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Imperfect supercritical bifurcation in a three-dimensional turbulent wake
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LIMSI-Univ Paris Sud, CNRS, Université Paris-Saclay, 91403 Orsay cedex, France

(Received 9 February 2015; revised manuscript received 15 April 2015; published 12 June 2015)

The turbulent wake of a square-back body exhibits a strong bimodal behavior. The wake randomly undergoes
symmetry-breaking reversals between two mirror asymmetric steady modes [reflectional symmetry-breaking
(RSB) modes]. The characteristic time for reversals is about 2 or 3 orders of magnitude larger than the natural
time for vortex shedding. Studying the effects of the proximity of a ground wall together with the Reynolds
number, it is shown that the bimodal behavior is the result of an imperfect pitchfork bifurcation. The RSB modes
correspond to the two stable bifurcated branches resulting from an instability of the stable symmetric wake. An
attempt to stabilize the unstable symmetric wake is investigated using a passive control technique. Although
the controlled wake still exhibits strong fluctuations, the bimodal behavior is suppressed and the drag reduced.
This promising experiment indicates the possible existence of an unstable solution branch corresponding to a
reflectional symmetry preserved (RSP) mode. This work is encouraging to develop a control strategy based on a
stabilization of this RSP mode to reduce mean drag and lateral force fluctuations.
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I. INTRODUCTION

In the Navier-Stokes equations, symmetry breaking and
bifurcations are the key ingredients for the laminar-to-turbulent
transition. They appear in the flow solutions as the control
parameter (i.e., the Reynolds number) is increased. Normally,
the strongest modifications in the flow appear during the lowest
part of the transitional range of Reynolds numbers. The highest
part of the transitional range is reached when all the sym-
metries are restored in the statistical sense [1]. However, there
are some cases for which such high Reynolds number flows
may undergo large-scale symmetry breaking.

One of the most spectacular occurs during the drag crisis
transitions of smooth bluff bodies [2]. In the critical Reynolds
number regime of a circular cylinder (105 < Re < 5 × 105),
the laminar-to-turbulent transition of the free boundary layers
is accompanied by the occurrence of asymmetric wake flow
states [3,4] producing a nonzero mean lift. They are commonly
called one bubble and two bubbles transitions corresponding,
respectively, to the reattachment on one side and both sides
of the cylinder. From global force [5,6] and local pressure
[7] measurements, the existence of bistable behaviors in
this critical range has been evidenced through hysteretic
discontinuities in the Strouhal-Reynolds number relationship.
Schewe [5] associated each discontinuity with a subcritical
bifurcation during which the energy of the force fluctuations is
dominated by the contribution of a wide low-frequency domain
[5–7]. This domain belongs to lower frequencies than the
nearly extinguished frequencies of the Kármán global modes.
Recently, the examination of pressure time series measured
on the cylinder [8,9] revealed that reattachments might switch
from one side to the other unpredictably in time during the
drag crisis fluctuations. Further analyses by Cadot et al. [10]
confirmed that the strong fluctuations were the consequence
of the random exploration of few identified asymmetric and
symmetric metastable states.

Another case of large-scale symmetry breaking was studied
more recently in a totally different flow configuration [11–15];

the von Kármán swirling flow geometry. It is basically a closed
turbulent flow forced between two counter-rotating stirrers
facing each other in a cylindrical tank. The transition that
occurs around Re = 104 consists of a bifurcation of the basic
symmetric flow topology toward two other flow topologies
which break the symmetry of the driving geometry [11,13]. In
Refs. [12,14,15], random switching between two metastable
symmetry-breaking states are observed. In that case, the
symmetry is restored in a statistical sense, but a state remains
observable over durations much larger than the time scale of
the turbulence large scale. Another difference with the drag
crisis case is that the symmetry-breaking modes in the von
Kármán swirling flow geometry are also observable in the
laminar regime during the transition scenario to turbulence
[16,17] and the symmetry breaking in the turbulent regime
might be reminiscent of these modes.

Even more recently, the three-dimensional wake of a
generic square-back body has been shown to switch randomly
between two asymmetric metastable states over a wide range of
Reynolds numbers from 300 to 107 [18–20]. Their observation
in the laminar regime [18] excludes the possibility of an origin
associated with turbulent boundary layer reattachment as for
those present during the drag crisis transition. The authors
referred to this as a bistable behavior of the wake, unpredictable
in time with a long-time dynamics, 2 or 3 orders of magnitude
larger than the time dynamics for vortex shedding. The
metastable states break the reflectional symmetry of the setup
and will be referred to in the following as reflectional
symmetry-breaking (RSB) modes. On the theoretical back-
ground, RSB modes of three-dimensional wakes are actually
known to be bifurcated states of the basic symmetric state
observed in the laminar regime (see the stability analysis of
Pier [21] for a sphere or a disk and, very recently, Marquet and
Larsson [22] for rectangular plates of different aspect ratio).
In the work of Grandemange et al. [20], the bistability was
found to be inhibited when the body was approaching the
ground wall at a Reynolds number of 4.5 × 104, leading to a
high-Reynolds-number transition.
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The present work aims at characterizing this transition in the
turbulent wake using independently two control parameters:
the ground clearance C (distance from the ground wall to the
body) and the Reynolds number Re. A global quantity giving
a topological indicator of the wake will be used as the order
parameter of the transition. The questions we would like to
address are as follows: Does the turbulent wake flow have
an unstable symmetric solution when it explores randomly
the metastable RSB modes? The answer might have relevant
applications for flow control strategies at industrial scale (i.e.,
large Reynolds number flow). Second, from a more general
perspective, what are the similarities between this transition
and those of the von Kármán swirling flow geometry?

The article is organized as follows. Section II is in two
parts and describes the geometry and the measurements.
Section III is presented in five parts. Section III A defines
and characterizes the global quantity that is used as the order
parameter to describe the transition. Section III B shows that
the transition does not depend on the yaw angle of the body.
Section III C shows the existence of a pitchfork bifurcation
and sets the phase diagram of the bifurcation versus ground
clearance and Reynolds number. In Sec. III D we attempt to
stabilize the turbulent symmetric wake flow and Sec. III E
illustrates the main result with some flow visualizations in
a water tunnel at a comparable Reynolds number. Finally,
conclusive remarks end the paper in Sec. IV.

II. EXPERIMENTAL SETUP

A. Geometry and measurements

The experimental setup is illustrated in Fig. 1. A ground
plate is placed in an Eiffel-type wind tunnel having a turbulent
intensity less than 0.3%. The homogeneity of the velocity over
the 390 mm × 400 mm section is 0.4%. The wake is generated
by the square-back geometry first used in the experiments
of Ref. [23] as a simplified model to study ground vehicle
aerodynamics. The total length of the body is L = 261.0 mm,
and the height H and width W of the base are, respectively,
72.0 and 97.2 mm. The four supports are cylindrical with a
diameter of 7.5 mm. The blockage ratio is less than 5%. The
coordinate system is defined as x in the streamwise direction,
z is normal to the ground, and y forms a direct trihedral.
The Reynolds number of the flow is defined as Re = U0H/ν,
where U0 is the uniform flow velocity ranging from 3.7 m s−1

to 33 m s−1 and ν the air kinematic viscosity. The explored
range of Reynolds numbers is thus comprised within 1.7 × 104

to 1.6 × 105.
The body is fixed on a turntable to allow side slip conditions

with a yaw angle β [see Fig. 1(b)]. The rotation mechanism
is driven by a displacement controlled by a Newport Motion
Controller ESP301; the precision of the robot is better than
0.02◦. Another displacement also controlled by the ESP301
allows adjustment of the ground clearance in the range 0 <

C < 12.5 mm. The precision is better than 10 μm. In the
following experiments, the ground clearance is increased in
steps of 250 μm.

The pressure on the body is measured at 21 locations at the
body base [see blue dots in Fig. 1(c)]. The taps are distributed
symmetrically referring to the planes y = 0 and z = 0, the

Lateral wall

Lateral wall

β>0

β>0

(a)

(b)

(c)
L

C

FIG. 1. (Color online) Experimental setup. Side view (a), top
view (b), and perspective view (c); the point O at the center of the
body base sets the origin of the coordinate system. The blue dots
locate the visible pressure taps; P scan refers to the pressure scanner.

latter plane corresponding to the midheight of the geometry.
The pressure is obtained using a ZOC22 pressure scanner and
a GLE/SmartZOC-100 electronic for data acquisition using
an ethernet connection to the PC. The high cut-off frequency
of each transducer is larger than 250 Hz. It is acquired at
a sample rate of 500 Hz per channel, with an accuracy of
±3.75 Pa. The pressure scanner is located inside the model; it
is denoted “P scan” in Figs. 1(a) and 1(b). It is linked to each
tap with less than 100 mm of vinyl tubes to limit the filtering
effect of the tubing. In that case, the high cut-off frequency
falls to 150 Hz. This device is connected to the electronic
GLE/SmartZOC-100 using a connection cable going through
one of the four cylindrical supports of the model so, apart
from these supports, nothing disturbs the underbody flow. The
pressure coefficient is calculated as follows:

Cp = p − p0
1
2ρU 2

0

, (1)

where p0 is the static pressure in the tunnel just before the test
section and the dynamic pressure 1

2ρU 2
0 is measured from a

Pitot tube at the entrance of the test section.
In the following, the use of an asterisk for a∗ denotes

the nondimensional value of any quantity a(x,y,z,t) made
dimensionless by a combination of the height H and the inlet
velocity U0.
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FIG. 2. Free stream characterization at the location of the Ahmed
body, boundary layer profile on the floor (a), lateral velocity profile at
z∗ = 1/2 (b), right-to-left asymmetry (see text) of the lateral velocity
profile vs the main velocity (c).

B. Free stream characterization

In order to control the constant flow conditions, the ground
plate (floor) is placed at 10 mm above the bottom side of
the inlet [see Fig. 1(a)] and triggers the boundary layer at its
leading edge, without any separation, 140 mm upstream of the
fore-body. The boundary layer on the floor of the free stream at
the body location (say X = 260 mm from the leading edge of
the ground plate and without the body) is shown in Fig. 2 for the
two extreme main flow velocities of the explored range. The
boundary layer profile at the lowest velocity has a Reynolds
number based on the development length ReX = 0.75 × 105

and suggests that it is laminar at the lowest velocity. At the
largest velocity, ReX = 5.72 × 105 and the shape suggests
a turbulent boundary layer. For both cases, the thickness
never exceeds δ∗

0.99 = 0.1. The laminar-turbulent transition
occurs around 14 m s−1, say, ReX = 2.42 × 105. However,
this transition has no meaning considering the flow around the
Ahmed body whose presence produces pressure gradients at
the ground wall that modifies drastically the boundary layer
history compared to a development on the flat floor alone.

The spanwise spatial homogeneity is characterized through
the velocity measurements in Fig. 2(b). Although the spatial
inhomogeneity still remains below 0.4% in rms quantities,
the streamwise velocity displays a small but significant shear
whose sign depends upon the mean flow velocity. Figure 2(c)
shows the difference between the mean velocity computed
from the right-hand side of the tunnel (y > 0) and the left-hand
side of the tunnel (y < 0). There is a velocity excess on the
left-hand side of the free stream of about 1% for mean flow
velocities larger than 20 m s−1. These symmetrical defects in
the free stream have to be acknowledged considering their
induced bias in the onset of a symmetry-breaking instability.
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FIG. 3. (Color online) Time series of the base pressure barycen-
ter coordinates (y∗

b ,z
∗
b), y∗

b (a), z∗
b (b), and filtered in (c).

III. RESULTS

A. Global quantities for the near wake

The pressure distribution at the base of the body has
been shown to be a relevant indicator [19,20,24,25] of the
large-scale wake topology. As in Ref. [25], we will use the
instantaneous barycenter of the base pressure distribution,
which we define as:

�rb(yb,zb) =
∫∫

Base
�rCp(�r)dydz∫∫

Base
Cp(�r)dydz

, (2)

It should be noted that for a massively separated wake flow
as in the present case, the pressure of the base is always
lower than the static pressure of the free stream, meaning that
the denominator in Eq. (2) is nonzero and always negative.
Figures 3(a) and 3(b) shows the two components of the base
pressure barycenter. Its horizontal component in Fig. 3(a)
clearly exhibits the bimodal behavior. The two most probable
horizontal positions observed at y∗

b � ±0.05 are associated
with the two deflected wakes fully characterized in Ref. [19].
They correspond to the two mirror RSB modes breaking the
reflectional symmetry with respect of the plane y = 0 of the
setup. As already been shown in Ref. [19] the characteristic
time scale to switch between these modes is 2 to 3 orders
of magnitude larger than the natural time scale T ∗ = 1 in
nondimensional units (i.e., T = H

U0
). For the remainder of

this study, time series are low-pass filtered to focus on this
long-time dynamics, with a cut-off frequency f ∗

c = 1
250 (say

fc = 0.22 Hz at U0 = 4 m s−1 to fc = 1.83 Hz at U0 =
33 m s−1). The filtered data are shown for the barycenter
coordinates in Fig. 3(c).
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FIG. 4. Probability density function (PDF) of the horizontal
coordinate y∗

b of the base pressure barycenter computed from the
time series in Fig. 3(c).

The most probable positions of the pressure barycenter
are extracted from probability density functions (PDFs) such
as the one presented in Fig. 4. The statistics are performed
over a duration fixed to 50 s (τ ∗ = 27 500 at U0 = 33 m s−1

and τ ∗ = 3300 at U0 = 4 m s−1). The choice of recording
duration is a compromise between an accurate estimation of
the position of the most probable events and the high cost of
time due to a parametric study involving changes in yaw angle,
ground clearance, and Reynolds number. As we can attest
from Fig. 4, the most probable event positions are sufficiently
well defined to investigate the parametric study of the stable
branch solutions. Note that the chosen recording time that
evolves in the range τ ∗ ∼ 3000−27 500 leads unavoidably to
weakly converged PDFs because of the long-time dynamics
associated with the RSB modes having a characteristic time
scale in the range τ ∗ ∼ 100−1000 [19]. Hence, the weak
convergence does not allow an accurate estimate of the value
of the corresponding probability density.

Another global quantity of interest is the base suction −Cpb,
where:

Cpb = 1

S

∫∫
Base

Cp(�r)dydz. (3)

The base suction is directly related to the form drag (see
Refs. [26,27] and references therein), whereby the larger the
base suction the larger the form drag. Note that the discrete
pressure taps distribution at the base [Fig. 1(c)] will not lead to
an exact measurement of the base suction but rather to a drag
indicator.

B. Wake mode sensitivity to a yaw angle β and ground
clearance C∗

Figure 5 shows the PDFs of the statistical variable y∗
b , for 10

sets of experiments performed for the same Reynolds number
Re = 146 800. The gray levels of the PDFs allow the most
probable positions of the barycenter, which contains the main
information, to be located. For each set, the ground clearance
C∗ is fixed and the yaw angle is varied within the range
−1◦ < β < +1◦ in step of 0.1◦. By looking at the PDFs at the
top of Fig. 5 obtained for the ground clearance C∗ = 0.153,
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FIG. 5. Evolution of the probability density function, PDF(y∗
b ),

in gray levels (the darker, the larger the PDF) for U0 = 30.58 m s−1

with the yaw angle β and for different ground clearances C∗.

we notice that two distinguished most probable positions,
symmetrically located at y∗+

b � 0.05 and y∗−
b � −0.05, are

observable. These two positions are associated with the two
stable mirror states and the values of y�±

b do not depend on
the yaw angle. When the ground clearance is decreased to
C∗ = 0.09, similar observations can be made except that now
the two positions are not symmetrically located anymore. It
emphasizes the sensitivity to symmetry defects in the setup,
especially related to the nonuniformity of the incoming flow
as described in Fig. 2.
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FIG. 6. Characterization of the underbody flow using hot wire
anemometer measurements, 2 mm behind the body in the y = 0
plane. The hot wire is oriented to be sensitive to the longitudinal
velocity u(t). (a) z/C vs the time averaged nondimensional velocity

U ∗ = u∗. (b) Fluctuating velocity defined as U ∗
rms =

√
(u∗ − U ∗)2 .

For slightly smaller C∗, the two states become hardly
distinguishable and, instead, a continuous change in the
pressure barycenter coordinate is observed.

The role of the underbody flow as a function of the
ground clearance is now investigated. Velocity profiles are
then measured 2 mm behind the body using a classical hot wire
probe, in the midplane y = 0 for different ground clearances
C∗. They are all presented in Fig. 6 as z/C versus the velocity
with a vertical shift for clarity. For large ground clearances,
C∗ > 0.04, velocity profiles are well established and present
a relatively parabolic shape. The velocity fluctuations are
maximum [Fig. 8(b)] on the top side of the profiles which
corresponds to the free mixing layer and on the bottom side
that corresponds to the boundary layer on the floor. For ground
clearances smaller than C∗ < 0.04, there is no established
underbody flow and a transition with high velocity fluctuations
is observed for C∗ = 0.021.

To study the two stable solutions of the bifurcated states,
we chose to explore the wake positions for the two yaw
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FIG. 7. Probability density functions, PDF(y∗
b ) in gray levels for

U0 = 30.58 m s−1 vs the ground clearance C∗, for (a) with the yaw
angle β = −0.4◦ and (b) with a yaw angle β = +0.4◦. The white
lines represent the most probable position and correspond in [(a),
continuous line] to the stable branch y∗+

b and in [(b), dashed line] to
the other stable branch y∗−

b . In (c) are reported the maximum of the
profiles measured in Fig. 6, mean velocity U ∗ (empty circles) and
fluctuation U ∗

rms (black filled circles).

angles β = −0.4◦ in Fig. 7(a) and β = +0.4◦ in Fig. 7(b). The
negative (respectively, positive) yaw angle allows exploration
of the branch y∗+

b (respectively, y∗−
b ) corresponding to the

positive (respectively, negative) part of PDF(y∗
b ). As can be

seen, the system explores preferentially the y∗+ branch near
the bifurcation point which is evidence for an imperfect
bifurcation. In addition, we never noticed any hysteretic effect
by working with increasing or decreasing control parameters,
which reinforces the supercritical character of the bifurcation.
For both PDF branches, the position of the local maxima are
extracted [plotted as white lines in Figs. 7(a) and 7(b)]. This
technique of extraction will be repeated in the following to
study the Reynolds number effect on the bifurcation diagram.

Figure 7(c) displays the maximum values of the profiles
measured in Fig. 6. It is clear from these results that the
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underbody flow is already well established, about U0 at the
pitchfork point of the bifurcation observed around C∗ ∼
0.075. Hence, the large velocity fluctuations observed at
C∗ = 0.021 occurs at a too-small ground clearance to be
associated with the instability threshold of the RSB states.

C. Bifurcation threshold with Reynolds number

Nine experiments with different Reynolds numbers have
been conducted with exactly the same protocol as for the
previous experiment. All of the bifurcation diagrams obtained
by superimposing the branch y∗+ and y∗− are shown in Fig. 8.
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0
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0.1

yb
*

C*

FIG. 8. (Color online) Bifurcation diagrams vs the ground
clearance obtained with different Reynolds numbers from
bottom to top: Re = 1.78 × 104,2.89 × 104,3.95 × 104,5.05 ×
104,6.1 × 104,8.27 × 104,1.04 × 105,1.32 × 105,1.6 × 105. For
each Reynolds number, the branches are extracted from the most
probable position of the barycenter obtained from β = −0.4◦ (blue
circles) and β = +0.4◦ (white circles) as in Figs. 7(a) and 7(b).

Cc
*

10-1

104 105
Rec

FIG. 9. Threshold of the bifurcation, critical ground clearance vs
critical Reynolds number.

We can see clear imperfect pitchfork bifurcations due to some
symmetry defects before and at the bifurcation point. As said
above, these imperfections are likely to be explained by the
free stream properties characterized in Fig. 2. The bifurcation
point, defined as the crossing point between the two branches,
appears to depend on the Reynolds number, and its dependency
is shown in Fig. 9. The uncertainty about C∗

c is estimated to be
±0.0025, reflecting the measurements displayed in Fig. 8(a).

The critical ground clearance C∗
c is a slow decreasing

function of the critical Reynolds number Rec, similar to the
power law Re−1/6

c in the range of our experiments.

D. Toward a stabilization using passive control

We now investigate the possibility for the existence of an
unstable branch solution, corresponding to the prolongation
of the symmetric state after the bifurcation point. The idea
is to apply the passive control technique first introduced by
Ref. [28] to stabilize the Kármán instability in the laminar
wake of a circular cylinder. It has been shown for the
present configuration in Ref. [24] to efficiently eliminate the
bimodal behavior of the turbulent wake. It consists in a steady
disturbance technique by introducing inside the recirculating
bubble a vertical cylinder, having the same height as the
body with a diameter d∗ = 0.083. We placed the control
cylinder at the best location obtained in Ref. [24], say, y∗ = 0
and x∗ = 0.52. Two thin rods, as depicted in Fig. 10(b),
support the control cylinder. In order to characterize the
effect of the control cylinder only, a bifurcation diagram has
been performed with the body and the two thin rods as a
function of the ground clearance. It is shown in Fig. 10(a).
Because of the thickness of the rod under the body, the
ground clearance is limited for low values to C∗ = 0.035.
The observed bifurcation, very similar to the one obtained
without the rods (Fig. 7), attests from the neutrality of the
supporting system. Furthermore, it has to be mentioned that
the bifurcation in Fig. 10(a) is obtained for only one yaw
angle. It has been especially adjusted in order to have the
best equiprobable exploration of the two states at the largest
ground clearance. In this condition, we see that both branches
are randomly explored after the bifurcation point, leading to
the bistable dynamics of the wake.
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FIG. 10. Probability density functions, PDF(y∗
b ), in gray levels

for U0 = 30.58 m s−1 vs the ground clearance C∗, for (a) with the
yaw angle β = −0.4◦ and (b) with a yaw angle β = +0.4◦. The
white lines represent the most probable position and correspond in
(a) (continuous line) to the stable branch y∗+

b and in (b) (dashed line)
to the other stable branch y∗−

b .

When the control cylinder is placed between the two rods,
the bifurcation diagram before the pitchfork point remains
unaltered compared to that of the reference, while after the
pitchfork point the two branches are replaced by a continuum
of uniform density probability over values of y� included
within y�±

b , yet excluding y�±
b . At this point it is difficult to

argue whether the system is actually stabilized since there is no
most probable position around y∗ = 0. However, the system
is definitely no longer bimodal. This simple experiment is
promising since passive control can be considerably improved
using active control. We are confident that the latter will be the
good strategy to stabilize the wake.

Although the suppression of the lateral force can be
achieved by stabilizing the flow, it remains interesting to
look at the effect of a stabilization on the base suction and
hence the drag. The base suction as defined in Eq. (3) is
shown in Fig. 11. The dashed line refers to the reference
case; it displays large variations of the base suction coefficient
due to the development of the underbody flow as already
described in Ref. [20] and characterized in Fig. 6. However, the
abrupt change observed for C∗ ∼ 0.09 is clearly ascribed to
the pitchfork point, indicating that the presence of the RSB
modes are creating additional base suction and then drag.
By stabilizing the wake, one would expect the base suction
coefficient to decrease in the continuity of its evolution before

−Cpb

0.27
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0.29

0.26

0.25
1.00 50.0 0.15

C*

ref.
control

0.30

FIG. 11. Base pressure suction vs the ground clearance for
(dashed line) the reference case of Fig. 10(a) and for (continuous
line) the controlled case of Fig. 10(b).

the pitchfork point. It is actually what is observed when
the control cylinder is added, the base suction follows the
same variations as for the reference case. After the instability
threshold, a significant reduction is observed. This passive
control experiment is encouraging as a new strategy for drag
reduction of three-dimensional (3D) turbulent wakes.

E. Flow visualizations

We turn now to an illustrative experiment of flow visu-
alization realized in a water tunnel. The model is a 1:2.66
scale of the one used above. The test section of the tunnel
is 80 × 150 mm and the flow speed 6 m s−1. The Reynolds
number is 216 000, and the ground clearance is set to C∗ = 0.1.
The yaw angle is accurately adjusted to obtain the bistable
dynamics of the two RSB states. We present in Fig. 12 some
pictures extracted from a long-time movie [29] showing the
random switching between the y+

b stable solution shown in
Fig. 12(a) and the y−

b stable solution shown in Fig. 12(b). The
two wake states present a mirror symmetry, with an intense
circular recirculation clearly visible on the right-hand side in
Fig. 12(a) and symmetrically on the left-hand side in Fig. 12(b).
The low-pressure barycenter position is on the same side as
this intense recirculation. These flow visualizations are in total
agreement with the velocity field measurements of the RSB
modes in Ref. [19]. When a vertical control cylinder is added
as in Sec. III D, a symmetric wake is observed without any
intense recirculations.

IV. CONCLUSIVE REMARKS

The wake of a square-back body at the proximity of
a ground wall undergoes a pitchfork bifurcation in the
turbulent regime from a symmetric turbulent wake toward
two asymmetric turbulent wakes. The phase diagram in
Fig. 9 indicates that the critical ground clearance is a slow
decreasing function of the critical Reynolds number. Thus, the
bifurcation is also observable for a given ground clearance
as the Reynolds number is increased. The smaller the ground
clearance the larger the Reynolds number for the transition. At
the threshold of the instability (pitchfork point), the underbody
flow magnitude is approximately U0 [see Fig. 7(c)], indicating
that the bifurcation is not related to a flow transition in the
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(a) (b)

(c)

o

FIG. 12. Flow visualization performed in a water tunnel using
bubbles appearing white against a black background. The flow
Reynolds number is Re = 216 000 at a ground clearance C∗ = 0.1.
The drawing shows the visualization area depicted by a dashed
rectangle at the rear of the Ahmed body. The obturation time of
the camera is τ ∗ = 3, say, 3 times larger than the convective time
H/U0, and captures the dynamics at this time scale. In (a), the RSB
mode of the branch y+

b and in (b) its mirror counterpart, the RSB
mode of the branch y−

b . In (c), the wake controlled with a vertical
control cylinder (diameter d∗ = 0.107).

ground clearance. Following the idea of Grandemange et al.
[20], the crucial ingredient for the symmetry breaking is the
ratio between the separating distances of the vortex sheets
produced by the separation at the rectangular base (it is also
the result of the stability analysis by Marquet and Larsson [22]
for a rectangular plate facing a uniform flow in the laminar
regime). The inviscid condition at the ground wall, which
can be justified for large Re flow, is equivalent to a mirror
flow. In the absence of the underbody flow, the top vortex
sheet emerging from the square-back body is then facing its
symmetric counterpart at a distance that is double the body
height, 2H . In the case of an underbody flow, a second vortex
sheet emerges from the bottom trailing edge of the body and
the separating distance with the top vortex sheet is now H . For
the primary case, the aspect ratio is twice the second case and
does not allow the symmetry-breaking instability at the given
width W of the base [20]. Hence the large Reynolds number
bifurcation appears to be related to a stabilizing geometrical
parameter. One may wonder if an equivalent explanation can be
tested on the transition obtained with the von Kármán swirling
flow geometry.

There are some interesting applications for flow control
of 3D turbulent wakes, for instance, the pioneering technique
of Strykowski and Sreenivasan [30] to stabilize the periodic
laminar von Kármán instability toward the steady state is
also efficient to stabilize the turbulent RSB mode toward a
symmetric wake mode. In addition to the flow studied here,
it is known that the turbulent wake of axisymmetric bodies
develops symmetry-breaking modes as well [25,31]. Thus the
stabilization toward the symmetric unstable mode might be a
relevant strategy for drag and lateral force reduction in many
applications with potentially a low energetic cost and offers
promising future development.
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