
PHYSICAL REVIEW E 91, 063003 (2015)
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By exploiting ideas of statistical topography, we analyze the stochastic boundary problem of emergence of
anomalous high structures on the sea surface. The kinematic boundary condition on the sea surface is assumed
to be a closed stochastic quasilinear equation. Applying the stochastic Liouville equation, and presuming the
stochastic nature of a given hydrodynamic velocity field within the diffusion approximation, we derive an
equation for a spatially single-point, simultaneous joint probability density of the surface elevation field and its
gradient. An important feature of the model is that it accounts for stochastic bottom irregularities as one, but not
a single, perturbation. Hence, we address the assumption of the infinitely deep ocean to obtain statistic features
of the surface elevation field and the squared elevation gradient field. According to the calculations, we show
that clustering in the absolute surface elevation gradient field happens with the unit probability. It results in the
emergence of rare events such as anomalous high structures and deep gaps on the sea surface almost in every
realization of a stochastic velocity field.
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I. INTRODUCTION

Stochastic structures, like clusters, in random media results
from the parametric excitation of various physical fields
inherent to the media. Applications where clustering plays a
significant role abound in physics and include hydrodynamics
(passive scalars in turbulent flows), magnetohydrodynamics
(passive vectors as a magnetic field with turbulence), and wave
propagation of diverse nature (acoustical and radio waves,
light, and laser emission) in random media, to name a few.
When addressing these problems one usually utilizes the kine-
matic approximation and bears in mind two crucial properties:

(1) At fixed points in space, field realizations in time
are random processes of a peculiar type characterized by
the existence of pikes emerging in random time intervals.
These intervals are long lasting and consist of weak impulses.
This typical realization of a random process results from a
log-normal simultaneous probability distribution with a flat
tail. It is the flat tail that results in intense but short-term
impulses. The basic statistical values are simultaneous prob-
ability density, moments, the Lyapunov exponent, and typical
realization curve, indicating the general features of the random
processes. It is crucial that by taking into account only the
named statistical characteristics of a random process, structure
formation cannot be accounted for. Some one-dimensional
problems, governed by ordinary differential equations, can
possess only a dynamical localization [1–3].

(2) Structures in a stochastic field manifest themselves in
physical space. It can be treated by means of appropriate
statistical analysis originated from statistical topography the-
ory [4–7] for stochastic fields, whereas the simplest problem
formulation with the spatial statistical uniformity ensures
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that all random field statistical features do not depend on
the spatial coordinate. Hence, the equation governing the
single-point probability density coincides in form with the
equation of probability density in every given point; however,
these equations have a different meaning. This implies that
one should use different statistical approaches to study this
equation. We refer the reader to the monographs and papers
[6–9] where these problems have been considered in detail.

By now, a great body of literature has been concerned with
anomalously high structures which are observable in a vast
range of media, including random ones, for instance, rogue
waves in the ocean [10–13], capillary waves [14], plasma
physics [15], the branching of electron flows in semiconductor
devices [16,17], and extreme acoustic [18] and optical [19–21]
waves. In this work, we are mainly interested in surface
ocean structures. Despite significant efforts (see reviews in
Refs. [10,12] and, with an emphasis on statistical properties,
Refs. [5,22–24]), there is still no exhaustive explanation for
how these structures are born and what constitutes their
main statistical properties. Partial explanations, based on the
observation that such events correspond to heavy distribution
tails differing from the Gaussian one, can be found in Ref. [25].

It is worth noting that one of the approaches to treat rogue
waves is to consider them as structures that emerge at random
places in random instants of time. The causes and mechanisms
of rogue wave appearance attract attention of many researchers
(see, for example, Ref. [25–27] and references therein).
Some of them analyze dynamical systems on the basis of
the Schrödinger equation that can be treated analytically
or numerically. Usually, when dealing with random process
realizations in time, the emergence of rare but intense impulses
is identified as rogue waves. This identification seems to be
debatable due to the reasoning laid out above.

Thus, in this work, we adhere to the idea that rogue
waves are, in general, generated as a result of clustering and
coherency that appear in uniformly random fields. We suggest
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FIG. 1. Sea surface fluctuations.

addressing the rogue wave problem on the sea surface based
on the statistical topography ideas [4,6,8,9] which describe
stochastic structure formation in random fields [7,13]. The
main goal of the paper is to study the generation of rogue waves
by making use of developed methods that have been shown
to be fruitful in solving stochastic problems with parametric
excitation [7,8,28].

The paper is organized as follows. Section II describes
the problem; in particular, the equations under study are
introduced. Then the random velocity field correlation function
is discussed in two cases, the hydrodynamic turbulence and
wave turbulence. In Sec. III, the derivation of the probability
density equation is presented in the general form and the
role of random bottom irregularities is discussed. Section IV
provides the statistical analysis of probability density equa-
tions. Here we consider two cases of the random velocity
field separately to obtain probability density equations for the
surface elevation and its gradient. In Sec. V, we investigate
the statistical topography characteristics of the random field
of the surface elevation gradient. The paper is concluded

in Sec. VI. A simpler equation qualitatively analogous to the
surface gradient equation is considered in the appendix.

II. PROBLEM STATEMENT

A. Sea surface structures

Let r = {ri} be the spatial coordinates with i = 1,2,3,
z = r3, for the vertical coordinate, and Rα , Rβ , (α,β = 1,2) for
the horizontal coordinates orthogonal to z. Then, r = {R,z}.
The three-dimensional velocity field u(r; t) is then the sum
of vertical and horizontal components such as ui(r; t) =
{uα(R,z; t),w(R,z; t)}.

The water boundary elevation on the sea surface is imposed
as a kinematic boundary condition z = ξ (R,t) (see Fig. 1) as
follows:

d

dt
ξ (R,t) = w(R,z; t)

∣∣∣∣
z=ξ (R,t)

, (1)

where d
dt

ξ (R,t) is the total derivative of the surface elevation.
Boundary condition (1) can be considered as a closed

stochastic quasilinear equation within the kinematic approxi-
mation, i.e., with prescribed statistical features of the velocity
fields u(R,z; t) and w(R,z; t):

∂ξ (R,t)

∂t
+ uα[R,ξ (R,t),t]

∂ξ (R,t)

∂Rα

= w[R,ξ (R,t); t], (2)

with initial condition ξ (R,0) = ξ0(R). We accept the
Einstein notation over summation. Equation (2) governs wave
generation on the sea surface that is induced by the vertical
component of the hydrodynamical field. By differentiating
Eq. (2) over R, one can obtain an equation for the elevation
gradient pβ(R,t) = ∂ξ (R,t)

∂Rβ
, which characterizes the surface

slope,

∂pβ(R,t)

∂t
+

[
∂uα(R,z; t)

∂Rβ

∣∣∣∣
z=ξ (R,t)

+ ∂uα(R,ξ (R,t); t)

∂z
pβ(R,t)

]
pα(R,t) + uα(R,ξ (R,t),t)

∂pα(R,t)

∂Rβ

= ∂w(R,z; t)

∂Rβ

∣∣∣∣
z=ξ (R,t)

+ ∂w(R,ξ (R,t); t)

∂z
pβ(R,t), (3)

with initial conditions p(R,0) = p0(R) = ∂ξ0(R)
∂R . It is worth

noting that there is the second boundary condition related to
bottom irregularities (see Fig. 1). According to the kinematic
approximation, this boundary condition is a functional, so for
variational derivatives ξ (R,t) and p(R,t) there are the relations

δξ (R,t)

δu(R′,z′,t ′)
∼ θ [z′ − H (R)]θ

(
t − t ′

)
,

(4)
δp(R,t)

δu(R′,z′,t ′)
∼ θ [z′ − H (R)]θ (t − t ′),

where θ (z) is the Heaviside step function.

B. Liouville equation

Let us introduce a joint indicator surface elevation function
and its gradient,

ϕ(R,t ; ξ,p) = δ [ξ (R,t) − ξ ] δ [p(R,t) − p] . (5)

Taking into account dynamical conditions, one can derive
a linear Liouville equation [7,13],

∂ϕ(R,t ; ξ,p)

∂t

= − ∂

∂ξ
w(R,ξ ; t)ϕ(R,t ; ξ,p)

−
[
uα(R,ξ ; t)

∂

∂Rα

− ∂uα(R,ξ ; t)

∂ξ
pα

]
ϕ(R,t ; ξ,p)

− ∂

∂pβ

[
∂uα(R,ξ ; t)

∂Rβ

+ ∂uα(R,ξ ; t)

∂ξ
pβ

]
pαϕ(R,t ; ξ,p)

− ∂

∂pβ

[
∂w(R,ξ ; t)

∂Rβ

+ ∂w(R,ξ ; t)

∂ξ
pβ

]
ϕ(R,t ; ξ,p) (6)

with initial conditions

ϕ(R,0; ξ,p) = δ [ξ − ξ0(R)] δ[p − p0(R)].
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Equation (6) governs the joint surface elevation probability
density and its spatial gradient for a dynamical system with
deterministic parameters and random initial conditions.

C. Statistical characteristics of the random velocity field

1. Field correlation functions u(r,t)

We are interested in the case of generating sea structures
by use of a random hydrodynamical velocity field u(r,t) in the
form of a random Gaussian field which is statistically uniform
and isotropic in space and statistically stationary in time. Its
correlation and spectral functions read

Bij (r − r′,t − t ′) = 〈ui(r,t)uj (r′,t ′)〉

=
∫

dkEij (k,t − t ′)eik(r−r′), (7)

Eij (k,t) = 1

(2π )3

∫
drBij (r,t)e−ikr.

In the general case of a given random velocity field u(r,t), the
spectral function Eij (k,t) has the form

Eij (k,t) = Es(k,t)

(
δij − kikj

k2

)
+ kikj

k2
Ep(k,t).

Let us introduce the function

Bij (r) =
∫ ∞

0
dτBij (r,τ ), (8)

which characterizes all the statistical features when addressing
the problem in the diffusion approximation.

Asymptotically as t � τ0, under the diffusion approxima-
tion a solution of the initial dynamical system is a Markovian
random field. Given the smallness of all statistical effects on
the temporal scales close to the temporal correlation radius τ0

[7], the applicability conditions are posed.
Further, we will use the second spatial derivatives of

the correlation function of a random velocity field u(r,t) at
the coordinate’s origin. These derivatives satisfy the tensor
equality [6,7],

− ∂2Bij (0)

∂rk∂rl

= Ds

d(d + 2)
[(d + 1)δklδij − δkiδlj − δkj δli]

+ Dp

d(d + 2)
(δklδij

+ δkiδlj + δkj δli), (9)

where parameters are

Ds =
∫

dk k2Es(k) = 4π

∫ ∞

0
dk k4Es(k)

= 1

d − 1

∫ ∞

0
dτ 〈ω(r,t + τ )ω(r,t)〉,

(10)

Dp =
∫

dk k2Ep(k) = 4π

∫ ∞

0
dk k4Ep(k)

=
∫ ∞

0
dτ

〈
∂u(r,t + τ )

∂r
∂u(r,t)

∂r

〉
,

and d is the spatial dimension, ω(r,t) = curl u(r,t) is the
velocity field curl, and ∂u(r,t)/∂r is the divergence.

We are concerned with two types of random velocity
fields: (i) incompressible hydrodynamic turbulence and (ii)

random-wave hydrodynamic fields. We believe that the first
type produces stationary structures, while the second one
produces wavelike propagating structures.

2. Hydrodynamic turbulence

In the first case, the spectral function looks like

Eij (k,t) = Es(k,t)

(
δij − kikj

k2

)
(11)

with the three-dimensional velocity field variance

σ 2
u = 〈u2(r,t)〉 = 2

∫
dkEs(k,0). (12)

Variable Bij (r) in (8) in this case takes the form

Bij (r) =
∫ ∞

0
dτBij (r,τ )

=
∫

dkEs(k)

(
δij − kikj

k2

)
eik(r−r′), (13)

where Es(k) = ∫ ∞
0 dτEs(k,τ ) characterizes temporal correla-

tion radius τ0-Bii(0) = σ 2
uτ0. Equation (9) then transforms to

−∂2Bij (0)

∂rk∂rl

= Ds

d(d + 2)
[(d + 1)δklδij − δkiδlj − δkj δli].

(14)

3. Wave turbulence

The second type leads to the correlation function

Bij (r,t) =
∫

dk
kikj

k2
Ep(k)e−λk2t cos {kr − ω(k)t} , (15)

where ω = ω(k) > 0 determines a variance curve of the wave
motion and λ indicates the wave attenuation.

The velocity field variance then is

σ 2
u = 〈u2(r,t)〉 =

∫
dkEp(k), (16)

and analogous variable (13) is defined as

Bij (r) =
∫ ∞

0
dtBij (r,t)

=
∫

dk
kikj

k2

[
E

p

1 (k) cos kr + E
p

2 (k) sin kr
]
, (17)

where

E
p

1 (k) = Ep(k)λk2

λ2k4 + ω2(k)
, E

p

2 (k) = Ep(k)ω(k)

λ2k4 + ω2(k)
.

4. Field correlation functions uα(R,ξ ; t) and w(R,ξ ; t)

Statistical properties of the components uα(R,ξ ; t)
and w(R,ξ ; t) of the hydrodynamics field u(r,t) in Li-
ouville equation (6) determine the required statistical
characteristics.

a. Hydrodynamic turbulence. The correlation func-
tions follow from the relations (11)–(14) for the two-
dimensional vector K and one-dimensional projection
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z = ξ ,

Bαβ(R − R′,ξ − ξ ′,t − t ′)

= 〈uα(R,ξ ; t)uβ(R′,ξ ′; t ′)〉

=
∫

dk Es(k,t − t ′)
(

δαβ − KαKβ

k2

)
eiK(R−R′)+ikz(ξ−ξ ′),

(18)

where k = {K,kz}, K = {Ka}, α = 1,2, and k = √
K2 + k2

z .
The correlations Bαw and Bww are

Bαw(R − R′,ξ − ξ ′; t − t ′)

= −
∫

dkEs(k,t − t ′)
Kαkz

k2
eiK(R−R′)+ikz(ξ−ξ ′),

Bww(R − R′,ξ − ξ ′; t − t ′)

=
∫

dk Es(k,t − t ′)
(

1 − k2
z

k2

)
eiK(R−R′)+ikz(ξ−ξ ′). (19)

It follows from Eqs. (18) that the second derivative of the
correlation function Bαβ(R,ξ ) at the coordinate origin is

∂2Bαβ(0,0)

∂Rγ ∂Rδ

= −
∫

dkEs(k)Kγ Kδ

(
δαβ − KαKβ

k2

)
= −1

2

∫
dkEs(k)K2δαβδγ δ + 1

8

∫
dkEs(k)

K4

k2

× (δαβδγ δ + δαγ δβδ + δαδδβγ ). (20)

Other correlation functions then satisfy

∂2Bαw(0,0)

∂Rα∂ξ
=

∫
dkEs(k)

K2k2
z

k2
,

∂2Bαα(0,0)

∂ξ∂ξ
= −

∫
dkEs(k)

(
2k2

z − K2k2
z

k2

)
,

(21)
∂2Bww(0,0)

∂Rγ ∂Rγ

= −
∫

dkEs(k)

(
K2 − K2k2

z

k2

)
,

∂2Bww(0,0)

∂ξ∂ξ
= −

∫
dkEs(k)

(
k2
z − k4

z

k2

)
.

It is worth recalling that all the statistical characteristics
of the velocity field components relate to the statistical
characteristics of the field u(r,t). The relation is clearly seen
in the polar coordinates kz = k cos θ , K2 = k2 sin2 θ , after
integrating over the angle variables.

b. Wave turbulence. One can derive analogous formulas in
the case of stochastic wave motion. Utilizing correlation (17)
in the form

Bij (R,w) =
∫

dk
kikj

k2

[
E

p

1 (k) cos kr + E
p
2(k) sin kr

]
,

one gets

Bαβ(R,w) =
∫

dk
KαKβ

k2

[
E

p

1 (k) cos kr + E
p

2 (k) sin kr
]
,

Bwβ(R,w) =
∫

dk
kzKβ

k2

[
E

p

1 (k) cos kr + E
p

2 (k) sin kr
]
,

Bww(R,w) =
∫

dk
k2
z

k2

[
E

p

1 (k) cos kr + E
p

2 (k) sin kr
]
. (22)

The second derivative of the correlation function at the
coordinate’s origin is

− ∂2Bαβ(0,0)

∂Rγ ∂Rδ

=
∫

dk
KαKβKγ Kδ

k2
E

p

1 (k)

= 1

8

∫
dkE

p

1 (k)
K4

k2

× (δαβδγ δ + δαγ δβδ + δαδδβγ ). (23)

The other correlations satisfy

∂2Bαw(0,0)

∂Rα∂ξ
= ∂2Bαα(0,0)

∂ξ∂ξ

= ∂2Bww(0,0)

∂Rγ ∂Rγ

= −
∫

dkE
p

1 (k)
K2k2

z

k2
,

∂2Bww(0,0)

∂ξ∂ξ
= −

∫
dkE

p

1 (k)
k4
z

k2
. (24)

III. DERIVATION OF PROBABILITY
DENSITY EQUATION

The cases considered imply that the joint surface elevation
probability density and its gradient are indicator function
(5), averaged over an ensemble of the random velocity field
realizations u(r,t), i.e.,

P (R,t ; ξ,p) = 〈ϕ(R,t ; ξ,p)〉u . (25)

Now one can obtain an equation relating the joint surface
elevation probability density and its gradient. To do that,
one averages Liouville equation (6) over an ensemble of the
random velocity field realization u(r,t). To divide velocity
correlations u(r,t), one can make use of the Furutsu-Novikov
theorem [6,29,30], accounting for sea bottom irregularities
H (R) [see Fig. 1 and Eq. (4)] [7]:

〈ui(R,ξ,t)R[u(R̃,̃ξ ,τ )]〉u

=
∫

dR′
∫ ξ+0

−∞
θ [ξ ′ − H (R)]dξ ′

∫ t

0
dt ′Bij

× (R − R′,ξ − ξ ′,t − t ′)

〈
δR

[
u(R̃,̃z,τ )

]
δuj (R′,ξ ′,t ′)

〉
u

. (26)

The bottom topography has the mean value 〈H (R)〉 = −H ,
where H is the mean depth of the sea. Taking into account
that topographic irregularities are statistically independent on
the hydrodynamical velocity field and averaging (26) over an
ensemble of realizations, one gets

〈ui(R,ξ,t)R[u(R̃,̃ξ ,τ )]〉u

=
∫

dR′
∫ ξ+0

−∞
〈θ (ξ ′ − H (R))〉Hdξ ′

∫ t

0
dt ′Bij

× (R − R′,ξ − ξ ′,t − t ′)

〈
δR

[
u(R̃,̃z,τ )

]
δuj (R′,ξ ′,t ′)

〉
u

, (27)

where function 〈θ [ξ − H (R)]〉H is an integral probability
function of the topographic irregularity distribution H (R), i.e.,
it is the probability P {ξ > H (R)}. In the case of a statistically
uniform random field H (R), this function does not depend on
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spatial coordinates R, and then we get 〈θ [ξ − H (R)]〉H = P {ξ > H (R)} = P (H ; ξ ). In the case of an infinitely deep sea model
(when H → ∞ in Fig. 1), function P (H ; ξ ) → 1.

Given the diffusion approach [6,7], Eq. (27) simplifies to the form

〈ui(R,ξ,t)R[u(R̃,̃ξ ,τ )]〉u =
∫

dR′
∫ ξ+0

−∞
P (H ; ξ ′)dξ ′Bij (R − R′,ξ − ξ ′)

〈
δR[u(R̃,̃z,τ )]

δuj (R′,ξ ′,t − 0)

〉
u

,

where function Bij (r) is governed by Eq. (8), i.e.,

Bij (R,ξ ) =
∫ ∞

0
dτBij (R,ξ,τ ). (28)

Particularly,

〈uα(R,ξ,t)ϕ[u(R̃,̃ξ ,τ )]〉u =
∫

dR′
∫ ξ+0

−∞
P (H ; ξ ′)dξ ′Bαβ(R − R′,ξ − ξ ′)

〈
δϕ[u(R̃,̃z,τ )]

δuβ(R′,ξ ′,t − 0)

〉
u

+
∫

dR′
∫ ξ+0

−∞
P (H ; ξ ′)dξ ′Bαw(R − R′,ξ − ξ ′)

〈
δϕ[u(R̃,̃z,τ )]

δw(R′,ξ ′,t − 0)

〉
u
,

〈w(R,ξ,t)ϕ[u(R̃,̃ξ ,τ )]〉u =
∫

dR′
∫ ξ+0

−∞
P (H ; ξ ′)dξ ′Bwβ(R − R′,ξ − ξ ′)

〈
δϕ[u(R̃,̃z,τ )]

δuβ(R′,ξ ′,t − 0)

〉
u

+
∫

dR′
∫ ξ+0

−∞
dξ ′P (H ; ξ ′)Bww(R − R′,ξ − ξ ′)

〈
δϕ[u(R̃,̃z,τ )]

δw(R′,ξ ′,t − 0)

〉
u
,

where u(r,t) (k = √
K2 + k2

z ) are correlation functions of the random hydrodynamical velocity field,

Bαβ(R − R′,ξ − ξ ′) = 〈uα(R,ξ ; t)uβ(R′,ξ ′; t ′)〉 =
∫ ∞

0
dτ

∫
dKdkz Eαβ(k,τ )eiK(R−R′)+ikz(ξ−ξ ′), (29)

Bαw(R − R′,ξ − ξ ′) = 〈uα(R,ξ ; t)w(R′,ξ ′; t ′)〉 =
∫ ∞

0
dτ

∫
dKdkz Eαz(k,τ )eiK(R−R′)+ikz(ξ−ξ ′), (30)

Bww(R − R′,ξ − ξ ′) = 〈w(R,ξ ; t)w(R′,ξ ′; t ′)〉 =
∫ ∞

0
dτ

∫
dKdkz Ezz(k,τ )eiK(R−R′)+ikz(ξ−ξ ′). (31)

Now the probability density equation (25) transforms to

∂P (t ; ξ,p)

∂t
= −

∫
dR′

∫ ξ+0

−∞
P (H ; ξ ′)dξ ′Bαβ(R − R′,ξ − ξ ′)

∂

∂Rα

〈
δϕ[u(R̃,̃z,τ )]

δuβ(R′,ξ ′,t − 0)

〉

−
∫

dR′
∫ ξ+0

−∞
P (H ; ξ ′)dξ ′Bαw(R − R′,ξ − ξ ′)

∂

∂Rα

〈
δϕ[u(R̃,̃z,τ )]

δw(R′,ξ ′,t − 0)

〉

+
∫

dR′
∫ ξ+0

−∞
P (H ; ξ ′)dξ ′ ∂Bαβ(R − R′,ξ − ξ ′)

∂ξ
pα

〈
δϕ[u(R̃,̃z,τ )]

δuβ(R′,ξ ′,t − 0)

〉

+
∫

dR′
∫ ξ+0

−∞
P (H ; ξ ′)dξ ′ ∂Bαw(R − R′,ξ − ξ ′)

∂ξ
pα

〈
δϕ[u(R̃,̃z,τ )]

δw(R′,ξ ′,t − 0)

〉

− ∂

∂ξ

∫
dR′

∫ ξ+0

−∞
P (H ; ξ ′)dξ ′Bwβ(R − R′,ξ − ξ ′)

〈
δϕ[u(R̃,̃z,τ ]

δuβ(R′,ξ ′,t − 0)

〉

− ∂

∂ξ

∫
dR′

∫ ξ+0

−∞
P (H ; ξ ′)dξ ′Bww(R − R′,ξ − ξ ′)

〈
δϕ[u(R̃,̃z,τ ]

δw(R′,ξ ′,t − 0)

〉
(32)
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+
∫

dR′
∫ ξ+0

−∞
P (H ; ξ ′)dξ ′ ∂Bαβ(R − R′,ξ − ξ ′)

∂Rγ

∂

∂pγ

pα

〈
δϕ[u(R̃,̃z,τ )]

δuβ(R′,ξ ′,t − 0)

〉
+

∫
dR′

∫ ξ+0

−∞
P (H ; ξ ′)dξ ′ ∂Bαw(R − R′,ξ − ξ ′)

∂Rγ

∂

∂pγ

pα

〈
δϕ[u(R̃,̃z,τ )]

δw(R′,ξ ′,t − 0)

〉
+

∫
dR′

∫ ξ+0

−∞
P (H ; ξ ′)dξ ′ ∂Bαβ(R − R′,ξ − ξ ′)

∂ξ

∂

∂pγ

pγ pα

〈
δϕ[u(R̃,̃z,τ )]

δuβ(R′,ξ ′,t − 0)

〉
+

∫
dR′

∫ ξ+0

−∞
P (H ; ξ ′)dξ ′ ∂Bαw(R − R′,ξ − ξ ′)

∂ξ

∂

∂pγ

pγ pα

〈
δϕ[u(R̃,̃z,τ ]

δw(R′,ξ ′,t − 0)

〉
−

∫
dR′

∫ ξ+0

−∞
P (H ; ξ ′)dξ ′ ∂Bwβ(R − R′,ξ − ξ ′)

∂Rβ

∂

∂pβ

〈
δϕ[u(R̃,̃z,τ ]

δuβ(R′,ξ ′,t − 0)

〉
−

∫
dR′

∫ ξ+0

−∞
P (H ; ξ ′)dξ ′ ∂Bww(R − R′,ξ − ξ ′)

∂Rβ

∂

∂pβ

〈
δϕ[u(R̃,̃z,τ )]

δw(R′,ξ ′,t − 0)

〉
−

∫
dR′

∫ ξ+0

−∞
P (H ; ξ ′)dξ ′ ∂Bwβ(R − R′,ξ − ξ ′)

∂ξ

∂

∂pβ

pβ

〈
δϕ[u(R̃,̃z,τ )]

δuβ(R′,ξ ′,t − 0)

〉
−

∫
dR′

∫ ξ+0

−∞
P (H ; ξ ′)dξ ′ ∂Bww(R − R′,ξ − ξ ′)

∂ξ

∂

∂pβ

pβ

〈
δϕ[u(R̃,̃z,τ )]

δw(R′,ξ ′,t − 0)

〉
. (33)

Then, rewriting Liouville equation (6) in an integral form, one obtains the equations featuring the corresponding variational
derivatives [7,13]:〈

δϕ[u(R̃,̃z,τ )]

δuβ(R′,ξ ′,t − 0)

〉
u

= δ(R − R′)
[
−δ(ξ − ξ ′)

∂

∂Rβ

+ ∂δ(ξ − ξ ′)
∂ξ

pβ

]
P (R,t ; ξ,p)

+ ∂δ(R − R′)
∂Rγ

δ(ξ − ξ ′)
∂

∂pγ

pβP (R,t ; ξ,p) + δ(R − R′)
∂δ(ξ − ξ ′)

∂ξ

∂

∂pγ

pγ pβP (R,t ; ξ,p),〈
δϕ[u(R̃,̃z,τ )]

δw(R′,ξ ′,t − 0)

〉
u

= − ∂

∂ξ
δ(R − R′)δ(ξ − ξ ′)P (R,t ; ξ,p)

− ∂δ(R − R′)
∂Rγ

δ(ξ − ξ ′)
∂

∂pγ

P (R,t ; ξ,p) − δ(R − R′)
∂δ(ξ − ξ ′)

∂ξ

∂

∂pγ

pγ P (R,t ; ξ,p). (34)

Provided the uniform initial conditions ξ0(R) = 0 and p0(R) = 0, all the single-point statistical characteristics do not depend
on the spatial coordinate R, i.e.,

P (R,t ; ξ,p) ≡ P (t ; ξ,p).

Formulae (34) can be simplified〈
δϕ[u(R̃,̃z,τ )]

δuβ(R′,ξ ′,t − 0)

〉
u

= δ(R − R′)
∂δ(ξ − ξ ′)

∂ξ
pβP (t ; ξ,p) + ∂δ(R − R′)

∂Rγ

δ(ξ − ξ ′)
∂

∂pγ

pβP (t ; ξ,p)

+ δ(R − R′)
∂δ(ξ − ξ ′)

∂ξ

∂

∂pγ

pγ pβP (t ; ξ,p), (35)

〈
δϕ[u(R̃,̃z,τ )]

δw(R′,ξ ′,t − 0)

〉
u

= − ∂

∂ξ
δ(R − R′)δ(ξ − ξ ′)P (t ; ξ,p) − ∂δ(R − R′)

∂Rγ

δ(ξ − ξ ′)
∂

∂pγ

P (t ; ξ,p)

− δ(R − R′)
∂δ(ξ − ξ ′)

∂ξ

∂

∂pγ

pγ P (t ; ξ,p). (36)

One can further simplify equations for the function P (t ; ξ,p) by using the scalar probability density P (t ; ξ,p) or P (t ; ξ,I ),
where p = |p|, I = |p|2.

From now on, we concern ourselves with the case of uniform initial conditions. Spatial irregularities imply diffusion in the {r}
space. However, our focus is on spatial structure forming due to diffusion in the phase space {ξ,p}. Then, incorporating Eqs. (35)
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and (36) into Eq. (33) and integrating it over spatial coordinates R′, ξ ′, one can derive the required equation

∂P (t ; ξ,p)

∂t
= −1

2
P(H ; ξ )

∂2Bαβ(0,0)

∂Rα∂Rβ

∂

∂pγ

pγ P (t ; ξ,p) + P(H ; ξ )
∂2Bαw(0,0)

∂Rα∂ξ

∂

∂pγ

pγ P (t ; ξ,p)

− 1

2
P(H ; ξ )

∂2Bαα(0,0)

∂ξ∂ξ

∂

∂pγ

pγ p2
βP (t ; ξ,p) + 1

2
P (H ; ξ )

∂2Bαw(0,0)

∂Rα∂ξ

∂

∂pγ

pγ P (t ; ξ,p)

+Bww(0,0)
∂2

∂ξ 2
[P(H ; ξ )P (t ; ξ,p)] + Bww(0,0)

∂

∂ξ

{
∂P(H ; ξ )

∂ξ

∂

∂pδ

pδP (t ; ξ,p)

}
− P(H ; ξ )

∂2Bαβ(0,0)

∂Rγ ∂Rδ

∂

∂pγ

pα

∂

∂pδ

pβP (t ; ξ,p) + 1

2
P(H ; ξ )

∂Bαw(0,0)

∂Rα∂ξ

[
∂

∂pγ

pγ + ∂

∂pγ

pγ

∂

∂pδ

pδ

]
P (t ; ξ,p)

− 1

2
P(H ; ξ )

∂2Bαα(0,0)

∂ξ∂ξ

∂

∂pγ

pγ

∂

∂pδ

pδpβpβP (t ; ξ,p) + 1

2
P(H ; ξ )

∂Bαw(0,0)

∂Rα∂ξ

∂

∂pγ

pγ pδ

∂

∂pδ

P (t ; ξ,p)

+ 1

2
P(H ; ξ )

∂2Bwβ(0,0)

∂Rβ∂ξ

[
∂

∂pγ

pγ + ∂

∂pγ

∂

∂pδ

pδpγ

]
P (t ; ξ,p) − 1

2
P(H ; ξ )

∂2Bww(0,0)

∂Rγ ∂Rγ

∂

∂pδ

∂

∂pδ

P (t ; ξ,p)

+ 1

2
P(H ; ξ )

∂2Bwβ(0,0)

∂ξ∂Rβ

∂

∂pγ

pγ

∂

∂pδ

pδP (t ; ξ,p) − P(H ; ξ )
∂2Bww(0,0)

∂ξ∂ξ

[
∂

∂pγ

pγ + ∂

∂pγ

pγ

∂

∂pδ

pδ

]
P (t ; ξ,p).

(37)

Since we make use of the kinematic approximation, random bottom irregularities appear in the probability density equation
as a monotonic function, P (H ; ξ ), ranging from 0 to 1. Irregularities appear also in the diffusion coefficients. Therefore, these
functions have maximal influence in the case of the infinitely deep sea, i.e., if P (∞; ξ ) = 1. We stress that the influence of the
bottom irregularities on forming the hydrodynamical velocity field is not in question.

Given the approximation, we study in the next section how a complex stochastic velocity field structure affects the statistical
properties of the sea surface elevation and its gradient.

IV. STATISTICAL ANALYSIS OF PROBABILITY
DENSITY EQUATIONS

A. Surface elevation probability density

First, we consider the case when the sea surface elevation
does not correlate with its gradient. By integrating Eq. (37)
over p, one arrives at an unexpected conclusion in

∂

∂t
P (t ; ξ ) = Bww(0,0)

∂2

∂ξ 2
P (t ; ξ ). (38)

So the probability density of the surface elevation random
field ξ (R,t) is the Gaussian distribution

P (t ; ξ ) = 1√
4πBww(0,0)t

exp

{
− ξ 2

4Bww(0,0)t

}
,

not depending on nonlinearity of initial equation (2) with the
variance

〈ξ 2(R,t)〉 = 2Bww(0,0)t.

The diffusion coefficient Bww(0,0) in Eq. (38) is naturally
linked to the variance of the random hydrodynamical velocity
field, u(r,t).

Then from (19), we have

Bww(0,0) =
∫

dk Es(k,0)

(
1 − k2

z

k2

)
.

Transiting to k, kz = k cos θ , K2 = k2 sin2 θ , integrating over
the angle variables, and using Eq. (12), one gets the equality
for hydrodynamic turbulence,

Bww(0,0) = 2

3

∫
dk Es(k,0) = 1

3
σ 2

u .

By analogy, in case of wave turbulence, using Eq. (15) and
Eq. (16), one gets the equation

Bww(0,0) = 1

3

∫
dk Ep(k,0) = 1

3
σ 2

u .

Summarizing, one can draw a conclusion that the complex
structure of a hydrodynamic velocity field in the deep sea can-
not be a direct cause of a stochastic structure on the sea surface.

B. Probability density of the surface elevation gradient

By integrating Eq. (37) over ξ , in the case of the deep sea,
one arrives at the equation
∂

∂t
P (t ; p) = −1

2

∂2Bαβ(0,0)

∂Rα∂Rβ

∂

∂pδ

pδP (t ; p)

+ 2
∂2Bαw(0,0)

∂Rα∂ξ

∂

∂pγ

pγ

(
1 + ∂

∂pδ

pδ

)
P (t ; p)

− 1

2

∂2Bαα(0,0)

∂ξ∂ξ

∂

∂pγ

pγ

(
1 + ∂

∂pδ

pδ

)
p2

βP (t ; p)

− ∂2Bαβ(0,0)

∂Rγ ∂Rδ

∂

∂pγ

pα

∂

∂pδ

pβP (t ; p)

− 1

2

∂2Bww(0,0)

∂Rγ ∂Rγ

∂

∂pδ

∂

∂pδ

P (t ; p)

− ∂2Bww(0,0)

∂ξ∂ξ

∂

∂pγ

pγ

(
1 + ∂

∂pδ

pδ

)
P (t ; p),

(39)

where p(R,t) is the probability density of the surface elevation
gradient.
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To simplify, we go from Eq. (39) to the random field I (R,t) = p2(R,t), multiply (39) by δ(p2
μ − I ), and integrate over p. As

a result, we obtain the following equation, with P (t ; I ) being the probability density:

∂

∂t
P (t ; I ) = ∂

∂I
I

[
−∂2Bαβ(0,0)

∂Rα∂Rβ

+ 4
∂2Bαw(0,0)

∂Rα∂ξ

(
1 − 2

∂

∂I
I

)
+ ∂2Bαα(0,0)

∂ξ∂ξ

(
1 + 2

∂

∂I
I

)
I

]
P (t ; I )

+ 2
∂2Bαβ(0,0)

∂Rγ ∂Rδ

∂

∂I

[∫
dp(δγ δpαpβ + δαδpγ pβ)δ

(
p2

μ − I
)
P (t ; I ) − 2

∂

∂I

∫
dppγ pαpδpβδ

(
p2

μ − I
)
P (t ; I )

]
− 2

∂2Bww(0,0)

∂Rγ ∂Rγ

∂

∂I
I

∂

∂I
P (t ; I ) − 2

∂2Bww(0,0)

∂ξ∂ξ

∂

∂I
I

(
1 + 2

∂

∂I
I

)
P (t ; I ). (40)

To carry out further calculations, one needs to know the
correlation function structure, which varies depending on the
application.

1. Hydrodynamic turbulence

Now we incorporate Eqs. (20) and (21) into Eq. (40) and use
spherical coordinates for the vector k. Then integrating over
the angle variables, we get the final equation for the probability
density, P (t ; I ),

∂

∂τ
P (τ ; I ) = ∂

∂I
I

(
1 + 4

∂

∂I
I + I

)
P (τ ; I )

+ 2
∂

∂I
I

∂

∂I
I 2P (τ ; I ) + 2

∂

∂I
I

∂

∂I
P (τ ; I ),

(41)

where τ = 8
15Dst is the dimensionless time, while the variable

Ds satisfies Eq. (10), i.e.,

Ds =
∫

dk k2Es(k) = 4π

∫ ∞

0
dk k4Es(k)

= 1

2

∫ ∞

0
dτ 〈ω(r,t + τ )ω(r,t)〉, (42)

where ω(r,t) = curl u(r,t) is the velocity field curl.
Equation (41) can be represented in the form

∂

∂τ
P (τ ; I ) = ∂

∂I
I (1 + I )P (τ ; I )

+ 2
∂

∂I
I

∂

∂I
(1 + I )2P (τ ; I ).

2. Wave turbulence

Incorporating the second derivatives of the velocity field
correlation functions (23) and (24) into Eq. (40), we use
spherical coordinates for the vector k. Then integrating over
the angle variables, we derive the equation for the probability
density P (t ; I ). It is interesting that this equation precisely
coincides with the equation for hydrodynamical turbulence,
i.e.,

∂

∂τ
P (τ ; I ) = ∂

∂I
IP (τ ; I ) + 4

∂

∂I
I

∂

∂I
IP (τ ; I )

+ ∂

∂I
I 2P (τ ; I ) + 2

∂

∂I
I

∂

∂I
I 2P (τ ; I )

+ 2
∂

∂I
I

∂

∂I
P (τ ; I ), (43)

where τ = 2
15Dpt is the dimensionless time, while the variable

Dp satisfies Eq. (10), i.e.,

Dp =
∫

dk k2E
p

1 (k) = 4π

∫ ∞

0
dk k4E

p

1 (k)

=
∫ ∞

0
dτ

〈
∂u(r,t + τ )

∂r
∂u(r,t)

∂r

〉
, (44)

with ∂u(r,t)
∂r being the velocity field divergence.

V. STATISTICAL TOPOGRAPHY OF RANDOM FIELD
FOR THE SURFACE ELEVATION GRADIENT

First, we note that the probability density equation for the
random field I (τ ; R), described above, provided there is a
spatial uniformity, governs the statistical properties of the
surface elevation gradient field. At any fixed point in the
space R̃, function I (τ ; R̃) is a random process in time with the
simultaneous probability density independent of R̃ governed
by the obtained equations. In the physical space {R}, there
may appear a structure of the field I (τ ; R) = |p(τ ; R)|2 as a
physical object. This structure appears as closed regions with a
high gradient concentration, conventionally called clustering.
The equations describing this process are fairly complex
due to two concurrent phenomena. On one hand, the field
I (τ ; R) is induced by a random Gaussian field from the initial
condition; on the other hand, there is a parametric excitation
of the field. Certain statistical parameters, characterizing this
excitation within separate realizations of the random field, can
be obtained analytically.

A. Moment equation and the Lyapunov characteristic
parameter

Consider the n-th moment function the I (τ ; R)-〈I n(τ ; R)〉.
By multiplying the probability density equation by In, and
integrating over I , one obtains

∂

∂τ
〈I n(τ ; R)〉 = n(4n − 1)〈I n(τ ; R)〉 + n(2n − 1)

×〈I n+1(τ ; R)〉 + 2n2〈I n−1(τ ; R)〉. (45)

In particular, as n = 1, 〈I (τ ; R)〉 = σ 2
p (τ ; R), the surface

elevation gradient variance is

∂

∂τ
〈I (τ ; R)〉 = 3 〈I (τ ; R)〉 + 〈

I 2(τ ; R)
〉 + 2.

It means that there is no steady-state distribution as τ →
∞. However, formally there is a steady-state probability
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distribution,

P (∞,I ) = 3

2

1

(1 + I )5/2
. (46)

It seems that only the very tail of this distribution coincides
to some extent with a flat tail of the probability distribution at
large time.

By analogy, one obtains the equation for the Lyapunov
characteristic parameter, ∂

∂τ
〈ln I (τ )〉,

∂

∂τ
〈ln I (τ ; R)〉 = −1 − 〈I (τ ; R)〉 ,

i.e., the Lyapunov exponent decreases rapidly in time as
τ → ∞,

e〈ln I (τ ;R)〉 ∼ exp

{
−τ −

∫ τ

0
dτ ′〈I (τ ′; R)〉

}
. (47)

The field I (τ ; R) decreases rapidly almost at every point in
space as time τ increases, therefore the field may clusterize in
small space areas.

B. Integral probability distribution equation

The integral probability distribution function for the prob-
ability density P (τ ; I ) is defined as

�(τ,I ) =
∫ I

0
dI ′P (τ ; I ′) = 〈θ (I − I (τ ; R))〉u , (48)

and it is the probability of an event P (I (τ ; R) < I ). Due to
parametric excitation, the function rapidly approaches unity as
time increases. So the value

shom
(
τ,I

) = 〈θ (I (τ ; R) − I )〉u

= 1 − 〈θ (I − I (τ ; R))〉u (49)

is the probability of an event P [I (τ ; R) > I ]. Then, in ac-
cordance with statistical topography theory [6–9,13,28]), this
function in the case of a statistically uniform field delineates
geometrically a specific area, where the field I (τ ; R) exceeds
any given value I . As the field decreases almost at every point
in space, this probability approaches zero, indicating that the
basic statistic characteristics (moments) concentrate inside this
small area. As the specific gradient is squared, localized inside
the area, and satisfies the equation

〈i(τ ; I > I )〉 = 〈I (τ )〉 −
∫ I

0
dI IP (τ ; I ), (50)

this means that as this small area decreases further, the
intense gradient pushes water mass upward, creating high
narrow structures, as well as pushes them downward, inducing
relatively short narrow gaps. This corresponds to very rare
intense fluctuations of the surface elevation Gaussian field
ξ (R,t). These results can be verified by means of numerical
simulations addressing the probability density and integral
probability distribution.

By incorporating relation P (τ ; I ) = ∂
∂I

�(τ,I ) into
Eqs. (41) and (43), and integrating over I , one arrives at the
following equation with the integral probability distribution:

∂

∂τ
�(τ,I ) = I

∂

∂I
�(τ,I ) + 4I

∂

∂I
I

∂

∂I
�(τ,I ) + I 2 ∂

∂I
�(τ,I )

+ 2I
∂

∂I
I 2 ∂

∂I
�(τ,I ) + 2I

∂2

∂I 2
�(τ,I ) (51)

with the initial condition �(0,I ) = 1 and boundary conditions

�(τ,0) = 0, �(τ,∞) = 1.

Equation (51) can be rewritten as

∂

∂τ
�(τ,I ) = I (1 + I )

∂

∂I
�(τ,I ) + 2I

∂

∂I
(1 + I )2 ∂

∂I
�(τ,I ).

(52)
It is also worth noting that a typical realization curve

I ∗(τ ), which is the main characteristic of the random process
evolution in time, is defined as

�[τ,I ∗(τ )] = 1
2 . (53)

VI. CONCLUSION

The main result of the paper is that we, first, derived
equations relating the joint simultaneous probability density
for a perturbed surface field ξ (R,t), and its gradient p(R,t)
under the influence of the vertical component in the hydro-
dynamic velocity field. Second, we have analyzed statistical
features of these equations. In the case of a spatially uniform
medium as in the deep sea, we have obtained that the surface
perturbations are a Gaussian random field. This means that the
hydrodynamic field complex structure cannot directly cause
stochastic structure formation on the sea surface. The fields
ξ (R,t) and p(R,t) do not correlate, as the equation for the
probability density, and the integral probability functions (41)
and (48) for a positive field I (R,t) = p2(R,t), are intricate
and do not depend on hydrodynamical-velocity-field statistical
structure. Then, making use of the equations, we have a
recurrence equation for the field I (R,t) moments and an
equation for the Lyapunov characteristic exponent. These
equations show that all the statistical moments increase in
time, as the Lyapunov exponent asymptote rapidly decreases
at long times.

On one hand, at every point in the space R̃, the random
function I (τ ; R̃) is a random process in time. Its simul-
taneous probability density is independent of R̃, satisfying
Eq. (41), which is the Fokker-Plank equation of a Markov
process. Time evolution of this process is described by a
typical realization curve [6,7], which unfortunately cannot
be expressed analytically. An analysis of the behavior of the
Lyapunov exponent points out indirectly that a random process
realization I (τ ; R̃) decreases almost at every point in space
with the unit probability. Therefore, the field I (τ ; R) begins
to clusterize in some small volume in space, with rare but
intense fluctuations (intermittence) about a typical realization
curve. These fluctuations make all the moment functions grow
in time.

On the other hand, in the physical space {R}, there may
appear a structure forming inside the field I (τ ; R) = |p(τ ; R)|2
as closed areas with a high gradient concentration (clustering)
which is also governed by the derived equations, (41) and
(48). This suggests that as this small area decreases further,
the large gradient pushes water mass upward, creating high
narrow structures, as well as pushes them downward, inducing
relatively short narrow gaps. This corresponds to very rare
intense fluctuations of the surface elevation Gaussian field
ξ (R,t) with a typical realization curve coinciding with the
mean value to be zero.
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Equations (41) and (48) are intricate, possessing two
major phenomena. First, the field I (τ ; R) is generated due
to a random Gaussian velocity field, and, second, there is a
parametric excitation at work in the system. As a concluding
remark, it is worth noting that equations similar to (41)
and (43) have been obtained in the problem of turbulent
dynamos for a hydrodynamic flow with possible analytical
solutions [6,7,31,32]. Relevant calculations can be found in
the appendix.
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APPENDIX: THE SIMPLEST TURBULENT DYNAMO
PROBLEM

The simplest permissible equation in a dimensionless form
is

∂

∂τ
P (τ ; E) =

(
∂

∂E
E + 2

∂

∂E
E

∂

∂E
E + 2

∂

∂E
E

∂

∂E

)
×P (τ ; E) (A1)

with the initial condition P (0; E) = δ(E − β).
This equation appears in the problem of energy clustering

in the magnetic field of a random hydrodynamic field u(r,t),
with nondivergent magnetic field H(r,t) [6,7,31,32]),[

∂

∂t
+ ∂

∂r
u(r,t)

]
H(r,t) =

[
H(r,t)

∂

∂r

]
u(r,t), (A2)

with uniform initial condition H(r,0) = H0.
Let us consider a model hydrodynamic field u(r,t) =

v(t)f (kr), where v(t) is a Gaussian vector random process, the
white noise, and f (kr) is a periodic function. Choosing the x

axis along vector k, one can see that the velocity field becomes
dependent only on one spatial coordinate, f (kr) = f (kx). In
this case, the x component of the magnetic field is conserved,
i.e., Hx(r,t) = Hx0, where the transversal component of the
magnetic field H⊥(x,t) satisfies the equation[

∂

∂t
+ vx(t)

∂

∂x
f (x)

]
H⊥(x,t) = v⊥(t)

∂f (x)

∂x
Hx0, (A3)

with the initial condition H⊥(x,0) = H⊥ 0. The probability
density of the component is governed by Eq. (A1). The velocity
field model, u(r,t) = v(t) sin 2(kr), was first introduced in Ref.
[33], and it allowed us to obtain an analytical solution as a
continuity equation for the scalar density field ρ(r,t),

∂

∂t
ρ(r,t) + ∂

∂r
u(r,t)ρ(r,t) = 0, ρ(r,0) = ρ0,

and as well as a solution of Eq. (A3) for a vector magnetic
field. Thus it helped to follow the emergence and evolution of
the clustering process in separate realizations of the velocity
field.

Equation (A1) is significantly simpler than the one obtained
above, so it allowed us to get an asymptotic energy moment

0.5 1 1.5

x
0

0

20

40

100
E(x, t)
E(t)

60

80

100 (a)

0.5 1 1.5

x

0

log E(x, t)

3
4
5
6
7
8
9

10
11
12 (b)

FIG. 2. The dynamics of a cluster disappearing at point 0 and its
emergence at point π/2. The circle marks time t = 10.4; (triangle)
t = 10.8, (square) t = 11.8.

solution at large times,

〈En(τ )〉 ∼ Ane
n(2n−1)τ ,

which corresponds to the log-normal law with a Gaussian
generation. The Lyapunov exponent was also estimated as

e〈ln E(τ )〉 = βe−τ .

This means that the magnetic field decreases at almost every
point in space or, in other words, a clustering occurs. This
was simulated numerically as β = 0 [6,7,31,32]. Results are
also shown in Fig. 2(a). The figure demonstrates a part of the
energy, contained within a cluster, divided by the total energy
at a time. Figure 2(b) illustrates the dynamics of perturbations
in the magnetic energy as they move from one boundary to
another.

Equations (A1), (41), and (48) comprise terms correspond-
ing to the Gaussian field generation, which then define energy
generation at short times. For simplicity, we demonstrate this
for a two-dimensional case.

The probability density of the Gaussian vector field
H⊥(R,t) in the case of a uniform problem is

∂

∂τ
P (τ ; H⊥) = 1

2

∂2

∂H2
⊥

P (τ ; H⊥),

with the solution P (τ ; H⊥) = 1
2πτ

exp(−H2
⊥

2τ
).

(a)

1

1

1

2

2

2

3 40

1

2

P (t;E)

E

(b)

1

2

2

2

3

3

4

4

4

0

P (t;E)

E

FIG. 3. Probability density (A1) at times (a) τ = 0.3 (curve 1)
and τ = 1.7 (curve 2). Regular lines correspond to the Gaussian
process (A4) τ = 0.3-1′, τ = 1.7-2′. (b) The same as in (a) but at
times τ = 1.7-2, τ = 5.0-3, τ = 8.3-4.
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FIG. 4. (a) Integral probability function (A6) at times τ = 0.3
(curve 1), τ = 1.7 (curve 2), and τ = 5.0 (curve 3); regular curves 1′,
2′, 3′ correspond to the Gaussian distribution. (b) Typical realization
curves of the magnetic field energy, 1, and the Gaussian process, 1′.

Therefore, the probability density of the transversal energy
E = H2

⊥(R,t) is

P (τ ; E) = 1

2τ
exp

(
− E

2τ

)
, (A4)

which satisfies

∂

∂τ
P (τ ; E) = 2

∂

∂E
E

∂

∂E
P (τ ; E).

Hence, the integral probability distribution function satis-
fies

∂

∂τ
�(τ ; E) = 2E

∂2

∂E2
�(τ ; E),

with the solution

�(τ ; E) = 1 − exp

(
− E

2τ

)
. (A5)

The last relation yields the following relation for a typical
realization curve:

E∗(τ ) = (2 ln 2)τ.

Clustering occurs provided the curve decreases as com-
pared to a linear growth in the Gaussian process. Figure 3
depicts numerical solutions of Eq. (A1).

The figure implies that from the beginning the probability
density decreases similarly to the Gaussian distribution at a
decreasing speed, thus the Gaussian field generation prevails.
At time moments of order of τ = 1,7, it drastically changes,
and now clustering starts to playing a major role.

(a)

1.0

1

1

2 3 40

0.5

5

1

s(τ, E > 2)

τ

(b)

1.0

1 2 3 40

0.5

5

τ

e(τ, E > 2) / E(τ)

FIG. 5. (a) Specific area for distribution (A1), where the magnetic
field energy exceeds 2. (b) Specific energy localized in this area.

Now we consider the integral probability function of the
magnetic filed energy. From Eq. (A1), it follows that

∂

∂τ
�(τ ; E) =

[
E + 2E

∂

∂E
(E + 1)

]
∂

∂E
�(τ ; E). (A6)

Figure 4(a) shows its numerical solution, with the typical
realization curve Fig. 4(b).

The figure indicates that at relatively short times, up
to τ = 1,7, the speed of growth of the integral function
decreases, which is characteristic of the Gaussian process.
At large times, the speed of growth increases as inherent to the
log-normal distribution. Figure 4(b) shows that as τ � 3,0,
the typical realization curve of the process (A1) decreases,
which indicates clustering. However, it should be stressed that
the clustering begins earlier, but it begins to prevail over the
generation at this time.

Figure 5(a) shows the time dependency of a specific area
(49) of the regions where the magnetic field energy exceeds the
maximal value on the typical realization curve, i.e., E > 2. In
the case of a Gaussian distribution, this area approaches unity,
signifying no clustering. In the case of a magnetic field, the
area decreases, indicating the emergence of clustering at time
τ ∼ 1,7. Figure 5(b) deals with dynamics of the specific energy
(50) normalized to the total energy (50), which is localized
inside these areas.

The results for a magnetic field qualitatively correspond to
the surface elevation gradient field discussed in the main body
of the paper. The effect of generation will be of the same order.
Clustering will be more intense as follows from Lyapunov
exponent equation (47), decreasing rapidly as compared to the
magnetic field.
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