clausen, Annu. Rev. Fluid Mech. 42, 439 (2010).
[3] A. J. C. Ladd, J. Fluid Mech. 271, 285 (1994).
[4] R. Adhikari, K. Stratford, M. Cates, and A. Wagner,

Europhys. Lett. 71, 473 (2005).
[5] B. Dünweg, U. D. Schiller, and A. J. C. Ladd, Phys. Rev. E 76,

036704 (2007).
[6] J. Tölke, M. Krafczyk, M. Schulz, and E. Rank, Philos. Trans.

R. Soc. London A 360, 535 (2002).

[7] M. Latva-Kokko and D. H. Rothman, Phys. Rev. E 71, 056702
(2005).

[8] T. Spencer, I. Halliday, and C. Care, Philos. Trans. R. Soc.
London A 369, 2255 (2011).

[9] P. Lallemand and L.-S. Luo, Phys. Rev. E 68, 036706
(2003).

[10] D. d’Humières and I. Ginzburg, Comput. Math. Appl. 58, 823
(2009).

[11] A. Kuzmin, I. Ginzburg, and A. Mohamad, Comput. Math. Appl.
61, 3417 (2011).

063010-9

http://dx.doi.org/10.1016/0370-1573(92)90090-M
http://dx.doi.org/10.1016/0370-1573(92)90090-M
http://dx.doi.org/10.1016/0370-1573(92)90090-M
http://dx.doi.org/10.1016/0370-1573(92)90090-M
http://dx.doi.org/10.1146/annurev-fluid-121108-145519
http://dx.doi.org/10.1146/annurev-fluid-121108-145519
http://dx.doi.org/10.1146/annurev-fluid-121108-145519
http://dx.doi.org/10.1146/annurev-fluid-121108-145519
http://dx.doi.org/10.1017/S0022112094001771
http://dx.doi.org/10.1017/S0022112094001771
http://dx.doi.org/10.1017/S0022112094001771
http://dx.doi.org/10.1017/S0022112094001771
http://dx.doi.org/10.1209/epl/i2004-10542-5
http://dx.doi.org/10.1209/epl/i2004-10542-5
http://dx.doi.org/10.1209/epl/i2004-10542-5
http://dx.doi.org/10.1209/epl/i2004-10542-5
http://dx.doi.org/10.1103/PhysRevE.76.036704
http://dx.doi.org/10.1103/PhysRevE.76.036704
http://dx.doi.org/10.1103/PhysRevE.76.036704
http://dx.doi.org/10.1103/PhysRevE.76.036704
http://dx.doi.org/10.1098/rsta.2001.0944
http://dx.doi.org/10.1098/rsta.2001.0944
http://dx.doi.org/10.1098/rsta.2001.0944
http://dx.doi.org/10.1098/rsta.2001.0944
http://dx.doi.org/10.1103/PhysRevE.71.056702
http://dx.doi.org/10.1103/PhysRevE.71.056702
http://dx.doi.org/10.1103/PhysRevE.71.056702
http://dx.doi.org/10.1103/PhysRevE.71.056702
http://dx.doi.org/10.1098/rsta.2011.0029
http://dx.doi.org/10.1098/rsta.2011.0029
http://dx.doi.org/10.1098/rsta.2011.0029
http://dx.doi.org/10.1098/rsta.2011.0029
http://dx.doi.org/10.1103/PhysRevE.68.036706
http://dx.doi.org/10.1103/PhysRevE.68.036706
http://dx.doi.org/10.1103/PhysRevE.68.036706
http://dx.doi.org/10.1103/PhysRevE.68.036706
http://dx.doi.org/10.1016/j.camwa.2009.02.008
http://dx.doi.org/10.1016/j.camwa.2009.02.008
http://dx.doi.org/10.1016/j.camwa.2009.02.008
http://dx.doi.org/10.1016/j.camwa.2009.02.008
http://dx.doi.org/10.1016/j.camwa.2010.07.036
http://dx.doi.org/10.1016/j.camwa.2010.07.036
http://dx.doi.org/10.1016/j.camwa.2010.07.036
http://dx.doi.org/10.1016/j.camwa.2010.07.036


MATTILA, HEGELE, JR., AND PHILIPPI PHYSICAL REVIEW E 91, 063010 (2015)

[12] R. A. Brownlee, A. N. Gorban, and J. Levesley, Phys. Rev. E
74, 037703 (2006).

[13] R. A. Brownlee, A. N. Gorban, and J. Levesley, Phys. Rev. E
75, 036711 (2007).

[14] R. A. Brownlee, A. N. Gorban, and J. Levesley, Physica A 387,
385 (2008).
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