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Motion of an array of plates in a rarefied gas caused by radiometric force
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In a rarefied gas in an infinitely long channel between two parallel plates, an array of infinitely many plates,
arranged longitudinally with uniform interval, is placed along the channel. The array is assumed to be freely
movable along the channel. If one side of each plate is heated, the radiometric force acts on it, and the array starts
moving toward the cold sides of the plates. The final steady motion of the array, as well as the corresponding
behavior of the gas, is investigated numerically on the basis of kinetic theory using the ellipsoidal statistical model
of the Boltzmann equation. As the solution method, a finite-difference method, with a method of characteristics
incorporated, that is able to capture the discontinuity in the velocity distribution function is employed. As the
result, the local flow field near the edges of the plates and the terminal velocity of the array are obtained accurately
for relatively small Knudsen numbers.
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I. INTRODUCTION

The Crookes radiometer, also known as the light mill, is a
device which operates by using the rarefied gas (kinetic) effect.
More specifically, it consists of a glass bulb containing a low
pressure gas and a vaned wheel supported by a spindle in
it. The vane wheel can rotate freely, and one side of each
vane is blackened, whereas the other side is reflective (or
metallic). When exposed to the light (radiation), the vanes
inside the bulb start rotating in the direction toward the metallic
sides. The mechanism behind the moving vanes was once
of great curiosity [1–6]. The recent development of micro
technologies brought again the attention of many scientists to
this classical device [7–25]. The reader is referred to [18] for
the history as well as for the recent studies on the radiometric
phenomenon.

In our previous study [14,16], motivated by the radiometric
phenomenon, we considered a simple model problem, in which
a (two-dimensional) plate, without thickness and with one
side heated, is placed in a rarefied gas in a square box. We
investigated the steady gas flow induced around the plate and
the force acting on the plate (radiometric force) numerically on
the basis of kinetic theory, using the Bhatnagar-Gross-Krook
(BGK) model [26,27] of the Boltzmann equation, for a wide
range of the Knudsen number. In [14,16], the emphasis was
put on the detailed structure of the flow field near the edges
of the plate. For this purpose, we carried out an accurate
numerical analysis using the method that is able to capture
the discontinuity in the velocity distribution function near the
edges. It was found that, in the near continuum regime (i.e., for
small Knudsen numbers), the radiometric force is effectuated
only in the vicinity of the edges and is attributed to the
thermal stress caused by the steep temperature change near the
edges.
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In an actual radiometer, however, the vanes are not at
rest but are moving continuously in the gas. There are some
recent studies of the radiometric phenomenon for moving
vanes [15,19,22,25]. These works successfully demonstrate
that moving boundary problems are within reach also in
kinetic theory of gases. However, there is still lack of detailed
information on the structure of the flow field, such as the
velocity and temperature fields and stress distribution, near
the edge of a moving vane.

Therefore, in the present study, we propose a simple
problem modeling the moving vanes, which is an extension
of that in [16], and try to obtain some detailed information on
the flow field. The model problem, which should be simple
enough for accurate and detailed numerical analysis, should
retain the essential feature of the moving vanes of a radiometer.
To be more specific, we consider a rarefied gas in an infinitely
long channel between two parallel plates and place an array of
infinitely many plates, arranged longitudinally with uniform
interval, along the channel. We assume that the array can move
freely along the channel. If we heat one side of each plate,
the radiometric force acts on it, and the array starts moving
toward the cold sides of the plates. We investigate the final
steady motion of the array and the corresponding behavior of
the gas numerically on the basis of kinetic theory, with special
interest in the local flow field near the edges of the plates and
in obtaining the terminal velocity of the array. We use the
ellipsoidal statistical (ES) model [28–30] of the Boltzmann
equation as the basic equation. The numerical method used
here is basically the same as that used in [16]. We only need
small adjustments for the present problem and the ES model.

The organization of the paper is as follows. After this
introduction, we state the problem and the assumptions in
Sec. II. Then, we give the basic equations and boundary
conditions in Sec. III. A brief remark on the numerical method
is given in Sec. IV. In Sec. V, we show the results of
numerical analysis. Section VI is devoted to discussions about
the cause of the radiometric force, and Sec. VII to concluding
remarks.
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II. PROBLEM AND ASSUMPTIONS

The problem that is considered in the present paper is
described as follows:

Problem I. Consider a rarefied gas in a two-dimensional
straight channel between two parallel walls located at X2 =
±L/2, where Xi is the Cartesian coordinate system. In
the channel, an array consisting of infinitely many two-
dimensional flat plates without thickness, which are spaced
uniformly and oriented perpendicularly to the X1 axis, is
placed along the X1 axis [Fig. 1(a)]. The array can move
freely along the X1 axis. The width of each plate is denoted
by D, and the interval between two plates by H . Suppose that
the left surface of each plate is kept at the same temperature
T0 as the channel walls, whereas its right surface is kept at
a higher temperature T1. Then, a leftward force acts on each
plate because of the temperature difference between the two
surfaces (radiometric force), so that the array moves in the
leftward direction. It finally reaches a steady motion with a
constant velocity (−v∗, 0, 0) (v∗ > 0) [Fig. 1(a)], in which the
radiometric force acting on each plate is counterbalanced by
the drag force caused by the motion of the plate in the gas.
Investigate the behavior of the gas in this final state and obtain
the final speed v∗ of the array.

We are going to analyze this problem numerically under
the following assumptions:

(i) The behavior of the gas is described by the ellipsoidal
statistical (ES) model [29] of the Boltzmann equation.

(ii) The gas molecules undergo diffuse reflection [31] on
the plates as well as on the channel walls. More specifically,
the velocity of the gas molecules reflected from the boundary
is distributed according to the corresponding part (i.e., the half
range) of the Maxwellian distribution characterized by the
temperature and velocity of the boundary and by the condition
that there is no net mass flow across the boundary.

Problem I is an unsteady problem in the whole range of the
channel (−∞ < X1 < ∞, −L/2 < X2 < L/2). However, if
we take the coordinate system moving with the array, that
is, moving with the velocity (−v∗, 0, 0), then, the array is
at rest, and the channel walls are moving with the velocity
(v∗, 0, 0) rightward in the new coordinate system. As is easily
checked by the Galilean transformation, the latter problem in
the new coordinate system is time independent. Moreover, the

flow field is periodic with period H in the X1 direction. This
simplifies the computation significantly. The only problem is
that we do not know the final speed v∗ beforehand.

Therefore, we modify the latter time-independent problem
slightly: We assume that the walls are moving with a given
velocity (vw, 0, 0) (vw > 0) rightward. Then, we adjust vw in
such a way that the total force acting on each plate vanishes.
This vw is nothing but v∗. In this way, we can obtain the original
speed of the array v∗.

To be more specific, we consider the following time-
independent problem:

Problem II. Consider a rarefied gas in a two-dimensional
straight channel between two parallel walls located at X2 =
±L/2 and moving with velocity (vw, 0, 0). There is an array
of the plates at rest located at X1 = 0, ± H, ± 2H, . . .

[Fig. 1(b)]. The other geometrical parameters, the temperatures
of the plates and walls, and assumptions (i) and (ii) are the same
as Problem I. Investigate the steady behavior of the gas and
the force acting on the plates. In particular, obtain the speed of
the walls that vanishes the total force acting on each plate.

As mentioned above, Problem II can be analyzed only in
the finite domain −H/2 < X1 < H/2, −L/2 < X2 < L/2
by imposing the periodic boundary condition at X1 = ±H/2.
In the following, we will formulate Problem II in this finite
domain.

The present approach using Problem II to solve Problem
I was originally proposed in [17], where only a preliminary
computation was performed. It should be mentioned that a
similar coordinate transformation was used to investigate the
gas flow in a radiometer with a cylindrical shape in [15].
A direct numerical simulation for a cylindrical or spherical
radiometer as a moving boundary problem was carried out
recently in [19,22,25].

III. BASIC EQUATIONS FOR PROBLEM II

A. Basic equation and boundary conditions

Let ρav be the average density of the gas in the do-
main −H/2 < X1 < H/2, −L/2 < X2 < L/2 and let p0 =
RρavT0, where R is the gas constant per unit mass of the
gas (i.e., the Boltzmann constant divided by the mass of
a molecule). In addition to the symbols already mentioned,

(a) (b)

FIG. 1. (Color online) Problems I and II. (a) Problem I: An array of plates moving with velocity (−v∗, 0, 0) in a gas between two walls at
rest because of the radiometric force, (b) Problem II: An array of plates at rest in a gas between two walls moving with velocity (vw, 0, 0).
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we introduce the following quantities: ξi is the molecular
velocity, f (X1, X2, ξi) is the molecular velocity distribution
function, ρ(X1, X2) is the density of the gas, vi(X1, X2) is
the flow velocity (v3 = 0), T (X1, X2) is the temperature,
p(X1, X2) = RρT is the pressure, and pij (X1, X2) is the stress
tensor (p13 = p23 = p31 = p32 = 0). Then, we introduce
the dimensionless counterparts (xi, ζi, f̂ , ρ̂, v̂i , T̂ , p̂, p̂ij ) of
(Xi, ξi, f, ρ, vi, T , p, pij ) as follows:

xi = Xi/D, ζi = ξi/(2RT0)1/2,

f̂ (x1, x2, ζi) = f/[ρav(2RT0)−3/2],

ρ̂(x1,x2) = ρ/ρav, v̂i(x1,x2) = vi/(2RT0)1/2,
(1)

T̂ (x1,x2) = T/T0,

p̂(x1,x2) = p/p0 = ρ̂T̂ , p̂ij (x1,x2) = pij /p0,

where v̂3 = 0 and p̂13 = p̂23 = p̂31 = p̂32 = 0.
The macroscopic quantities ρ̂, v̂i , etc. are given by appro-

priate moments of f̂ :

ρ̂ =
∫

f̂ dζ , v̂i = 1

ρ̂

∫
ζi f̂ dζ , (2a)

T̂ = p̂

ρ̂
= 2

3ρ̂

∫
(ζj − v̂j )2f̂ dζ , (2b)

p̂ij = 2
∫

(ζi − v̂i)(ζj − v̂j )f̂ dζ , (2c)

where dζ = dζ1dζ2dζ3 and the domain of integration is the
whole space of ζ .

Furthermore, we introduce the following dimensionless
parameters:

T̂1 = T1

T0
, v̂w = vw

(2RT0)1/2
,

(3)

Kn = �0

D
, L̂ = L

D
, Ĥ = H

D
.

Here, �0 is the mean free path of the gas molecules at the
equilibrium state at rest with density ρav and temperature T0,
which is defined, for the ES model, as

�0 = (2/
√

π )(2RT0)1/2/Acρav, (4)

with Ac a constant such that Acρ is the collision frequency
of the gas molecules, and Kn is the Knudsen number that
represents the degree of gas rarefaction.

The ES model in the present steady and spatially two-
dimensional problem is written as

ζ1
∂f̂

∂x1
+ ζ2

∂f̂

∂x2
= 2√

πKn
ρ̂(G − f̂ ),

(5)(
− Ĥ

2
< x1 <

Ĥ

2
, − L̂

2
< x2 <

L̂

2

)
,

where

G = ρ̂

π3/2(detA)1/2
exp

(
−1

2
bij (ζi − v̂i)(ζj − v̂j )

)
, (6a)

A = (aij ), aij = (1 − ν)T̂ δij + ν
p̂ij

ρ̂
, (6b)

bij = (i, j ) component of A−1, (6c)

and ρ̂, v̂i , T̂ , and p̂ij in Eq. (6) are expressed in terms of
f̂ as given by Eq. (2). Here, A is the matrix whose (i,j )
component is given by aij , A−1 and detA are, respectively,
the inverse matrix and the determinant of A, δij is the
Kronecker delta, and ν (−1/2 � ν < 1) in Eq. (6b) is a
parameter. The viscosity μ0 and the thermal conductivity
λ0 for this model at our reference state are given by μ0 =
(1 − ν)−1p0/Acρav and λ0 = (5/2)Rp0/Acρav , respectively.
Therefore, the Prandtl number Pr at the same state, which
is defined by Pr = 5Rμ0/2λ0, is expressed in terms of the
parameter ν as Pr = 1/(1 − ν). Thus, Pr = 2/3 for ν = −1/2,
and Pr = 1 for ν = 0. In the latter case, Eq. (5) reduces to the
BGK model.

The diffuse reflection condition on the right and left surfaces
of the plate located at x1 = 0 is written as

f̂ = σ̂±
w(

πT̂ ±
w

)3/2 exp

(
− ζ 2

j

T̂ ±
w

)
, for ± ζ1 > 0,

(7)
(x1 = 0±, − 1/2 < x2 < 1/2),

σ̂±
w = ∓2

(
π

T̂ ±
w

)1/2 ∫
±ζ1<0

ζ1f̂ (x1 = 0±,x2,ζi)dζ , (8)

T̂ +
w = T̂1, T̂ −

w = 1, (9)

where the upper (or lower) sign corresponds to the condition
on the right (or left) surface.

The diffuse reflection condition on the channel walls is
given as

f̂ = σ̂w

π3/2
exp

( − (ζ1 − v̂w)2 + ζ 2
2 + ζ 2

3

)
,

(10)
for ±ζ2 < 0, at x2 = ±L̂/2,

with

σ̂w = ±2
√

π

∫
±ζ2>0

ζ2f̂ (x1, ± L̂/2, ζi)dζ , (11)

where the upper (or lower) signs go together.
The periodic boundary condition is applied at x1 = ±Ĥ /2,

i.e.,

f̂ (±Ĥ /2, x2, ζi) = f̂ (∓Ĥ /2, x2, ζi), for ±ζ1 < 0, (12)

where the upper (or lower) signs go together.
Since the problem is symmetric with respect to the x1 axis,

we can analyze the problem only in the upper half domain
−Ĥ /2 < x1 < Ĥ/2, 0 < x2 < L̂/2 by imposing the specular
reflection condition on the x1 axis, i.e.,

f̂ (x1,0,ζ1,ζ2,ζ3) = f̂ (x1,0,ζ1, − ζ2,ζ3), for ζ2 > 0. (13)

In summary, the system to be solved consists of Eqs. (5)–
(12), restricted to the upper half domain 0 < x2 < L̂/2, and
Eq. (13). The solution in the lower half domain is obtained
from that in the upper half domain by the following relation:

f̂ (x1,x2,ζ1,ζ2,ζ3) = f̂ (x1, − x2,ζ1, − ζ2,ζ3),
(14)

(−L̂/2 � x2 < 0).
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B. Further transformations

As in the case of the BGK model, we can eliminate
the x3 component of the molecular velocity ζ3 from the
system of equations, following the standard procedure (i.e.,
the two-dimensional version of the procedure in [32]). We
first introduce the marginal velocity distribution functions g

and h and the two-component vector � composed of g and h:

� =
[
g

h

]
=

∫ ∞

−∞

[
1
ζ 2

3

]
f̂ dζ3. (15)

Then, multiplying Eqs. (5), (7), (10), and (12), restricted to
the upper half domain (0 < x2 < L̂/2), and Eq. (13) by 1 and
ζ 2

3 and integrating the results with respect to ζ3 from −∞ to
∞, we obtain a system of simultaneous equations for g and
h. The equations and boundary conditions thus obtained are
summarized as follows. The equations are

ζ1
∂�

∂x1
+ ζ2

∂�

∂x2
= 2√

π

1

Kn
ρ̂(�g − �), (16a)

�g =
[

1
a33/2

]
ρ̂

π (detA)1/2

× exp

(
−

2∑
k,l=1

bkl(ζk − v̂k)(ζl − v̂l)

)
,

(16b)

ρ̂ =
∫ ∞

−∞

∫ ∞

−∞
gdζ1dζ2, (16c)

v̂k = 1

ρ̂

∫ ∞

−∞

∫ ∞

−∞
ζkgdζ1dζ2 (k = 1,2),

(16d)

T̂ = 2

3ρ̂

∫ ∞

−∞

∫ ∞

−∞
{[(ζ1 − v̂1)2

+ (ζ2 − v̂2)2]g + h}dζ1dζ2, (16e)

p̂kl = 2
∫ ∞

−∞

∫ ∞

−∞
(ζk − v̂k)(ζl − v̂l)gdζ1dζ2

(k,l = 1,2), (16f)

p̂33 = 2
∫ ∞

−∞

∫ ∞

−∞
hdζ1dζ2, (16g)

A =
(

a11 a12

a21 a22

)
, (16h)

bkl = (k, l) component of A −1, (16i)

with akl (k,l = 1,2) and a33 being defined in Eq. (6b). The
boundary condition on the right and left surfaces of the plate is

� =
[

2/T̂ ±
w

1

]
σ̂±

w

2π
exp

(
−ζ 2

1 + ζ 2
2

T̂ ±
w

)
, for ±ζ1 > 0,

(17a)
(x1 = 0±, 0 � x2 � 1/2),

σ̂±
w = ∓2

(
π

T̂ ±
w

)1/2 ∫
±ζ1<0

ζ1g(x1 = 0±,x2,ζ1,ζ2)dζ1dζ2,

(17b)

T̂ +
w = T̂1, T̂ −

w = 1. (17c)

The condition on the upper channel wall is

� =
[

2
1

]
σ̂w

2π
exp

( − [
(ζ1 − v̂w)2 + ζ 2

2

])
, for ζ2 < 0,

(−Ĥ /2 < x1 < Ĥ/2, x2 = L̂/2), (18a)

σ̂w = 2
√

π

∫
ζ2>0

ζ2g(x1, L̂/2, ζ1, ζ2)dζ1dζ2. (18b)

The periodic condition on the side boundary and the specular
reflection on the x1 axis are, respectively,

�(±Ĥ /2, x2, ζ1, ζ2) = �(∓Ĥ /2, x2, ζ1, ζ2),
(19)

for ±ζ1 < 0, (0 < x2 < L̂/2),

�(x1,0,ζ1,ζ2) = �(x1,0,ζ1, − ζ2),
(20)

for ζ2 > 0, (−Ĥ /2 < x1 < Ĥ/2).

As is seen from Eqs. (16a), (17a), (18a), (19), and (20),
the present problem is characterized by the five dimensionless
parameters listed in Eq. (3). In addition, Eq. (16a) contains an
adjustable parameter ν through a33 and bkl [cf. Eq. (16h)]. In
the present study, we set ν = −1/2, so that Pr = 2/3.

IV. NUMERICAL METHOD: A BRIEF REMARK

We solve the boundary-value problem, Eqs. (16a)–(20),
basically by the finite-difference method. The numerical
method employed in the present study is essentially the same
as that in [16]. Therefore, the reader is referred to [16]. Here,
we only give a brief remark on the numerical method.

As pointed out in [33] (see also [31]), the velocity distri-
bution function of the gas molecules contains discontinuities
in the gas around a convex body. The convexity of the body
concentrates on the edges of the plate in the problem under
consideration. On the other hand, discontinuous boundary
data, such as a discontinuous boundary temperature, also
induce discontinuities in the velocity distribution function in
the gas (see [34,35]), irrespective of the shape of the boundary.
This cause for the discontinuity is also located on the edges of
the plate in the present problem.

Numerical methods that are able to describe the above
mentioned discontinuity have been developed in Kyoto Uni-
versity [34,36–39], and the method used in [16] and here is
based on these methods, in particular, the method in [39],
where a problem containing sharp edges is considered.

The procedure is outlined in Appendix A of [16]. The
essential point is that, for each discretized molecular velocity,
say (ζ (k)

1 , ζ
(l)
2 ), the velocity distribution function �, as the

function of (x1, x2), is generally discontinuous along the
straight line originating from the (upper) edge of the plate
and parallel to the vector (ζ (k)

1 , ζ
(l)
2 ). For ζ

(l)
2 > 0, it is also

discontinuous along the part for x2 > 0 of the straight line
originating from the lower edge and parallel to (ζ (k)

1 , ζ
(l)
2 ) [it

is the reflection on the x1 axis of the line originating from the
upper edge parallel to (ζ (k)

1 , − ζ
(l)
2 )]. We divide the domain

−Ĥ /2 < x1 < Ĥ/2, 0 < x2 < L̂/2 by the lines of discontinu-
ity and apply the finite-difference formula in each subdomain
in order to avoid the finite-difference approximation across the
line of discontinuity. In this procedure, for each discretized
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(ζ (k)
1 , ζ

(l)
2 ), the limiting values of � on both sides of the line of

discontinuity are required as the boundary condition for each
subdomain. We prepare these limiting values beforehand by
solving Eq. (16a) along both sides of the discontinuity line
(characteristic line) using finite-difference approximation. In
short, the method is a combination of the finite-difference
method and the method of characteristics.

However, there is an important difference between the
present problem and the problem of [16]. In the latter problem,
a single plate is placed in a gas in a closed domain bounded
by the wall with diffuse reflection. Therefore, when the
discontinuity line reaches the wall, it is absorbed there and
is never transmitted to the gas again. In other words, the
number of the discontinuity lines is at most two for each
(ζ (k)

1 , ζ
(l)
2 ). In contrast, in the present problem, the discontinuity

line that reaches one of the periodic boundaries (x1 = ±Ĥ /2)
is transmitted to the gas through the other periodic boundary.
Therefore, when 0 < ζ

(l)
2 � 1, many discontinuity lines cross

over the gas region (infinitely many as ζ
(l)
2 → 0). However, the

discontinuity decays over the distance of the order of Kn from
the edge of the plate along the discontinuity line. Therefore, if
we consider the case where the Knudsen number is relatively
small (say, Kn � 0.5), we can safely ignore the discontinuities
transmitted through the periodic boundaries. Thus, by doing
so, our scheme becomes almost exactly the same as that used
in [16].

Concerning the numerical results that will be presented in
the next section, we will also omit the descriptions about the
used grid systems and the accuracy of the results. Since they
are similar to those in [16], we just refer the reader to this
reference for the details. It should be emphasized, however,
that the accuracy in the present computation is of the same
level as or higher than that in [16].

V. RESULTS OF NUMERICAL ANALYSIS

The first step of our analysis is to solve Problem II to
obtain the flow field and the force acting on the plate for a
given set of the parameters (T̂1, v̂w, Kn, L̂, Ĥ ) [cf. Eq. (3)].
The second step is to change v̂w for the fixed (T̂1, Kn, L̂, Ĥ ) in
Problem II and find its value v̂∗ = v∗/(2RT0)1/2 for which the
net force acting on the plate vanishes. This solves the original
Problem I.

In the present paper, we show the results for L̂ = Ĥ = 4
and T̂1 = 2, unless otherwise stated [e.g., Fig. 3, Table I, and
Fig. 17(b) contain other cases]. We mainly show the solution of
Problem I in the coordinate system moving with the plates, or
equivalently, the solution of Problem II for v̂w = v̂∗. However,
we also present some results of Problem II for assigned values
of v̂w (cf. Secs. V A, V C, V F, and VI).

A. Force acting on the plate in Problem II

We first give an example that shows the behavior of the net
force acting on the plate when the velocity of the wall v̂w is
changed in Problem II. Figure 2 shows the net force (F1, 0, 0)
acting on the plate (per unit length in the X3 direction),
normalized by p0D, versus vw/(2RT0)1/2(= v̂w) for Kn = 0.1,
0.2, 0.3, and 0.5. It is seen from the figure that it is not difficult

TABLE I. Terminal speed of the array v∗ vs Kn in Problem I
(L/D = 4).

v∗/(2RT0)1/2 × 102

T1/T0 = 2 T1/T0 = 2 T1/T0 = 1.5

Kn H/D = 4 H/D = 2 H/D = 4
0.05 2.385 2.654 1.181
0.06 2.617 2.913 1.300
0.07 2.804 3.136 1.400
0.08 2.995 3.331 1.489
0.09 3.149 3.504 1.569
0.1 3.317 3.617 1.667
0.15 3.826 4.225 1.945
0.2 4.165 4.683 2.142
0.3 4.584 5.266 2.390
0.4 4.826 5.646 2.540
0.5 4.981 5.915 2.640

to find v̂w that vanishes the net force by several trials. In
the actual computation, instead of performing the two steps
mentioned at the beginning of Sec. V separately, we also solve
Problem I directly by carrying out the adjustment of v̂w in the
process of iteration in such a manner that the magnitude of the
total force acting on the plate tends to decrease.

B. Speed of the array v∗ in Problem I

In this subsection, we show one of the main results, that
is, the final velocity of the array in Problem I. In Fig. 3,
v∗ of the final velocity (−v∗, 0, 0) is shown versus the
Knudsen number for L/D = 4: • indicates the result for
T1/T0 = 2,H/D = 4, ◦ that for T1/T0 = 2,H/D = 2, and 	
that for T1/T0 = 1.5,H/D = 4. The corresponding numerical
values of v∗ is shown in Table I. Since (2RT0)1/2 is a quantity
of the order of the sound speed, v∗/(2RT0)1/2 is roughly the
Mach number of the motion of the array. When T1/T0 = 1.5
and Kn = 0.1, it becomes 0.0167, which is not small at all in
our daily experience.

0 0.02 0.04 0.06 0.08 0.1-0.06

-0.04

-0.02

0

0.02

0.04

0.06

FIG. 2. Net force F1/p0D vs vw/(2RT0)1/2 in Problem II for
several Kn in the case of T1/T0 = 2 (L/D = H/D = 4). The
numerical results are shown by the symbols. The dashed line indicates
F1 = 0.
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0.02

0.04

0.06

0.08

FIG. 3. Terminal speed of the array v∗ vs Kn in Problem I (L/D =
4). Here, • indicates the result for T1/T0 = 2, H/D = 4, ◦ that for
T1/T0 = 2, H/D = 2, and 	 that for T1/T0 = 1.5, H/D = 4.

C. Flow field

Next, we show the flow field when vw = v∗ in Problem II
for two Knudsen numbers, Kn = 0.5 and 0.05. This is nothing
but the flow field of the solution of Problem I seen by the
observer moving with the plate. To see the effect of the motion
of the plate, we also show the corresponding results when
vw = 0 in Problem II. Because of the symmetry, only the
upper half (X2 > 0) of the flow field is shown in the figures in
this subsection.

Figure 4 shows the flow velocity field (v1, v2) for Kn = 0.5
[(a) and (c)] and 0.05 [(b) and (d)] in the case of T1/T0 = 2
(L/D = H/D = 4). The upper figures [(a) and (b)] are for
vw = v∗ in Problem II (or Problem I), and the lower figures
[(c) and (d)] for vw = 0 in Problem II. In the figures, the
arrow indicates the flow velocity vector (v1,v2)/(2RT0)1/2 at its

starting point, and the scale is indicated at the top right corner
of each figure. The first and second quadrants are separated
slightly to show the flow velocity on the plate clearly. In order
to see the detailed velocity field near the edge, we show in
Fig. 5 the magnified figures around the edge corresponding to
Fig. 4. Since the wall is moving in Figs. 4(a) and 4(b) and is at
rest in Figs. 4(c) and 4(d), the flow velocity field near the wall
in Fig. 4(a) [or Fig. 4(b)] is different from that in Fig. 4(c) [or
Fig. 4(d)]. However, the flow velocity near the plate in Fig. 5(a)
[or Fig. 5(b)] does not differ much from that in Fig. 5(c) [or
Fig. 5(d)]. This is due to the fact that v̂∗ is relatively small
[v̂∗ 
 0.050 for panel (a) in Figs. 4 and 5 and v̂∗ 
 0.024
for panel (b) in these figures]. The difference whether the
plate is moving with the velocity (−v∗, 0, 0) or at rest can be
observed more clearly in Fig. 6, where the isolines of the flow
speed |vi |/(2RT0)1/2 = const are depicted. Figures 6(a)–6(d)
correspond to the cases of Figs. 4(a)–4(d), respectively.

In Figs. 7–9, we show the isolines of the density ρ/ρav =
const, those of the temperature T/T0 = const, and those of
the pressure p/p0 = const. Panels (a)–(d) in these figures
correspond to the cases of Figs. 4(a)–4(d), respectively. The
difference between panel (a) and panel (c) and that between
panel (b) and panel (d) are very small in Figs. 7 and 8. That
is, the density and temperature fields are little affected by
whether the plate is moving with the velocity (−v∗, 0, 0) or
at rest. Therefore, the same should be true for the pressure
field. However, the difference between Figs. 9(a) and 9(c) and
that between Figs. 9(b) and 9(d) are significant. This is due
to the fact that the variation of pressure over the flow field is
small, especially for small Kn [Figs. 9(b) and 9(d)], so that
the small difference is exaggerated in the figure of isobaric
lines. One should note, however, that this small difference in
pressure (more precisely, the small difference in the normal
stress p11) results in whether or not the net force acting on
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0 1 2

0.1

(b)
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0.1

(c)

-2 -1 0
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1

2

0 1 2

0.1

-2 -1 0
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1
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(d)

FIG. 4. Flow velocity field (v1,v2) in the case of T1/T0 = 2 (L/D = H/D = 4). (a) Kn = 0.5 (Problem I, or vw = v∗ in Problem II); (b)
Kn = 0.05 (Problem I, or vw = v∗ in Problem II); (c) Kn = 0.5 (vw = 0 in Problem II); (d) Kn = 0.05 (vw = 0 in Problem II). The arrow
indicates the flow velocity vector (v1,v2)/(2RT0)1/2 at its starting point, and the scale is shown at the top right corner of each figure.
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(d)

FIG. 5. Magnified figure of the flow velocity field near the edge in the case of T1/T0 = 2 (L/D = H/D = 4). (a) Kn = 0.5 (Problem I, or
vw = v∗ in Problem II); (b) Kn = 0.05 (Problem I, or vw = v∗ in Problem II); (c) Kn = 0.5 (vw = 0 in Problem II); (d) Kn = 0.05 (vw = 0 in
Problem II). See the caption of Fig. 4.

the plate vanishes. Figures 6–9 (in particular, Figs. 7 and 8)
demonstrate that the isolines concentrate on the edge. In other
words, the macroscopic quantities are singular there in the
sense that they do not take a unique value there. This singularity
is described correctly only by the precise description of the
discontinuity in the velocity distribution function, as shown in
the next subsection.

D. Velocity distribution function

In Figs. 10 and 11, we show the marginal velocity
distribution functions g and h [cf. Eq. (15)] seen by the
observer moving with the plate in Problem I (or equivalently,
g and h when vw = v∗ in Problem II). Figure 10 is for
Kn = 0.5 and Fig. 11 for Kn = 0.05 in the case of T1/T0 = 2
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0

1
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1
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(c)
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(d)

FIG. 6. Isolines of the flow speed |vi |/(2RT0)1/2 = const in the case of T1/T0 = 2 (L/D = H/D = 4). (a) Kn = 0.5 (Problem I, or
vw = v∗ in Problem II), |vi |/(2RT0)1/2 = 0.01 + 0.01m (m = 0, . . . ,5); (b) Kn = 0.05 (Problem I, or vw = v∗ in Problem II), |vi |/(2RT0)1/2 =
0.005 + 0.005m (m = 0, . . . ,12); (c) Kn = 0.5 (vw = 0 in Problem II), |vi |/(2RT0)1/2 = 0.005 + 0.005m (m = 0, . . . ,8); (d) Kn = 0.05
(vw = 0 in Problem II), |vi |/(2RT0)1/2 = 0.005 + 0.005m (m = 0, . . . ,12).
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FIG. 7. Isolines of the density ρ/ρav = const in the case of T1/T0 = 2 (L/D = H/D = 4). (a) Kn = 0.5 (Problem I, or vw = v∗ in Problem
II), ρ/ρav = 0.75 + 0.05m (m = 0, . . . ,6); (b) Kn = 0.05 (Problem I, or vw = v∗ in Problem II), ρ/ρav = 0.65 + 0.05m (m = 0, . . . ,9); (c)
Kn = 0.5 (vw = 0 in Problem II), ρ/ρav = 0.75 + 0.05m (m = 0, . . . ,6); (d) Kn = 0.05 (vw = 0 in Problem II), ρ/ρav = 0.65 + 0.05m

(m = 0, . . . ,9).

(L/D = H/D = 4). The figures show g and h as functions
of ζ1 and ζ2 at four points along the line x2 (= X2/D) =
0.5: (X1/D,X2/D) = (−0.05, 0.5) [(a)], (0.05, 0.5) [(b)],
(0.5, 0.5) [(c)], and (1, 0.5) [(d)]. When the Knudsen number
is not small (Fig. 10), the discontinuity originating from the

upper edge is observed clearly along the line ζ2 = 0 in both
g and h at the points near the edge [Figs. 10(a) and 10(b)].
But, the discontinuity originating from the lower edge, which
has almost decayed, can barely be observed in Fig. 10(b)
(along ζ2 = −20ζ1). Since the corresponding discontinuity is
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FIG. 8. Isolines of the temperature T/T0 = const in the case of T1/T0 = 2 (L/D = H/D = 4). (a) Kn = 0.5 (Problem I, or vw = v∗ in
Problem II), T/T0 = 1.1 + 0.1m (m = 0, . . . ,5); (b) Kn = 0.05 (Problem I, or vw = v∗ in Problem II), T/T0 = 1.1 + 0.1m (m = 0, . . . ,7);
(c) Kn = 0.5 (vw = 0 in Problem II), T/T0 = 1.1 + 0.1m (m = 0, . . . ,5); (d) Kn = 0.05 (vw = 0 in Problem II), T/T0 = 1.1 + 0.1m (m =
0, . . . ,7).
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FIG. 9. Isolines of the pressure p/p0 = const in the case of T1/T0 = 2 (L/D = H/D = 4). (a) Kn = 0.5 (Problem I, or vw = v∗ in Problem
II), p/p0 = 1.09 + 0.01m (m = 0, . . . ,6); (b) Kn = 0.05 (Problem I, or vw = v∗ in Problem II), p/p0 = 1.16 + 0.005m (m = 0, . . . ,7); (c)
Kn = 0.5 (vw = 0 in Problem II), p/p0 = 1.09 + 0.01m (m = 0, . . . ,9); (d) Kn = 0.05 (vw = 0 in Problem II), p/p0 = 1.16 + 0.005m

(m = 0, . . . ,7).

on the other side of the “mountain” in Fig. 10(a) [note that the
directions of the ζ1 and ζ2 axes in Fig. 10(a) are different from
those in Figs. 10(b)–10(d)], it is invisible. As the distance
from the upper edge increases [Fig. 10(b) → Fig. 10(c) →
Fig. 10(d)], even the discontinuity produced by it decays and
is almost invisible in Fig. 10(d). When the Knudsen number
is relatively small (Fig. 11), the discontinuity caused by the
upper edge is barely visible even at the points close to the edge
[Figs. 11(a) and 11(b)] and is already invisible in Fig. 11(c). It
should be noted, however, that even for this Knudsen number,
g and h are similar to Figs. 10(a) and 10(b) at the points
(X1/D,X2/D) = (−0.005, 0.5) and (0.005, 0.5) that are a
half-mean-free path apart from the edge. The limiting location
of the discontinuity in g and h as the edge is approached
depends on the direction of approach. This fact is reflected as
the singularity in the macroscopic quantities mentioned in the
last part of Sec. V C.

As noted in the fifth paragraph in Sec. IV, we have
neglected the discontinuities originating from the edges of
the neighboring plates. In fact, when Kn � 0.5, their effect
is practically invisible. On the other hand, as was noted in
the last paragraph in Sec. V C, even small changes are well
visible in the isobaric lines in Fig. 9 because the variation in
the pressure is small. This means that a small computational
error might be magnified and become appreciable in the
isobaric lines. It is true, and even the computation that is
accurate enough gives a slightly fluctuating isobaric line for
p/RρavT0 = 1.1 between X1/D = −1 and −2 when vw = 0
and Kn = 0.5. The reason why such fluctuations are not
observed in Fig. 9(c) is that we showed there the result with
higher accuracy, based on a very fine grid system, than other
cases.

E. Normal stress on the plate

In the solution of Problem I, the net force acting on the plate
vanishes. However, how the local force is distributed along the
plate is not obvious. In this subsection, we look into the stress
distribution on the plate as well as in the gas. Here again, we
consider the stress distribution only in the upper half (X2 > 0)
because of the symmetry of the problem.

Figures 12 and 13 show the distribution of the normal stress
p11/p0 along the lines X1/D = const parallel and close to the
plate for Kn = 0.5 (Fig. 12) and 0.05 (Fig. 13) in the case
of T1/T0 = 2 (L/D = H/D = 4), as seen by the observer
moving with the plate in Problem I. In each figure, panel (a)
shows the distribution along the vertical lines located in the left
side of the plate (including the line along the left surface of the
plate, X1/D = 0−), whereas panel (b) that along the vertical
lines in the right side of the plate (including the line along the
right surface of the plate, X1/D = 0+). The change in p11 is
sharp near the edge and is discontinuous at the edge along the
plate (X1/D = 0±).

On the plate, let us put p−
11 = p11(X1 = 0−, X2) and p+

11 =
p11(X1 = 0+, X2). Then, p−

11 indicates the rightward (positive
X1) component of the local force acting on the unit area of
the left surface of the plate at point (0−, X2), and p+

11 the
leftward (negative X1) component of the local force acting
on the unit area of the right surface of the plate at point
(0+, X2). Therefore, the difference [p11]−+ = p−

11 − p+
11 is the

rightward (positive X1) component of the local force acting
on the unit area of the plate at point (0, X2). Figure 14(a)
shows the distributions of p−

11 and p+
11 along (the upper

half of) the plate for different Kn in the case of T1/T0 = 2
(L/D = H/D = 4), and Fig. 14(b) the distribution of the
difference [p11]−+ in the same case. Roughly speaking, the
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FIG. 10. Marginal velocity distribution functions g and h for
Kn = 0.5 in the case of T1/T0 = 2 (L/D = H/D = 4) (Problem
I). (a) (X1/D,X2/D) = (−0.05, 0.5); (b) (0.05, 0.5); (c) (0.5, 0.5);
(d) (1, 0.5).

positive [p11]−+ is attributed to the drag force caused by the
motion of the plate, whereas the negative [p11]−+ to the effect
of the temperature difference (radiometric effect). For an
intermediate Kn (Kn = 0.5), [p11]−+ is negative in the middle
of the plate but is positive near the edge. However, as Kn
decreases, the distribution becomes opposite. The physical
reasoning of this phenomenon will be discussed in Sec. VI.

F. Pumping effect of the array fixed in space

Finally, we discuss the potential pumping effect when the
array of the plates is fixed in the channel. More specifically, we
consider Problem II with the resting channel walls (vw = 0),
some results of which have already been shown in panels (c)
and (d) in Figs. 4–9. As seen from these figures, a one-way
flow in the rightward (positive X1) direction is induced in
the channel in spite of the fact that both the array and the
channel walls are at rest. In other words, this setting can
be a variant of the Knudsen compressor or pump that has
been studied extensively (e.g., [40–48]). Let Mf be the net
mass flow of the gas in the (positive) X1 direction, per
unit time and per unit length in the X3 direction, across
any cross section X1 = const (say, the periodic boundary
X1 = H/2). In Fig. 15, the mass-flow rate Mf through the
channel, normalized by ρav(2RT0)1/2D, is shown versus Kn
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FIG. 11. Marginal velocity distribution functions (g,h) for Kn =
0.05 in the case of T1/T0 = 2 (L/D = H/D = 4) (Problem I).
(a) (X1/D,X2/D) = (−0.05, 0.5); (b) (0.05, 0.5); (c) (0.5, 0.5); (d)
(1, 0.5).

for three different geometries (H/D,L/D) = (4, 4), (2, 4),
and (4, 2) in the case of T1/T0 = 2. Here, we have carried
out additional computations using the DSMC method for hard
sphere molecules and show the results together with those
based on the ES model. In Fig. 15, • indicates the result based
on the ES model, and the open symbols (�, �, and 	) indicate
the result for hard-sphere molecules obtained by the DSMC
method. The same results are shown in Table II, where the
DSMC results are shown in the parentheses. The mass-flow
rate takes its maximum value at a relatively small Kn (0.1–0.3).

VI. DISCUSSIONS: CAUSE OF THE RADIOMETRIC
FORCE

The usual explanation about the cause of the radiometric
force is as follows. Let us consider a plate placed in a gas as
shown in Fig. 16(a) and suppose that one side (right side) of the
plate is heated, that is, it is kept at a higher temperature than the
other side (left side) and the surrounding gas. The molecules
hitting on the unheated surface are reflected with the same
average speed as before, whereas the molecules hitting on the
heated surface interact with the molecules of the surface with
the higher temperature and are reflected with a higher average
speed. That is, the molecules reflected on the heated surface
gain momentum in the rightward direction in Fig. 16(a). This
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FIG. 12. Distributions of the normal stress p11/p0 along X1/D = const for Kn = 0.5 in the case of T1/T0 = 2 (L/D = H/D = 4) (Problem
I). (a) X1/D = 0−, −0.01, −0.05, and −0.1; (b) X1/D = 0+, 0.01, 0.05, and 0.1.
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FIG. 13. Distributions of the normal stress p11/p0 along X1/D = const for Kn = 0.05 in the case of T1/T0 = 2 (L/D = H/D = 4)
(Problem I). (a) X1/D = 0−, −0.01, −0.05, and −0.1; (b) X1/D = 0+, 0.01, 0.05, and 0.1.
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FIG. 14. Distributions of the normal stress along each side of the plate for different Kn in the case of T1/T0 = 2 (L/D = H/D = 4)
(Problem I). (a) p−

11 = p11(X1 = 0−,X2) and p+
11 = p11(X1 = 0+,X2); (b) [p11]−+ = p−

11 − p+
11. In (a), p+

11 is shown by the solid line and p−
11 by

the dashed line.
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FIG. 15. Dimensionless mass flow rate Mf /ρav(2RT0)1/2D

through the channel vs Kn for a stationary array (vw = 0) in the
case of T1/T0 = 2 (Problem II). Here, • indicates the result based on
the ES model, and the open symbols (�, �, and 	) connected by the
solid lines indicate the results for hard-sphere molecules obtained by
the DSMC method.

means that the plate gains the momentum in the leftward
direction, so that a force in this direction acts on the plate.

This explanation is correct when collisions between the
gas molecules are not frequent. If the Knudsen number is
infinitely large (the free-molecular gas), and the condition for

TABLE II. Mass flow rate Mf in the case of T1/T0 = 2 when the
array is at rest [vw/(2RT0)1/2 = 0]. The values in the parentheses are
the corresponding result for a hard sphere gas obtained by the DSMC
method.

Mf /ρav(2RT0)1/2D × 102

(H/D,L/D)

Kn (4,4) (2,4) (4,2)

0.02 3.009 (2.92)
0.03 3.551
0.04 4.015
0.05 4.436 (4.60) (5.19) (1.99)
0.06 4.753
0.07 5.040
0.08 5.287
0.09 5.501
0.1 5.643 (6.02) (6.73) (2.39)
0.2 6.593 (6.90) (7.75) (2.45)
0.3 6.784 (6.94) (7.84) (2.29)
0.4 6.728 (6.73)
0.5 6.583 (6.35) (7.29) (1.97)
1 (4.98) (5.78) (1.43)
2 (3.45)
3 (2.75)
4 (2.30)
5 (1.97) (2.39) (0.51)
10 (1.28)

the incident molecules is the same on both sides of the plate,
then, according to the explanation, the local force acting on the
plate should be uniform over the plate. This tendency should
be retained also at finite Knudsen numbers.

However, if the collisions are frequent, i.e., if the Knudsen
number is small, the molecules reflected on the heated surface
collide with other incident molecules immediately after the
reflection. Since the reflected molecules have larger rightward
momentum, they hit the incident molecules away from the
plate [Fig. 16(b)]. As the result, the number of molecules
impinging on the heated surface is reduced. This reduction
reduces the total leftward momentum transferred to the plate
by the molecules reflected on the heated surface. In the
continuum limit (Kn → 0), the reduction of the number of the
incident molecules on the heated surface cancels the increase
of the leftward momentum caused by the molecules (with high
average speed) reflected on the heated surface. As the result, no
force acts on the plate in this limit. When the Knudsen number
is small but finite, these two effects do not cancel exactly
but nearly cancel. Therefore, the force acting on the plate is
expected to be quite small. However, if we look at the part near
the edge [Fig. 16(c)], the situation is different. Also in this part,
the molecules with larger rightward momentum reflected on
the heated surface collide with the incident molecules and hit
them back rightward. However, the molecules impinging on
the part of the hot surface near the edge from above are less
bombarded by the high-speed molecules reflected on the hot
surface because there is no plate above the edge. Therefore, the
number of the incident molecules from above is less reduced
by the reflected molecules with higher speed. As the result, the
total number of the incident molecules is less reduced near the
edge than in the middle part of the plate. In other words, when
Kn is small, the mechanism explained in the first paragraph
works only near the edge of the plate, so that the radiometric
force acts more strongly there.

In order to verify the above explanation, we have prepared
Fig. 17(a), which shows the normal component of the local
force, [p11]−+ = p−

11 − p+
11, along the plate when vw = 0 in

Problem II [cf. Fig. 14(b)]. In this problem, the condition of
the incident molecules is different depending on the sides. The
cold side faces to the gas that is heated by the hot side of the
neighboring plate located leftward, whereas the hot side faces
to the unheated gas. Nevertheless, when Kn is not so small
(Kn = 0.5), the distribution of [p11]−+ is relatively uniform,
that is, it shows the tendency for large Kn explained above.
Furthermore, when Kn is small (Kn = 0.02), [p11]−+, which
is quite small in the middle of the plate, takes larger negative
values as the edge is approached. This is also consistent with
the explanation above. In the present study, our computation
has been restricted to relatively small Knudsen numbers
(Kn � 0.5) for the reason mentioned in Sec. IV. The reader
is also referred to Fig. 26(b) in [16], where we considered a
single plate with one side heated, placed in a gas confined
in a square box with a uniform temperature. In the figure,
one can find the distribution of the local force along the plate
for larger and smaller Knudsen numbers that are consistent
with the explanation given above [note that [p11]+− (Ref. [16])
= −[p11]−+ (present paper)].

Next, we consider the case where the plate is moving
because of the radiometric force, i.e., the case in which the
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(a) (b) (c)

FIG. 16. Illustrative figures explaining the cause of the radiometric force. (a) High-speed molecules reflected on the heated surface, (b)
high-speed molecules hitting the incident molecules away, (c) near the edge.

channel walls are moving with speed vw = v∗ rightward in
Problem II. If the channel walls are moving with a given
speed, and if there is no temperature difference between the
two surfaces of the plate, the plate is subject only to the
drag force exerted by the gas moving with the walls. The
gas flow speed is higher near the moving walls because the
flow is obstructed by the array of the plates in the middle of
the channel. Therefore, the normal component of the local
force [p11]−+, which should be positive, is larger near the
edge. An example of the distribution of [p11]−+ in such a
case, i.e., for T1/T0 = 1 and vw/(2RT0)1/2 = 0.05 in the case
of L/D = H/D = 4 in Problem II, is shown in Fig. 17(b).
Since vw/(2RT0)1/2 = 0.05 is relatively small, the distribution
of [p11]−+ for other small vw/(2RT0)1/2 can be obtained
approximately by the linear scale change from Fig. 17(b).
More specifically, if vw/(2RT0)1/2 = s, then [p11]−+ in this
case becomes (s/0.05) × [p11]−+ of Fig. 17(b), approximately.
Now, we note that the distribution of the local force [p11]−+
in Problem II with vw = v∗ [see Fig. 14(b)] is roughly the
superposition of [p11]−+ in the case of T1/T0 = t (> 1) and
vw = 0 [cf. Fig. 17(a)] and that in the case of T1/T0 = 1
and vw/(2RT0)1/2 = s (> 0) [cf. Fig. 17(b)] when the total
force acting on the plate vanishes. Therefore, the behavior
of Fig. 14(b) can be interpreted with the help of Figs. 17(a)
and 17(b). When Kn is not small (Kn = 0.5), [p11]−+ in
Fig. 17(a), which is negative, is relatively uniform, whereas

that in Fig. 17(b), which is positive, exhibits a sharper change
near the edge (compare the gradients of the curves at the edge).
If these distributions are superposed in such a way that the total
force vanishes, then, the radiometric effect should be stronger
in the middle part of the plate, whereas the drag force should
be dominant near the edge. This explains the distribution
of [p11]−+ when Kn is not small in Fig. 14(b). When Kn is
small (Kn = 0.05), the radiometric effect is very weak in the
middle of the plate, so that the drag force is dominant there. In
contrast, the sharp increase of the radiometric force near the
edge overwhelms the drag force there, so that the distribution
of [p11]−+ becomes opposite, as seen in Fig. 14(b).

In the present study, the diffuse reflection condition is used
for the plates as well as for the channel walls [see assumption
(ii) in the statement of Problem I in Sec. II]. If we assume
Maxwell’s diffuse-specular reflection condition on the plates,
the radiometric force will be reduced because specularly
reflected molecules do not contribute to the radiometric
force. That is, the radiometric force becomes weaker as the
number of specularly reflected molecules increase, i.e., as
the accommodation coefficient decreases. However, the drag
acting on the plates moving in the gas does not depend much on
the accommodation coefficient (in the present problem the drag
is independent of the tangential stress on the plate). Therefore,
the speed of the motion of the plates should be lower for
smaller accommodation coefficients.

0 0.1 0.2 0.3 0.4 0.5-0.08

-0.06

-0.04

-0.02

0

0.02

(a)

0 0.1 0.2 0.3 0.4 0.5-0.02

0

0.02

0.04

0.06

0.08

(b)

FIG. 17. Distribution of the normal component of the local force [p11]−+ along the plate for several Kn (L/D = H/D = 4) (Problem II).
(a) T1/T0 = 2 and vw/(2RT0)1/2 = 0, (b) T1/T0 = 1 and vw/(2RT0)1/2 = 0.05.

063007-13



SATOSHI TAGUCHI AND KAZUO AOKI PHYSICAL REVIEW E 91, 063007 (2015)

VII. CONCLUDING REMARKS

In the present study, motivated by the moving vanes in the
Crookes radiometer, we considered the motion of an array
of infinitely many plates driven by the radiometric force.
More specifically, we considered a rarefied gas between two
parallel plates and an array of infinitely many two-dimensional
plates, each of which is perpendicular to the channel walls, is
placed in the gas along the channel. We supposed that the
array can move freely along the channel and that the same
side of each plate is heated. Then, the force caused by the
temperature difference (radiometric force) acts on each plate
in the direction from the heated side to the unheated side, so
that the array moves toward this direction. We investigated
this problem numerically on the basis of the ES model of the
Boltzmann equation with special interest in the final steady
motion of the array, in which the radiometric force acting on
each plate is counterbalanced by the drag force acting on the
plate. We first obtained the speed of the array in this case in
Secs. V A and V B. Then, we investigated the corresponding
flow field in Sec. V C and the velocity distribution function in
Sec. V D. We also presented the flow field when the array is
at rest for comparison in Sec. V C and paid attention to the

discontinuity in the velocity distribution function in Sec. V D.
The distribution of the normal stress as well as that of the
normal component of the local force along the plate was
obtained in Sec. V E. In Sec. V F, on the other hand, the
one-way flow of the gas caused when the array is fixed in space
was investigated, since this setting provides a potential variant
of the Knudsen pump. Finally, in Sec. VI, we discussed the
cause of the radiometric force physically and gave a physical
interpretation of the result for the distribution of the local force
along the plate shown in Sec. V E.
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