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Steady-state deformation behavior of confined composite droplets under shear flow
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The shear-induced dynamics of two-dimensional composite droplets in a narrow channel is investigated
numerically. The droplets consist of a viscous inner droplet (core) and shell immersed in a continuous Newtonian
fluid. Attention is focused on studying the effects of confinement at different core-to-shell radii ratios, relative
viscosities of the medium components, and interfacial tensions on the steady-state deformation and orientation
of a composite droplet. The role of the “sustaining” effect due to the internal core and competition between the
near-wall shear flow and downward and upward secondary streams is discussed.
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I. INTRODUСTION

The hydrodynamics of multiphase fluids is of significant
scientific and practical interest in relation to the problems of
processing incompatible polymer blends, the transportation
of petroleum products, the development of new composite
materials, and applications in food and cosmetic industries, as
well as medical and biological uses. One of the key problems
is the deformability and ultimate properties of dispersed
phase in different flow conditions. The attention was mainly
focused on studying the dynamic behavior of homogeneous
droplets [1–4]. The obtained body of knowledge provides the
modern understanding of the dynamic processes occurring
in dispersion media. On the other hand, the advancement
in modern materials calls for the investigation of more
complex problems, including the hydrodynamic behavior of
heterogeneous (composite) drops. Such problems arise in the
analysis of the structure and dynamic behavior of ternary
polymer blends [5–8], double emulsions, capsules and vesicles
[9–14], encapsulation of food ingredients, drug delivery
[15–17], and so on. In the simplest case, the composite
drops consist of a viscous core surrounded by a liquid shell.
The formation of such droplets through the engulfing of
one dispersed phase by another along with their deformation
behavior under shear flow were studied experimentally by
Torza and Mason [9]. In contrast to homogeneous droplets, the
hydrodynamic behavior of composite droplets is determined
by multiple parameters: viscosity ratios of the components,
core-to-shell radii ratio, and core-shell and shell-continuum
phase interfacial tensions. This greatly complicates the prob-
lem solution.

Among the early theoretical works, the study of the
hydrodynamic behavior of composite drops at low Reynolds
and capillary numbers should be mentioned. The drag force
and change in shape of concentric spherical composite droplets
under axisymmetric creeping flow [18–20] along with the
hydrodynamic behavior of eccentric composite viscous core-
shell droplets [21] were studied. This problem has also been
considered with regard to a solid core (ice particle) [22]. The
obtained solutions are limited to small deformations. Generally
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they are not applicable for predicting large deformations
and break-up of droplets. This point was emphasized by
Stone and Leal [23], who found analytical solutions for
weakly deformed and numerical results for strongly deformed
composite droplets at both uniaxial and biaxial drag flows.
Their analysis showed that the deformation behavior of the
composite droplets may vary significantly with a change of
flow type. For instance, recirculation of fluid in the outer layer
arising with axisymmetric flow results in drop flattening and
the extension of its core along the flow direction, whereas the
opposite situation takes place under biaxial extensional flow.
It was noted that the core viscosity has little influence on the
overall deformation of the droplets. This result was taken into
account in modeling of leukocyte dynamics [24].

The hydrodynamic behavior of composite droplets under
shear flow has mainly been studied by means of computer
simulation. Among the theoretical works on this topic, we
managed to find only a purely mathematical paper [25] arguing
that integral representation of the Stokes equations for a
medium containing a composite droplet has a unique solution
for the velocity field at arbitrary viscosity ratios. The dynamic
behavior and break-up of composite droplets in shear flow was
first investigated numerically in the example of equiviscous
components [26] by means of the level set function method
[27]. It was shown that variation in interfacial tensions could
lead to new peculiarities in the deformation of the droplets as
well as break-up of their nuclei. On the other hand, it was
found that shear flow could alter significantly the internal
structure of two-dimensional (2D) composite droplets with
a low-viscous core [28]. This paper also demonstrated that
shear flow promotes the ousting of a core from a viscous
envelope if the core-to-shell interfacial tension is large enough
(the so-called “washing” effect). The systematic numerical
simulation of shear-induced steady-state deformation and
break-up of the unbounded viscous composite droplets at
different capillary numbers, viscosity, and radii ratios were
reported in Ref. [29]. It was shown that equiviscous composite
droplets are deformed due to the vortex flow located within
the shell. In this case, as in the axisymmetric flow, the core
viscosity has little effect on the overall deformation of the
composite droplets. By contrast, variation of shell viscosity
has a significant impact on deformation and spatial orientation
of the droplets. Numerical simulation of 2D composite droplets
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with a high-viscosity core and low-viscosity shell showed [30]
that at low values of capillary and Reynolds numbers and
reasonably high core-shell interfacial tension, the steady-state
form of the outer layer resembles the shape of the water layer
released from a hydrogel under shear flow [31]. In contrast
to the homogeneous drops, the major axis of the considered
composite droplets is aligned with the flow direction.

In recent years, a significant interest in the hydrodynamic
behavior of droplets confined in narrow channels has been
manifested. This is primarily prescribed by the problems of
microfluidics using the flow of multiphase fluids in channels
with transverse dimensions of the order of several tens of
microns [32–34]. Solving such problems is of fundamental
importance in understanding emulsion flow under the con-
finement conditions and engineering of microfluidic devices.
Meanwhile, experimental studies have established a number
of unusual effects associated with the two-phase fluid flow in
the narrow channels. In particular, droplet-string transitions
were found in the dispersion of polydimethylsiloxan in
a polyisobutylene matrix with close viscosities when the
size of minor phase domains became comparable to the
distance between the shearing walls [35,36]. It was shown
that confinement favors an increase in droplet elongation and
suppresses the development of Rayleigh capillary instability.
This finding was confirmed by Sibillo et al. [37], showing also
that a decrease of the channel thickness leads to a decrease
in the orientation angle of a homogeneous droplet with
respect to flow direction. These conclusions were extended
to various droplet-to-matrix viscosity ratios [38]. In particular,
it was emphasized that unlike the above-described system,
confinement favors disintegration of a droplet if its viscosity
exceeds the viscosity of the continuous media.

The theory of deformation of a homogeneous droplet in the
Stokes shear flow between two parallel walls has been devel-
oped using the Lorentz reflection method [39]. The obtained
correction to the well-known Taylor formula [40] provided the
additional strain caused by the influence of the channel walls,
which is proportional to the cube of the confinement parameter
n = (2a/h)3, where a and h are the droplet radius and channel
thickness, respectively. The resulting solutions coincide with
the experimental data for the droplets in the equiviscous fluid
[37], but they do not correspond to measurements at large
viscosity ratio. This inconsistence was overcome with the help
of a phenomenological approach [41] based on the modified
theory [42] assuming an ellipsoidal droplet shape. Numerical
simulation of the deformation behavior of a droplet confined
between parallel rigid walls showed [42,44] that the increase
of its deformation in comparison with the unbounded droplets
is caused by the pronounced increase in the shear rate between
the droplet ends and moving walls. These outcomes were
confirmed by lattice-Boltzmann simulations [45].

The interest in the study of the dynamic behavior of
composite droplets in narrow channels is defined by issues
related to the passage of red blood cells and leucocytes in blood
vessels [46,47] as well as the production of functional pharma-
ceutical compositions by means of microfluidic technologies
[48–51]. At the same time, these effects have not received
systematic investigation. In this work we do not consider the
ultimate properties of the droplets and restrict our study to the
steady-state deformation behavior of 2D composite droplets

FIG. 1. Computational domain containing the deformed compos-
ite droplet.

subjected to a simple shear flow in a narrow channel by
means of numerical simulations. Attention will be focused
on revealing the dependences of deformation and orientation
angle of a composite droplet on the (1) confinement parameter,
(2) core-to-shell radii ratio, (3) viscosity ratios, (4) ratios of
the interfacial tensions, and (5) capillary number. The dynamic
behaviors of the unbounded and confined composite droplets
will be compared.

II. NUMERICAL SIMULATION

A. Model

We consider the shear flow of an incompressible medium
containing a 2D concentric composite droplet placed between
parallel rigid walls moving in opposite directions with equal
rates U (see Fig. 1). To avoid translational motion, the droplet is
placed at the center of the computational domain. The periodic
boundary conditions of fluid velocity and pressure are imposed
on the side faces of the cell. They are placed far apart from the
droplet to minimize the flow perturbations.

The distance between the walls (channel thickness) is h,
while the initial radii of the shell and core of the composite
droplet are denoted as a and b, respectively. The gap between
the walls is filled by the continuous phase 1 of viscosity μ1;
the viscosities of liquid shell 2 and core 3 of the composite
droplet are equal to μ2 and μ3, respectively, while the densities
of all components are assumed to be equal to each other, ρ1 =
ρ2 = ρ3. The interfacial tensions on the external and internal
boundaries of the composite droplet are equal to σ12 and
σ23, respectively. The simulation results will be expressed in
terms of dimensionless parameters as n = 2a/h confinement
parameter, k = b/a radii ratio, mi1 = μi/μ1 viscosity ratio of
the ith component to the continuous phase, and κ = σ23/σ12

ratio of the interfacial tensions. The overall stretching of a
droplet was estimated in terms of the Taylor deformation
parameter D = (L − B)/(L + B) [40], where L and B are
the maximum and minimum distances from the center of the
drop to its outer boundary (see Fig. 1). The orientation angle
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α of the droplet is defined as the inclination of the elongation
axis with respect to the flow direction.

The velocity distribution ui(x,t) in the ith component of
the three-component system under consideration is governed
by the Navier-Stokes equations

ρi

(
∂ui

∂t
+ (ui · ∇)ui

)

= −∇pi + ∇[μi(∇ui + (∇ui)
T )] + Fij (i,j = 1,2,3)

(1)

and the incompressibility conditions

∇ · ui = 0 (i = 1,2,3). (2)

The volume force Fij in Eq. (1) corresponds to the Laplace
capillary force localized on one of the interfaces S12 and S23

of the composite droplet. It can be represented as [52]

Fij (x) = −σij ζij (xSij
)nij (xSij

)δ(x − xSij
) i �= j, (3)

where δ(x − xSij
) is the Dirac delta function with support on

the interface Sij between components i and j ; ζij and nij

are the curvature and unit normal at the point xSij
of the

interface. Actually, integration of Fij (x) over the small volume
including a small portion of the interface gives the surface force
−σij ζij (xSij

)nij (xSij
)dSij applied at the point xSij

.

B. Modeling of interface dynamics

To calculate the current position of the interfaces of the
liquid composite droplet, the level set method was applied
[27,53]. In this approach, position x of any interfacial point
is defined by the coordinates of the zero level of a smooth
function φ(x,t). This function represents a distance from the
nearest boundary Sij , so that φ(x,t) possesses opposite signs
in the conjugate phases. The disadvantage of this method is
attributable to the possible volume loss when a dispersed phase
is commensurate with a few cells of a computational grid. In
this paper we do not consider the droplet break-up into smaller
parts so that the loss of its volume is negligible.

Since the interfacial boundaries of a composite droplet are
changed during shear flow, their positions at each instant of
time are described by the continuity equation of the level set
function

∂φ

∂t
+ u · ∇φ = 0, (4)

where u is the local flow velocity. Knowing φ(x,t) we can
define the unit normal vector and curvature at any point of an
interface: n = (∇φ/|∇φ|)|φ=0 and ζ = ∇ · (∇φ/|∇φ|)|φ=0.
To smooth out the viscosity jumping on passage from
one phase to another, a symmetric transition layer of 2ε

width is introduced. Then the local viscosity ratio of the
three-phase system with equiviscous core and continuous
phase can be represented as a continuous function μ(φ) =
m21 + (1 − m21)H (φ), where H (φ) is the smoothed Heaviside
function, which is equal to H (φ) = 0 if φ < −ε, H (φ) =
0.5[1 + φε−1 + π−1 sin(πφε−1)] if |φ| � ε, and H (φ) = 1
if φ > ε. The width of the transition layer is typically chosen
to be equal to several grid cells. This approximation allows us
to eliminate singularities in the spatial derivatives of viscosity.

TABLE I. Steady-state deformation and orientation angle versus
mesh size and time step.

Number Mesh size, Time step,
n of cells �x �t D α, deg.

1 512 × 128 3.9 10−2 10−3 0.235 29.845
2 512 × 128 3.9 10−2 10−4 0.2238 26.939
3 1024 × 256 1.9 10−2 10−4 0.2244 27.121
4 1024 × 256 1.9 10−2 10−5 0.2223 26.939

In such a manner the three-phase system can be considered
as a single medium with material characteristics depending
on the level set function φ. The capillary forces in turn are
approximated by volume forces concentrated in a narrow
transition layer. Introducing a unit of length as the external
radius a of the composite droplet, a unit velocity as the
wall rate U, and viscosity and density units as being equal
to viscosity and density μ1 and ρ1 of the continuous phase
1, respectively, the Navier-Stokes equations (1) and the
incompressibility conditions (2) can be represented in the
following dimensionless equations [53]:

∂u
∂t

+ (u · ∇)u = −∇p + 1

Re

{
∇ · [μ(φ)(∇u + (∇u)T )]

− 1

Ca(φ)
ζ (φ)δ(φ)∇φ

}
, (5)

∇ · u = 0, (6)

where capillary number Ca(φ) is equal to Ca = μ1Uaσ−1
12

if point x is located at the smeared interface S12 or
Caσ12σ

−1
23 if x belongs to the interface S23; Re = Uaρ1μ

−1
1

is the Reynolds number. The smoothed Dirac delta func-
tion is defined as δ(φ) = dH (φ)

dφ
= 1

2ε
[1 + cos(πφ/ε)] if |φ| �

ε or δ(φ) = 0 if |φ| > ε.

For the numerical solution of Eqs. (4)–(6), the projection
method was employed [54]. According to this method, Eq. (5)
is divided into three simpler equations. In the first stage, the
intermediate velocity field u∗ is calculated with zero pressure
gradient. Then the pressure p is calculated from the Poisson
equation, the right-hand side of which includes divergence of
the intermediate velocity. Based on the resulting solutions and
the incompressibility condition (6), the velocity correction is
carried out at the next time step. To eliminate errors arising
in the numerical solution of Eq. (4), the periodic recovery
procedure [27] for the level set function φ(x,t) is applied.

To optimize the accuracy of numerical estimation of these
characteristics, the influence of the mesh size �x and time step
�t was analyzed (see Table I). To this end, a series of runs was
performed on a square mesh of various density and different
time steps with the example of the homogeneous droplet
at Ca = 0.2, Re = 0.1, m21 = 0.1, n = 0.4. It can be seen
that with decreasing time steps and mesh size, convergence
of the obtained solutions to the fixed values of steady-state
deformation D and orientation angle α is observed. From
the data obtained it follows that a 512 × 128 grid and the time
step �t = 10−4 are appropriate for use, as a further reduction
of the steps in space and time would lead to minor changes in
these characteristics.
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FIG. 2. Steady-state deformation of homogeneous droplet in
shear flow vs confinement parameter n for equiviscous system at
Re = 0.05, and different capillary numbers Ca = (1) 0.1 (2) 0.2
(3) 0.3. The solid lines correspond to the 2D droplet; the symbols
represent experimental data [37].

C. Comparative modeling

Before proceeding to discuss the hydrodynamics of a
composite droplet in a narrow channel, we should compare
some of our solutions with some known numerical and
experimental results [29,37]. Figure 2, in particular, shows
the stationary deformation of the homogeneous droplet in the
equiviscous continuous medium under simple shear flow as
a function of confinement parameter n at Reynolds number
Re = 0.05 and different capillary numbers Ca = 0.1, 0.2, 0.3.
Symbols denote the experimental data [37] while solid lines
correspond to our results for the 2D droplet. It is evident that the
experimental and numerical results for three-dimensional (3D)
and 2D droplets are qualitatively consistent with each other.
They show that in both cases the droplet distension grows with
the confinement and capillary number, with the deformation
of the 2D droplet achieving almost complete agreement with
the experiment at Ca = 0.1.

FIG. 3. (Color online) Steady-state shapes of the unbounded 2D
(our calculations) and 3D [29] composite droplets at different radii
ratios k at Ca = 0.4, m21 = m31 = 1, κ = 1.

Figure 3 shows the shear-induced steady-state shapes of
the unbounded 2D and 3D composite equiviscous droplets
calculated at Re = 0.05 and Ca = 0.4 for different values
of radii ratio k. Two-dimensional droplets represent our
simulations by level set function method, while 3D droplets
were modeled using a volume of fluids method. It is evident
that the shapes of 2D and 3D drop models are in qualitative
agreement.

The above examples allow one to conclude that our
calculations are in good agreement with known experimental
and numerical results, which proves the adequacy of the
approach used in this paper.

III. RESULTS AND DISCUSSION

A. The effect of confinement

Along with the homogeneous droplet [37,43], confinement
has a significant impact on the deformation behavior of the
composite droplet. This is demonstrated in Fig. 4, which shows
calculation results for the steady-state Taylor deformation

FIG. 4. The dependences of (a) the steady-state Taylor deforma-
tion D and (b) orientation angle α of homogeneous and composite
droplets on the confinement parameter n at different radii: k = (1)
0 (homogeneous droplet), (2) 0.4, (3) 0.6, and (4) 0.8 at Ca = 0.2,
Re = 0.05, m21 = m31 = 1, κ = 1.
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FIG. 5. (Color online) Velocity vector field of the concentric equiviscous composite droplet with the matched interfacial tensions at k = 0.6,
n = 0.8, and Ca = 0.4. The dashed lines indicate velocity profile at the side faces of the computational domain.

D and orientation angle α of the composite droplets versus
confinement parameter n at different ratios k of core and shell
radii. The calculations were performed for the equiviscous
system (m21 = m31 = 1) and matched interfacial tensions on
the internal and external droplet boundaries (κ = 1). The
Reynolds and capillary numbers are taken small enough,
Re = 0.05 and Ca = 0.2, to neglect inertia and attain droplet
stability. It is seen that the Taylor deformation of the composite
droplet increases with the increase of the confinement param-
eter n for all values of k and is not qualitatively different from
the behavior of the homogeneous droplet [Fig. 4(a)]. As in the
latter case, the additional stretching indicates an increase in
the shear stress acting on the outer layer of the droplets on the
side of walls [43]. It should be noted that an increase in the
core radius results in a decrease in the overall deformation of
the composite droplet.

Regarding the orientation angle α of the composite droplet,
it passes through the maximum: at small values of confinement
parameter n, the orientation angle increases compared with
a similar droplet in an unbounded medium while it begins
falling at sufficiently large values of n, which is indicative of
transition to alignment along the flow direction [see Fig. 4(b)].
The essential difference from the homogeneous droplet is that
with increasing core-to-shell radii ratio k, the orientation angle
α of the composite droplets decreases and its maximum value is
shifted towards larger n. To explain this effect, let us consider
the velocity vector field shown in Fig. 5 for the concentric
composite droplet with the radii ratio k = 0.6 at n = 0.8 and
Ca = 0.4. Stretching of the droplet leads to an increase in
the curvature of the ends and, consequently, an increase of
the local Laplace pressure. In turn, this will result in pressure
lowering on the left and right of the droplet, thus inducing the
upward and downward secondary streams (see Figs. 5 and 8).
This entails an increase in the orientation angle.

On the other hand, the narrowing of the channel brings
about an increase in the shear rate between the droplet ends and
the channel walls, which, in contrast, reduces the orientation
angle. It can be concluded that at small n the lateral upward and
downward secondary streams dominate, while at large values
of the confinement parameter, the near-wall shear flow takes an
advantage. Increasing the relative size of the core initiates an
increase in the curvature of the tips of the shearing composite
droplet. Therefore, its alignment occurs at larger confinement.
This explains the shift of the maximum orientation angle
towards higher values of n. The decrease in orientation angle
of the composite droplet with core-to-shell radii ratio k is

associated with the increase in shear rate in the shell, which in
turn leads to an increase in the shear rate between the droplet
and the channel walls.

It should be noted that in the considered case the velocity
profiles near the side faces of the computational domain are
practically coincide with the basic linear velocity profile of

FIG. 6. The dependences of (a) the steady-state Taylor deforma-
tion D and (b) orientation angle α of the composite droplet on radii
ratio k at different confinement parameters n = (1) 0.2 (2) 0.4 (3) 0.6,
and (4) 0.8 at Ca = 0.2, Re = 0.05, m21 = m31 = 1, κ = 1.
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FIG. 7. (Color online) Steady-state shapes of 2D composite
droplets for different values of radii ratio k at n = 0.4, Ca = 0.2,
Re = 0.05, m21 = m31 = 1, κ = 1.

the unperturbed continuous phase. In Fig. 5 this fact is demon-
strated by the dashed slanting lines. This clearly indicates that
interactions of the front of the droplet with the flow after its
back part, caused by the periodic boundary conditions, can
be neglected. In the case of smaller values of Ca and n the
influence of the side faces of the computational domain is
even less. This means that the revealed hydrodynamic effects
are inherent to a single composite droplet.

B. The effect of core-to-shell radii ratio

Figure 6 presents dependences of the steady-state Taylor
deformation and orientation angle of composite droplets on
radii ratio k at different values of the confinement parameter.
As in the previous part, the calculations were conducted
for the components with equal viscosities and interfacial
tensions; the Reynolds and capillary numbers are assigned as
Ca = 0.2 и Re = 0.05. It is seen that deformation curves pass
through the maxima at all values of the confinement parameter.
The nonmonotonous behavior is explained by the so-called
“sustaining” effect [28] when the external interface of the
composite drop is located in close proximity to the internal

FIG. 9. The steady-state Taylor deformation of the composite
droplet vs radii ratio k at n = 0.6 for different capillary numbers:
Ca = (1) 0.1, (2) 0.2, (3) 0.3, (4) 0.4.

interface. In this case, the core begins to interfere with the
deformation of the shell.

This effect is illustrated in Fig. 7, which presents the com-
puted steady-state shapes of composite droplets at different
core-to-shell radii ratios k for the fixed confinement parameter
n = 0.4. We can see that when k > 0.5 the core prevents
stretching of the shell [Fig. 6(a), curve 3]. In contrast, at smaller
k the core contributes to the elongation of the composite
droplet. The origin of this phenomenon can be revealed by a
comparison of pressure fields developed in the homogeneous
and composite droplets during shear flow, which is shown in
Fig. 8. It is evident that shear flow initiates a depression in the
middle part of the shell of the composite droplet [Fig. 8(b)] as
compared with a similar homogeneous droplet. This facilitates
the compression of the external interface towards the core,
which ultimately leads to an increase in the overall elongation
of the composite droplet. At the same time, the orientation
angle of the composite droplet decreases with increasing core-
to-shell radii ratio for all values of the confinement parameter
n [Fig. 6(a)]. In other words, the presence of the core promotes
a decrease of the orientation angle of the composite droplet.

Figure 9 shows that an increase in capillary number leads
to a shift of maximal deformations towards the lower core-
to-shell radii ratios. The reason is that, at higher capillary

FIG. 8. The pressure fields in (a) homogeneous and (b) composite droplets at k = 0.2, n = 0.6, Ca = 0.2, Re = 0.05, m21 = m31 = 1,
κ = 1. White lines represent equipressure levels. The scale corresponds to gradation of pressure.
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(a)

(b)

FIG. 10. (a) The steady-state Taylor deformation D and (b)
orientation angle α of the composite droplet vs confinement parameter
n for different viscosity ratios m21 = (1) 0.1, (2) 1, (3) 3, and (4) 5 at
Ca = 0.2, Re = 0.05, k = 0.6, and κ = 1.

numbers, the composite droplet is stretched more and the
“sustaining” effect comes into play at smaller core sizes.

C. The effect of material characteristics

So far we have restricted our consideration to equiviscous
fluids with equal interfacial tensions between the conjugated
phases. Let us analyze the influence of variations of viscosities
and interfacial tensions of the system components. As is
known, the relative viscosity of the core has little effect on the
deformation behavior of the unbounded composite droplets for
both axisymmetric and shear flows [2,29]. Thus, here we will
discuss only variations in the relative viscosity of the shell with
equiviscous core and continuous phase at different values of
confinement parameter n. Figure 10(a) shows dependences
of the steady-state Taylor parameter D on n for different
viscosity ratios m21 calculated at Ca = 0.2, Re = 0.05, radii
ratio k = 0.6, and matched interfacial tensions. It can be seen
that the increase in the confinement parameter results in an
increase of D at all m21 values. However, the increase in the
relative viscosity of the shell involves a decrease in the overall
deformation of composite droplets.

Figure 10(b) shows the influence of the relative viscosity
m21 of the shell on the orientation angle α of such drops. It
can be seen that when the viscosity of the outer layer 2 of the
composite droplet is lower than the viscosity of the continuous
phase 1 (m21 < 1), the orientation angle passes through the
maximum with increasing confinement parameter n, as is
the case for the system with the equiviscous components (cf.
Fig. 4).

However, if the viscosity of the shell exceeds the viscosity
of the dispersion fluid (m21 > 1), then the behavior of α with
n changes qualitatively: the orientation angle of the composite
drop varies monotonically over the entire confinement
parameter range. This is due to the relative decrease in the
shear rate over the more viscous shell and, as a result, the

(a)

(b)

(c)

FIG. 11. (Color online) (a) The steady-state Taylor deformation
D and (b) orientation angle α of the composite droplet vs interfacial
tension ratio κ for viscosity ratios m21 equal to (I) 1 and (II) 0.1;
(c) the steady-state shapes of composite droplets corresponding to
the numbered points.
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domination of the downstream and upstream secondary flows
on the left and right of the droplet controlling the increase in
the orientation angle with n.

Figure 11 represents dependences of the steady-state
Taylor deformation D and orientation angle α on the ratio
κ = σ23/σ12 of interfacial tensions on the inner and external
interfaces of the composite droplet. The calculations were
performed for two values of viscosity ratio m21 = 1 (curve
I) and m21 = 0.1 (curve II) at the fixed geometrical n = 0.6,
k = 0.6 and flow parameters, Ca = 0.2 и Re = 0.05. It can
be seen that the increase in κ is accompanied by increasing
deformation [Fig. 11(a)], while the orientation angle decreases
[Fig. 11(b)]. In this case, each κ value corresponds to the
certain steady-state composite droplet shape represented in
Fig. 11(c) for m21 = 1. It follows that at κ � 4 the external
interface almost touches the core of the droplet. This sustaining
leads to transformation of the residual portion of the shell into
symmetrical earlike projections. These forms of the composite
droplets correspond to the dashed parts of deformation curves
I in Figs. 11(a) and 11(b). At the same time, in the composite
droplet with less viscous shell the sustaining effect comes into
play at a smaller ratio of interfacial tensions, κ ∼ 2 (curves
II). This is due to the fact that an increase in the core-shell
interfacial tension results in the formation of a depression
zone in the mid part of the viscous shell. Consequently, the
external interface approaches the core, which, in turn, leads
to a displacement of shell fluid to the side projections that are
more pronounced in a less viscous shell.

Note that the level set function method used in this work to
reconstruct the current position of the interfaces is not adapted
to simulate the break-up of the interface of the outer layer,
which may bring an internal core into direct contact with the
dispersion fluid. For this reason, forms 5 and 6 of the composite
droplets presented in Fig. 11 should not be considered as final
solutions. In the case of rupture of the thin external layer,
the observed protrusions may transform into another form
depending on the mutual wetting of the three components.

IV. CONCLUSION

The hydrodynamic behavior of a composite droplet in a
narrow channel under simple shear flow was investigated by
means of numerical simulations. It is shown that an increase
in confinement parameter due to the channel narrowing or
magnification of drop size results in growth of the steady-state
deformation of the composite droplets as was observed before
in the case of homogeneous droplets [38,43,44]. This effect
takes place at arbitrary ratios of core-to-shell radii, viscosities,
interfacial tensions, and capillary numbers. Nonmonotonic
behavior of the steady-state Taylor deformation as a function of
the radii ratio was found. This is explained by the “sustaining”
effect from the core. The increase in the confinement results
in a shift of the maximum deformation towards a smaller
core-to-shell radii ratio. A similar effect takes place with an
increase of the capillary number. The growth of the shell’s
relative viscosity is always accompanied by a reduction of
the overall droplet deformation at any confinement parameter.
In contrast, when increasing the relative core-shell interfacial
tension, the steady-state deformation increases as well.

Channel narrowing entails a nonmonotonic variation in the
steady-state orientation angle of a composite droplet. This
angle reduces with increasing core-to-shell radii ratio while
its maximum shifts towards larger values of the confinement
parameter. This is due to the competition between the near-
wall shear flow and downward and upward secondary streams
caused by the pressure drop in the vicinity of the droplet tips.
The orientation angle of the composite droplet decreases with
the increase in the shell’s relative viscosity and/or core-shell
interfacial tension.
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