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Long-range ordering of turbulent stresses in two-dimensional flow
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Using filter-space techniques, we study the spatial structure of the turbulent stress that couples motion on
different length scales in a quasi-two-dimensional laboratory flow. As the length scale increases, we observe
the appearance of long-range, system-spanning spatial order of this stress, even though the flow field remains
disordered. Suggestively, this ordering occurs only in the range of scales over which we find net inverse energy
transfer to larger scales. However, we find that a field built from wave vectors with random phases also displays
ordering, suggesting that at least some of the ordering we observe is purely kinematic. Our results help to clarify
the role played by geometric alignment in the turbulent energy cascade and highlight the importance of the
scale-dependent rate of strain in the energy-transfer process.
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I. INTRODUCTION

Turbulent flows are highly unsteady and chaotic and are
characterized by dynamics occurring on a vast range of length-
and timescales, but they are not random. In many cases,
including the generation of large-scale circulation in turbulent
convection [1] or a net magnetic field in a turbulent dynamo [2],
the violent fluctuations [3,4] that make turbulence difficult to
model can produce surprising order. Intense turbulence also
tends to self-organize: the classical Richardson–Kolmogorov
energy cascade [5,6], for example, requires a delicate internal
balance of the interactions between different scales of motion.
However, determining the precise mechanisms by which
turbulence produces such order, both of transported quantities
and of its internal dynamics, remains a challenge.

Fundamentally, it is the nonlinear term in the Navier–Stokes
equations that couples dynamics on different length scales via
wave-vector triad interactions, allowing the transfer of energy
and momentum between scales. In principle, all scales are
coupled; but in practice, the net effect of these nonlinear effects
in three-dimensional turbulence is to drive a scale-to-scale
cascade of energy from large length scales where it is injected
into the flow to small scales where it is dissipated into heat by
the action of molecular viscosity [5,6]. This directed energy
flow imposes restrictions on the nonlinear interactions allowed
in turbulence, since not all types of triads drive energy to
small scales [7]. Understanding why some scale couplings are
promoted while others are suppressed would make it easier to
devise accurate but simplified turbulence models for practical
engineering applications.

The net action of these triads can be expressed via a
scale-dependent turbulent stress tensor; the inner product of
this stress and the scale-resolved rate of strain determines
the local energy flux between scales of motion. Due to this
inner product, the relative alignment of the eigenframes of the
stress and the rate of strain determines the direction of the
energy flux (that is, from large to small scales or vice versa);
additionally, the local energy flux can be suppressed entirely
due to misalignment of these eigenframes. Thus, the spatial
organization of the turbulent stress and the scale-resolved
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rate of strain contains information about the directionality and
strength of the energy cascade [8].

Here, we study the alignment of these turbulent stresses
and strain rates in a quasi-two-dimensional laboratory flow
using filter-space techniques. We show that, for scales in
the regime where we observe net transfer of energy to large
scales (consistent with the celebrated inverse energy cascade
of two-dimensional turbulence), the turbulent stress displays
long-range spatial order: its eigenframe aligns across the
entire system, which we quantify with an appropriate order
parameter. However, we also show that a synthetic velocity
field built from Fourier modes with random phases shows
very similar behavior, implying that at least some of what
we observe is purely kinematic. Our results add to the current
understanding of the role of geometric alignment in the physics
of the energy cascade and raise several intriguing possibilities
and questions for future study.

We begin below by briefly describing our experimental and
analysis methods in Sec. II. Our results are described in Sec. III,
beginning with a discussion of the mean-field behavior we
observe in our experiment, followed by a demonstration of the
alignment transition we see in the turbulent stress. We then
describe our tests using random Fourier modes. Finally, in
Sec. IV, we discuss some of the implications of our results and
outline some directions for future study.

II. METHODS

A. Experiment

To study the properties of the scale-to-scale energy transfer
and the turbulent stresses that drive it, we used a quasi-
two-dimensional laboratory flow that can be driven into
(weak) turbulence. Our experimental apparatus is described
in detail elsewhere [9–11]; briefly, we generated quasi-two-
dimensional flow by placing a thin layer (5 mm deep) of
NaCl dissolved in water (16% by mass) above a grid of
neodymium-iron-boron permanent magnets arranged in stripes
of alternating polarity. When a dc electric current (here, 1.25 A)
is driven laterally through the fluid layer, Lorentz forces set the
fluid into motion [9,10,12–15]. The total size of the driven area
is 86 cm × 86 cm (=34Lm × 34Lm, where Lm is the center-
to-center magnet spacing), of which we measure the central
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32 cm × 23 cm region (=12Lm × 9Lm). For the data here,
the Reynolds number based on the root-mean-square velocity
and Lm is Re = 270. Note that, when defined in this way, the
Reynolds number is essentially a nondimensionalization of the
electric current [16], rather than encoding the scale separation
as a true turbulent Reynolds number would.

To measure the flow, we use particle-tracking velocimetry.
Polystyrene tracer particles of diameter 51 μm are suspended
at the interface between the salt-water layer and a second,
less dense layer of pure water (also 5 mm deep). We image
the particles with a 4 megapixel camera at 60 frames per
second and follow their motion with a predictive tracking
algorithm [17]. Instantaneous velocities are computed from
the particle trajectories by convolving them with a Gaussian
smoothing and differentiating kernel [18]. We image ∼30 000
particles per frame with an average separation of 0.8 mm,
allowing us to measure time-resolved velocity fields [9].
To construct velocity fields from the particle data, we use
the particle positions in each frame to create a triangulated
mesh to which we can apply finite-element tools to calculate
spatial gradients. We project the velocity fields onto a basis of
stream function eigenmodes to remove any three-dimensional
effects [9], resulting in a loss of less than 4% of the kinetic
energy [10].

B. Filter-space techniques

The precise details of the energy cascade are difficult to
access directly. Energy transfer between scales can formally
be written as the interaction of triads of modes in Fourier
space [19], but such wave-vector interactions cannot be
localized in space. Thus, one can typically study turbulence as
a function of scale or space but not both. Recently, however,
an approach based on low-pass filtering of the equations of
motion has allowed the measurement of the energy flowing
between scales at every point in space and time [20–22].
This powerful new technique has been particularly useful
in providing insight into the mechanisms that drive two-
dimensional turbulence [12,23–27]. In this filtering formalism,
the spectral energy flux between scales can be written as

�(L) = −[
(uiuj )(L) − u

(L)
i u

(L)
j

]∂u
(L)
i

∂xj

= −τ
(L)
ij s

(L)
ij , (1)

where ui is the ith component of the velocity and summation
is implied over repeated indices. The superscript (L) denotes
a quantity low-pass filtered at a scale L, so that variation
on spatial scales finer than L is suppressed. s

(L)
ij is the

filtered rate-of-strain tensor (the symmetric part of the velocity
gradient) and is analogous to the rate of strain of the full
velocity field. But the tensor τ

(L)
ij = (uiuj )(L) − u

(L)
i u

(L)
j has

no analog in the full equations of motion and arises as a direct
consequence of the nonlinearities. Note that no assumptions
of fully developed turbulence or self-similar scaling have
been made in this definition, and that extremely fine spatial
resolution is not required to use it on real data [28]. τ

(L)
ij

plays the role of a stress tensor (similar to the Reynolds stress
in the Reynolds-averaged Navier–Stokes equations [19]) and
encodes the momentum coupling between the scales smaller
than L and those that are larger. Equation (1) can be interpreted

as expressing the rate of work done by the large-scale strain
against stresses arising from the small-scale motion. With
our sign convention, �(L) > 0 means that energy is being
transferred to smaller scales, while �(L) < 0 means that energy
is flowing to larger scales.

Experimentally, we remove the small-scale component of
our measured velocity fields by convolving them with a
function that acts as a low-pass filter in Fourier space. Our
results are not very sensitive to the precise filter shape. Here, we
used a spatially isotropic finite impulse response filter designed
by convolving a sharp spectral filter with a frequency cutoff of
2π/L with a Gaussian window function to reduce ringing.

III. RESULTS

A. Mean-field results

Figure 1(a) shows our measurements of �(L) averaged over
space and time. As has been reported previously [12,23,25],
for scales somewhat larger than Lm, �(L) < 0 and energy
flows primarily to larger scales in accordance with the
standard Kraichnan–Leith–Batchelor inverse-cascade phe-
nomenology [15,29–31]. We do not observe a range of constant
energy flux, since our Reynolds number is relatively low and
direct dissipation by viscosity and friction may play a role at all
scales [32]. Figure 1(a) does, however, unambiguously show
net inverse energy transfer. To probe this behavior in more
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FIG. 1. (Color online) (a) Spatially averaged spectral energy flux
computed from Eq. (4) as a function of filter scale L/Lm, where Lm is
the magnet spacing. Negative values denote transfer to larger scales;
the shaded region shows the inverse energy cascade. (b) Spatially
averaged eigenvalues of τ

(L)
ij (〈λ(L)

τ 〉; solid line; left axis) and s
(L)
ij

(〈λ(L)
s 〉; dashed line; right axis) as a function of L/Lm. (c) Spatially

averaged angle 〈θsτ 〉 between the eigenframes of τ
(L)
ij and s

(L)
ij as a

function of L/Lm. The dashed line shows π/4.
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FIG. 2. (Color online) (a) Spatial map of the spectral energy flux �(L) computed for a filter scale of L = 3Lm. The black contours show
the places where θ (L)

sτ = π/4 (solid black lines) and 3π/4 (dashed black lines). The eigenvalues of (b) the stress λ(L)
τ and (c) the strain rate λ(L)

s

computed for the same instant of time and the same filter scale.

detail, we first note that Eq. (1) is an inner product. Thus, it is
sensitive to the relative alignment between τ

(L)
ij and s

(L)
ij , and

misalignment of these two tensors can suppress the energy
transfer.

To see this effect more clearly, we first note that τ (L)
ij and s

(L)
ij

are symmetric, two-dimensional tensors. Incompressibility
requires that the trace of s

(L)
ij vanish, so that s

(L)
ii = 0; this

restriction also implies that it is only the traceless (deviatoric)
part of the stress that gives a nonzero contribution to �(L).
Denoting the deviatoric part of the stress as τ̊

(L)
ij , we can write

�(L) = −(
τ̊

(L)
ij + 1

2τkkδij

)
s

(L)
ij = −τ̊

(L)
ij s

(L)
ij , (2)

where δij is the identity tensor. Since this equation is the trace
of the matrix product of τ̊

(L)
ij and s

(L)
ij , it is basis independent.

Working in the eigenbasis of τ̊
(L)
ij , we can write

�(L) = − Tr

[(
λ(L)

τ

−λ(L)
τ

)(
cos θ (L)

sτ − sin θ (L)
sτ

sin θ (L)
sτ cos θ (L)

sτ

)

×
(

λ(L)
s

−λ(L)
s

)(
cos θ (L)

sτ sin θ (L)
sτ

− sin θ (L)
sτ cos θ (L)

sτ

)]
, (3)

where λ(L)
τ and λ(L)

s are the eigenvalues of τ̊
(L)
ij and s

(L)
ij ,

respectively, and θ (L)
sτ is the angle between the two eigenframes.

Multiplying these matrices, we arrive at [26]

�(L) = −2λ(L)
τ λ(L)

s cos 2θ (L)
sτ . (4)

In Fig. 1(b), we plot the spatially averaged eigenvalues,
which both rapidly reach scale-independent values in the
inverse-cascade range. Figure 1(c) shows the average of θ (L)

sτ ; as
reported previously [25], it is nearly constant and equal to π/4
throughout the inverse cascade, suggesting that the mean-field
behavior of the inverse cascade can be captured by a tensor
eddy viscosity that imposes a 45◦ rotation between τ

(L)
ij and

s
(L)
ij , even though �(L) vanishes for θ (L)

sτ = π/4. But Fig. 1 also
makes it clear that a simple mean-field model cannot capture
all of the relevant physics: the mean spectral energy flux shown
in Fig. 1(a) is not constant over the inverse cascade range, even
though the individual mean values of λ(L)

τ , λ(L)
s , and θ (L)

sτ vary
little in this range. The structure of 〈�(L)〉 is not captured by
the variation in 〈λ(L)

τ 〉, 〈λ(L)
s 〉, and 〈θ (L)

sτ 〉.

B. Local structure and stress ordering

To move past a mean-field description, we take advantage
of the true power of filter-space techniques and consider
the spatial distribution of the components that contribute to
the spectral energy flux. In particular, we are interested in the
orientation of the eigenframes of τ

(L)
ij and s

(L)
ij : as is evident

from Eq. (4), misalignment of these eigenframes can suppress
the spectral energy flux even if the eigenvalues are large. To
illustrate this effect, in Fig. 2 we show the spatially resolved
energy flux along with the contours where θ (L)

sτ = π/4 and
3π/4 as well as spatial maps of λ(L)

τ and λ(L)
s for the same

instant in time for a filter scale of L = 3Lm. The eigenvalue
fields are not obviously related to the spectral flux, but the
given contours of θ (L)

sτ lie perfectly on the contours of vanishing
energy flux. We note that, in some cases, the π/4 and 3π/4
contours of θ (L)

sτ lie nearly on top of each other; we do not
currently understand the precise meaning of this behavior.

Nevertheless, it is clear that the alignment of the eigen-
frames of the turbulent stress and the resolved strain rate appear
to dominate the spatial distribution of the spectral energy flux.
To study it in further detail, in Figs. 3(a)–3(d) we plot the
orientation θ (relative to a fixed horizontal axis) of the largest
eigenvector of s

(L)
ij at four different filter scales L. As L grows

and small-scale variation is removed, the spatial pattern of
orientation coarsens, as it must. The situation, however, is
markedly different for τ

(L)
ij [Figs. 3(e)–3(h)]. For small L, the

spatial variation in the orientation of τ
(L)
ij is much more rapid

than for s
(L)
ij [Figs. 3(a)–3(e)]. But for larger L, the variation

is much slower: τ
(L)
ij appears to be aligning across nearly

the entire system. Suggestively, this slow variation occurs in
the range of scales where we see net inverse energy transfer
[Figs. 3(d) and 3(h)]. Although data are shown here for only a
single Reynolds number, we see similar alignment as a function
of scale for all Reynolds numbers where we observe net inverse
energy transfer. This alignment therefore does not appear to
be associated with the transition to turbulence.

We can quantify this alignment with an appropriate order
parameter. Noting that eigenvectors are essentially apolar
(since an eigenvector rotated by 180◦ is the same eigenvector),
we compute a scalar order parameter used to study nematic
ordering in two-dimensional liquid crystals. We plot this order
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FIG. 3. (Color online) Spatially resolved orientation of the local (a)–(d) s
(L)
ij and (e)–(h) τ

(L)
ij eigenframes at a single time. The color shows

the angle between the largest eigenvector and the horizontal axis, in units of π . Data are shown for four filter scales L, shown by the scale bars:
(a), (e) 0.6Lm; (b), (f) 1.5Lm; (c), (g) 3Lm; and (d), (h) 5Lm. As L increases, the patterns for both tensors coarsen; but the stress aligns over
nearly the entire system at large L, while the strain rate does not.

parameter, defined as [33,34]

φ = 2

√(
〈cos2 θ〉 − 1

2

)2

+ 〈cos θ sin θ〉2, (5)

where the averages are taken over space, as a function of L

for both τ
(L)
ij and s

(L)
ij in Fig. 4(a). The orientation patterns

for s
(L)
ij coarsen with increasing L, but φ remains low and

s
(L)
ij shows no long-range orientational order. For small L, the

situation is similar for τ
(L)
ij . But at a particular scale that nearly

coincides with the onset of net inverse energy transfer [see
Fig. 1(a)], φ grows rapidly for τ

(L)
ij and approaches unity for

large L. The growth of φ with L roughly follows a power
law; fitting a function of the form φ ∼ (L − Lc)n to the data,
we obtain an onset scale of Lc = 1.64Lm and an exponent of
n = 0.27 ± 0.02.

We also measured the correlation length ξ of the orientation
fluctuations. We computed the spatial correlation functions of
the orientation fluctuations of the eigenvectors of τ

(L)
ij and s

(L)
ij .

Specifically, suppose e(x) is an eigenvector of one of these
tensors. Its spatial fluctuations are given by e(x)′ ≡ e(x) −
〈e(x)〉, where the angle brackets denote an average taken over
space at a single time. We define the correlation function
as

C(r) = 〈e(x)′ · e(x + r)′〉
〈e(x)′ · e(x)′〉 , (6)

where r is the magnitude of r. Since these fluctuations
are measured relative to the mean orientation across the
measurement domain and the orientation field is not uniform,
C(r) must cross zero at some r . We estimate the correlation
length ξ to be the first zero crossing of C(r). The results are
plotted in Fig. 4(b). For s

(L)
ij , ξ increases as expected given our

filtering (as we remove small-scale variation, ξ must grow at
least as fast as L/2). But at Lc, ξ computed for τ

(L)
ij begins

to increase much more rapidly before saturating at the largest
value allowed by the size of our measurement domain (equal to
half of the diagonal distance across our measurement domain).
Thus, our results so far suggest that net inverse energy flux is
associated with long-range ordering of the turbulent stress that
drives the spectral energy transfer. This ordering is distinct
from simple coarsening of the flow field because it differs
from what we observe for the rate of strain.

However, there are also some indications that the ordering
behavior we observe may not in fact be causally related to any
turbulent dynamics. For example, even though we observe the
appearance of long-range order as a function of scale, the flow
itself is always in the same macroscopic state. The control
parameter that governs the dynamical state of the system (the
Reynolds number) does not control the appearance of order.
Thus, to gain more insight into our empirical observations, we
turn to a simple model system.

C. Ordering in a random field

As shown above, we observe long-range spatial ordering
in the turbulent stress, but not in the filtered rate of strain.
It is possible that this transition is due to the dynamics of
turbulent energy transfer. However, the Reynolds number does
not appear to affect the appearance of order; additionally, τ

(L)
ij

and s
(L)
ij are quite different in that τ

(L)
ij is quadratic in the

velocity, while s
(L)
ij is linear. Thus, there are hints that at least

part of what we observe may in fact be independent of the
turbulence.

To explore the ordering in more detail, we used a simple
model to build a random flow field. Taking an approach
conceptually similar to kinematic simulation [35], although
without any dynamics, we constructed an incompressible
“velocity” field by summing over Fourier modes with random
phases. Specifically, following Fung and Vassilicos [35], the
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FIG. 4. (Color online) (a) The order parameter φ for τ
(L)
ij (solid

line) and s
(L)
ij (thick dashed line) as a function of L/Lm. Beginning

at an onset length scale Lc = 1.64Lm, τ
(L)
ij rapidly orders in space,

while s
(L)
ij does not. The thin dashed line is a power-law fit to the

data, with an exponent of 0.27 ± 0.02. (b) Correlation length ξ of
the orientation fluctuations for τ

(L)
ij (solid line) and s

(L)
ij (thick dashed

line). The thin dashed line shows the expected correlation lengths
for a field that coarsens only due to the filtering; the thin dot-dashed
line is the largest ξ can be given our finite experimental domain. The
observed plateau in ξ for τ

(L)
ij at large L/Lm is a finite-domain effect.

velocity field was defined to be

u =
Nk∑
n=1

[An cos kn · x + Bn sin kn · x], (7)

where the coefficients

An = An(cos ϕn,− sin ϕn) (8)

and

Bn = Bn(− cos ϕn, sin ϕn) (9)

and the wave vector

kn = kn(sin ϕn, cos ϕn) (10)

guarantee incompressibility. The phases ϕn ∈ [0,2π ] are ran-
dom variables drawn from a uniform distribution and are
uniform in space but uncorrelated from scale to scale. The
magnitudes of each mode are related to an assumed form of
the energy spectrum E(k) as A2

n = B2
n = E(kn)�kn, where

�kn is the mode spacing. Typically, one assumes a power-law
form for the spectrum, so that E(k) ∼ k−p.

L
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FIG. 5. (Color online) The order parameter φ computed for τ
(L)
ij

(solid line) and s
(L)
ij for a random field. The parameters used to

construct the field are given in the text. The vertical dashed lines
show the size of the largest and smallest mode.

In Fig. 5, we show the order parameter φ computed for the
turbulent stress and the filtered strain rate for a single example
of a random field. The overall behavior of φ is clearly very
similar to what we observed in the experiment [Fig. 4(a)]: the
strain rate does not order, while the stress orders rapidly above
some critical scale. In fact, when compared to the experimental
case, the behavior of φ is sharper, in that φ is closer to zero
for the strain rate and closer to unity for the stress. For this
example, the random field was constructed from 100 modes on
a grid of 1000 × 1000 spatial locations. The length scale of the
largest and smallest modes were max = 500 and min = 50,
respectively. We assumed a Kolmogorov spectrum between
max and min, so that E(k) ∼ k−5/3 in this range; outside
this range, E(k) = 0. However, we found that our results
are insensitive to all of these parameters: we see the same
qualitative behavior for different choices of the number of
modes and the size of the spatial domain.

What does change the order-parameter curve, however, is
the choice of max and min. We indicate these scales by vertical
dashed lines in Fig. 5. We find that the ordering of the stress
begins at min, and that φ nearly saturates to unity at max. To
study the systematic effect of changing the scale separation,
we first fixed min and varied max, and then fixed max and
varied min, all while holding the number of modes and the
spatial resolution of the random field constant. The results are
shown in Fig. 6. From the curves plotted here, it is clear that our
observations are largely confirmed, particularly when there is
a reasonable separation of scales. The ordering transition for
the stress occurs in the range of scales from min to max; below
min, the stress does not display long-range order, and above
max, it is perfectly ordered.

In addition to changing max and min, we also fixed these
two scales and varied the shape of the energy spectrum.
Somewhat surprisingly, our results are relatively insensitive
to the spectral shape. In addition to the k−5/3 spectrum shown
here, we also tried a spectrum that scaled as k−5/3 for small
wave numbers and k−3 for large wave numbers, as would be
expected in classical two-dimensional turbulence. Changing
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FIG. 6. (Color online) The order parameter φ for the stress τ
(L)
ij

computed for random velocity fields with varying max and min. The
fields were computed on a 1000 × 1000 grid with 100 modes, as in
Fig. 5, and the mode amplitudes followed a k−5/3 energy spectrum.
(a) min was fixed at 50 and, for the different solid curves, max was
varied in steps of 50 from 100 to 500. The different values of max

are shown by the vertical dashed lines, and the color of these lines
matches the corresponding order-parameter curves. (b) max was fixed
at 500, and for the different solid curves min was varied in steps of
50 from 50 to 450. The vertical dashed lines show the values of min.

the spectrum in this way, however, had a negligible effect
on the order-parameter curve. Using a spectrum that scaled
as k+5/3, so that the small scales were much more energetic
than the large scales, resulted in a more rapid ordering with
L, although the qualitative behavior was similar. For very
steep spectra that scaled as k−p with p � 5, however, the
behavior of the order-parameter curve was similar to that seen
in Fig. 6(b) for large min, where the order-parameter curve
displayed an inflection point between the onset and saturation
of ordering. But regardless of the spectral shape, we always
observed ordering that began at L ≈ min and saturated as
L → max.

D. Fluctuations in ordering

The previous section establishes that the turbulent stress
computed for a random velocity field with no net energy flux
also displays ordering; thus, at least part of the ordering must
be a purely kinematic effect. However, there are differences

t / T
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FIG. 7. (Color online) The order parameter φ calculated from the
experimental data for L = 5Lm as a function of time (in units of TL,
the correlation time of the velocity field) for τ

(L)
ij (solid line) and s

(L)
ij

(lower dashed line). The fluctuations in the degree of order for the
stress can be large, although the stress is nearly always more ordered
than the strain rate.

between the order parameter curves for the experiment
[Fig. 4(a)] and the random field (Fig. 5). In particular, φ always
saturates to unity for the random field, while we never observe
it reaching this asymptotic limit in the experiment. To probe
this behavior, we consider a second distinction between the
experiment and the random field: while the random field is a
single snapshot, the experimental flow has rich time dynamics.

We focus on a fixed, large value of the filter scale L

where we expect strong ordering; here, we choose L = 5Lm.
In Fig. 7, we plot the time series of φ(L = 5Lm) for the
experimental data. Strikingly, the degree of ordering of the
turbulent stress we observe is not at all fixed in time, but rather
fluctuates significantly, occasionally even falling below the
degree of ordering for the filtered strain rate. This behavior is
very different from what we see for an ensemble of random
velocity fields, which exhibit only a small statistical scatter
from instance to instance. This kind of large fluctuation mirrors
what occurs in other turbulence-driven ordering phenomena:
for example, the large-scale circulation in Rayleigh–Bénard
convection undergoes reorientations and cessations [36], the
magnetic field in a turbulent dynamo spontaneously flips [2],
and the rotation sense of spectrally condensed flow in two-
dimensional turbulence can reverse [37].

IV. DISCUSSION AND CONCLUSIONS

To summarize our results, we have shown that the turbulent
stress τ

(L)
ij becomes more and more spatially ordered as the

length scale L at which it is defined increases. Suggestively,
this ordering takes place in the range of scales in our
experimental flow over which we observe net inverse energy
transfer. However, we see qualitatively similar ordering for
a random synthetic velocity field with no coherent spectral
dynamics. Thus, at least part of what we observe is kinematic
and likely arises from the quadratic dependence of the stress
on the velocity field. This result is not necessarily negative;
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indeed, if one were to build a turbulence model incorporating
the ordering we observe, its kinematic nature may be seen
as a plus because it is likely to hold in a wide range of flow
conditions. But we also argue that part of the ordering is not
purely kinematic but depends on the turbulence, given that the
alignment of the stress and the strain rate solely determines the
directionality of the energy cascade [see Eq. (4)] and that the
degree of order fluctuates strongly in time for the experimental
flow.

Although fully teasing out the exact contributions of
turbulence to the stress ordering is difficult, we can draw some
conclusions from our results and make several conjectures
that should be explored in further research. Regardless of the
mechanism by which it does so, the stress certainly orders
in space, meaning that the stress eigenvectors all point in the
same direction. Since misalignment of the stress and strain
rate can suppress the scale-to-scale energy flux (see Fig. 2)
and the angle between the two controls the direction of the
energy transfer, the net ordering of the stress suggests that
what controls the energy cascade is in fact the orientation of
the eigenframe of the strain rate. This result seems somewhat
counterintuitive: the spectral energy transfer in turbulence
arises from the mode coupling in the nonlinear term of the
Navier–Stokes equations, and the turbulent stress, and not the
strain rate, is a manifestation of this nonlinearity. However, it
is what is suggested by the data.

Potentially more interesting is the observation from the
random-field data that the ordering begins at the smallest
length scale in the system and saturates at the largest scale.
This result raises the possibility that characterizing the onset
of ordering and the rate of the transition may be used as
an instantaneous measure of the range of scales active in
the turbulence. The idea of an inertial range delineated by
a largest and smallest length scale is fundamental in our
understanding of turbulence, but we typically only estimate

these scales via mean-field arguments without being able to
measure them instantaneously, particularly in experiments.
Measuring the stress ordering may give us a way to access
this information. We note that this conjecture suggests that
the shape of the ordering transition should be a monotonic
function of a turbulent Reynolds number that is based on
the scale separation, a hypothesis that is directly testable in
numerical simulation.

And finally, let us again note that we never observe
perfect ordering of the stress in the experiment, and that the
fluctuations of the degree of order in time are the feature that
is the most different between the experimental results and the
random field. It is possible that we do not observe perfect order
because our measurement area is not large enough; but it is
also possible that it is in fact the lack of perfect order that
encodes the turbulence dynamics.

We hope that these results and conjectures will spur further
work on the geometric structure of the energy cascade in
turbulence. It also remains to be seen whether our results are
peculiar to two-dimensional flows (where turbulent kinetic
energy tends to Bose–Einstein condense into the lowest mode
allowed in the system [14,15,29,37]), or whether they can be
extended to the three-dimensional case, where one would need
to define a somewhat more complicated tensor order parameter.
It will also be interesting to study the geometric dynamics
of other manifestations of the nonlinearity in the Navier–
Stokes equations, such as the analogous “vorticity stress”
that drives the direct enstrophy cascade in two-dimensional
turbulence.
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