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Exact invariant measures: How the strength of measure settles the intensity of chaos
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Centro de Matemática, Computação e Cognição, UFABC, 09210-170, Santo André, SP, Brazil
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The aim of this paper is to show how to extract dynamical behavior and ergodic properties from deterministic
chaos with the assistance of exact invariant measures. On the one hand, we provide an approach to deal with
the inverse problem of finding nonlinear interval maps from a given invariant measure. Then we show how to
identify ergodic properties by means of transitions along the phase space via exact measures. On the other hand,
we discuss quantitatively how infinite measures imply maps having subexponential Lyapunov instability (weakly
chaotic), as opposed to finite measure ergodic maps, which are fully chaotic. In addition, we provide general
solutions of maps for which infinite invariant measures are exactly known throughout the interval (a demand
from this field). Finally, we give a simple proof that infinite measure implies universal Mittag-Leffler statistics
of observables, rather than narrow distributions typically observed in finite measure ergodic maps.

DOI: 10.1103/PhysRevE.91.062914 PACS number(s): 05.45.Ac, 02.50.Ey, 02.30.Tb, 02.30.Zz

I. INTRODUCTION

In many investigations we observe information that is
generated by a physical system without prior knowledge of
its nature. If such a system exhibits random-like behavior,
then we will be interested in constructing the probability
density function from its distribution of data. It is well known
that even one-dimensional deterministic dynamical systems
in the form xt+1 = T (xt ) can exhibit random-like dynamical
behavior. In the case of so-called measuring-preserving maps,
the density of trajectories at time t , i.e., ρt (x), has a peculiarity
as t → ∞: if we iterate randomly chosen initial points, the
iterates will be distributed according to a limit density function
ρ(x) almost surely. In other words, ρt (x) → ρ(x), where ρ(x)
is the so-called invariant density of T , which satisfies∫

T −1(A)
ρ(x)dx =

∫
A

ρ(x) dx (1)

for any measurable subset A of the phase space. The solution
of Eq. (1) is the fixed point solution of the Perron-Frobenius
operator [1]

ρ(x) =
∑

ξj =T −1
j (x)

ρ(ξj )

|T ′(ξj )| , (2)

where T ′ is the derivative of T and the sum extends over all
preimages T −1

j of the point x at which the density is to be
evaluated.

The concept of invariant density has implications that go
beyond theory of one-dimensional maps. We can mention
applications in random number generators, dynamical mod-
els for oil drilling and for the Hipp pendulum regulator,
Poncelet’s closure theorem (a classical result of projective
geometry), the Bogoyavlenskij-Novikov cosmological model
(see Ref. [1] for a review of all these problems), and ways
to characterize patterns of activity in the olfactory bulb [2],
among other possibilities. As pointed out in Ref. [3], a further
motivation for studying one-dimensional maps is that many
higher-dimensional systems in the limit of strong dissipation
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approximately reduce to one-dimensional dynamics (Ref. [4]
provides a variety of experimental evidence).

Extracting statistical properties from deterministic systems
based on long trajectories as data sets may not be a reliable
procedure. It is possible that orbits display laminar or transient
behavior for lengthy periods of time before settling into a fully
chaotic mode. On the other hand, obtaining analytically an
invariant density for a given map is typically a difficult task,
when not unfeasible. The procedure to get a deterministic
map equation from an invariant density given beforehand
has proved more fruitful in the literature and is known as
the inverse Perron-Frobenius problem (IPFP) [5–10]. For
numerical computations of the invariant density, the most used
and best understood algorithm is Ulam’s method [11,12], a pro-
cedure for approximating invariant densities by using matrix
approximations of the Perron-Frobenius operator [Eq. (2) is
the unity eigenvalue case].

Here we develop a new approach to address the IPFP based
on the manner whereby monotone branches of a map are
related to each other, an idea recently proposed in Ref. [13] to
deal with the conjugacy problem of maps. Beyond providing
exact solutions of the IPFP, the aim of this paper is to outline the
main ergodic differences between maps of finite and infinite
(non-normalizable) invariant measures. The invariant measure
μ is such that

dμ(x) = ρ(x) dx; (3)

i.e., it is assumed as absolutely continuous with respect to the
Lebesgue measure [14] and will be the leitmotif for the results
to be discussed here.

Note that μ, when infinite, is not a probability measure.
For maps having infinite invariant measure the conventional
Lyapunov exponent vanishes, resulting in weakly chaotic
behavior. Such kinds of maps are the motivation of so-
called infinite ergodic theory [15], an issue that is gaining
increasing interest in the literature [16–29]. Despite its sound
development, this theory still suffers from a paucity of models
whose invariant measures are exactly known, and this paper
aims to bring further alternatives. It is also noteworthy that,
as far as I know, numerical methods for estimating infinite
invariant measures do not seem to be available or hinted at in
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the literature [30], which highlights the importance of exact
results.

Exact invariant measures are also employed here to study
the evolution of time averages of observables (like finite-
time Lyapunov exponents) in a more efficient way. The
approach, initially developed in Ref. [29], is extended to
more general shapes of maps, also enabling us to identify
geometric characteristics of them. Based on this approach
we also provide a simple proof that infinite measure implies
universal Mittag-Leffler statistics of observables, also the
so-called Aaronson-Darling-Kac theorem, a central result of
infinite ergodic theory [15].

II. MEASURE AND CONJUGACY

Let us consider a Markov map T : I → I defined on a
partition {I0, . . . ,Ik−1} of I so that all of k branches T |Ij

= Tj

are monotone. Thus, we can relate each branch Tj with the
absolutely continuous invariant measure of the map in the
form

Tj = �−1
j ◦ μ, (4)

where �j are monotone functions. Note that each branch Tj is
also a function extending on the whole interval I and with an
image beyond I . Let us also introduce the foldings hj , relating
each branch of T with T0, i.e., Tj = hj ◦ T0. Thus we have

hj = �−1
j ◦ �, (5)

where we simply set �0 = � and h0(x) = x. The correspond-
ing invariant density satisfying Eq. (2) is such that

ρ = ρ ◦ T −1
0∣∣T ′

0 ◦ T −1
0

∣∣ +
k−1∑
j=1

sgn(h′
j )

h′
j ◦ h−1

j

ρ ◦ T −1
0 ◦ h−1

j∣∣T ′
0 ◦ T −1

0 ◦ h−1
j

∣∣ , (6)

where h′
j and h−1

j denote, respectively, the derivative and the
inverse of hj (the same holds for T0), and sgn stands for the
sign function. Within such an approach, the invariant measure
can be directly calculated by integration of Eq. (6), namely
[13],

μ = � +
k−1∑
j=1

sgn(h′
j )� ◦ h−1

j . (7)

The choice of � and hj enables us to construct a map equation
with the desired absolutely continuous invariant measure. We
can illustrate the use of Eq. (7) by means of a well-known
unimodal map, the tent map

T (x) = 1 − |2x − 1|, (8)

on I = [0,1]. This map was also considered by Lorenz as
an approximation for the cusp-shaped Poincaré first return
map in the Lorenz strange attractor [31]. Here we have
h1(x) = h−1

1 (x) = 2 − x and �(x) = x/2, resulting in the
uniform invariant density ρ(x) = 1.

A further advantage that we can draw from such an approach
is to obtain conjugate maps. Two measure-preserving maps S

and T are thus called if there exists a diffeomorphism ω such
that [3,32]

S ◦ ω = ω ◦ T . (9)

Conjugacy gathers different maps into a same class where all
maps share the same dynamics from the topological viewpoint.
More specifically, conjugate maps have the same Lyapunov
exponent and their invariant measures are simply related via
ω: if T has measure μ, then

μS = μ ◦ ω−1. (10)

Based on the folding approach above, the transformation ω

relating both maps is such that [13]

hSj
◦ ω = ω ◦ hj , (11)

�S = � ◦ ω−1, (12)

together with εj+1 = εj for all j , where εj = sgn(h′
jh

′
Sj ).

Furthermore, ω is an even function if εj = −1. For example,
we can ask for a map S conjugate with tent map (8); let
us suppose that hS(x) = x. Thus, the transformation is such
that ω(x) = ω(2 − x), with ε1 = −1. The solution ω(x) =
sn2(Kx,κ) fulfills such conditions, where sn is Jacobi’s elliptic
function, K(κ) is the complete elliptic integral of the first kind,
and κ is its elliptic modulus [33]. By considering the addition
identity of the sn function, this choice gives us Schröder’s map
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z 1
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FIG. 1. (Color online) Cobweb diagrams for unimodal (a) and
piecewise expanding (b) maps. Instead of considering long trajecto-
ries as data sets, we translate the dynamics to states A0,1. The shape
of maps leaves specific features in the number of jumps from A0 to
A1, which can be inferred from exact invariant measures.
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[34,35]

Sκ (x) = 4x(1 − x)(1 − κ2x)

(1 − κ2x2)2
(13)

with measure μS = ω−1. The well-known Ulam’s conjugacy
ω = sin2(πx/2) is the κ = 0 particular case of map (13),
resulting in the Ulam-von Neumann logistic map S0 = 4x(1 −
x) [11].

Just for the sake of simplicity, we will focus only on
maps with two branches, and, therefore, our examples are
either unimodal or piecewise expanding maps (see Fig. 1).
Special attention will be given to maps having infinite invariant
measures. For finite measure cases we also refer the reader to
Ref. [13].

III. INFINITE MEASURE MAPS

Let us first consider interval maps, from [0,1] to itself, with
a single marginal fixed point at x = 0:

T (x → 0) = 0, T ′(x → 0) = 1. (14)

The most common form of such maps is

xt+1 = f (xt ) mod 1 (15)

with f : [0,1] → [0,2] bijective and h1(x) = x − 1, like the
well-known generalization of the Pomeau-Manneville (PM)
map [36]

f (x) = x(1 + x1/α), α > 0. (16)

This kind of map was first obtained from Poincaré sections
related to the Lorenz attractor for α = 1 [31,36].

The remarkable characteristic of such maps is the intermit-
tent switching between long regular phases (so-called laminar)
near the indifferent fixed points and short irregular burst ones
elsewhere [see Fig. 1]. The applications of such maps have
been the most diverse, helping to model anomalous diffusion
[37–40], structure of natural languages [41], vortex dynamics
in evolutive flows [42], weather systems [43,44], DNA strands
of higher eucaryotes [45], and neural avalanches in the brain
of mammals [46], among others.

One problem to be faced here is the paucity of models whose
invariant measures are exact, i.e., analytically known for the
whole interval. The most general result that we have so far is the
relationship between the invariant density and map equation
near the indifferent point x = 0: ρ(x) ∼ 1/[f ′(x) − 1], up to
a multiplicative constant; see Ref. [28].

By considering the approach discussed in Sec. II, Eq. (15)
is such that T0 = f = �−1 ◦ μ, and thus we have from Eq. (7)

μ(x) = �(x) + �(x + 1), (17)

f (x) = �−1[�(x) + �(x + 1)]. (18)

The choice of � gives us both the map equation and its
corresponding invariant measure. Maps with marginal fixed
points at x = 0 are such that |�′(x → 0)| → ∞. Thus, from
Eq. (18) one has

f (x) ∼ x

[
1 + �′(1)

�′(x)

]
, x → 0, (19)

provided we set �(1) = 0.

Let us first consider the following choice:

�(x) =
{

x1−1/α−1
1−1/α

, α > 0, α �= 1,

ln x, α = 1.
(20)

For positive α �= 1 we have Thaler’s map [20]

fα(x) = x

[
1 +

(
x

1 + x

) 1−α
α

− x
1−α
α

]− α
1−α

, (21)

whereas α = 1 gives us the corresponding PM map (16). Note,
by means of Eq. (19), that the behavior of Thaler’s map near
x = 0 is the same of the PM map (16). For all α > 0, the
invariant density is

ρ(x) = b[x−1/α + (1 + x)−1/α], (22)

where b is an undetermined constant for the infinite measure
regime 0 < α � 1, since there is no possible normalization.
Interestingly, Eq. (20) is the 1/α-deformed (or Tsallis [47])
logarithm, i.e., �(x) = ln1/α x for all α > 0. Thus, both α = 1
PM and Thaler maps are part of the same expression:

fα(x) = exp1/α[ln1/α x + ln1/α(x + 1)], α > 0, (23)

with exact invariant density given by Eq. (22), where exp1/α x

is the 1/α-deformed exponential.
The α = 0 case also gives us a nontrivial class of maps.

Two other infinite measure maps are suggested in Ref. [28],
and we can also calculate exactly their map equations and
corresponding invariant measures for the whole interval. One
model is

�(x) = exp(x−β) − e, β > 0, (24)

yielding the map

fβ(x) = ln−1/β{exp(x−β) + exp[(x + 1)−β] − e}, (25)

whose behavior near x = 0 is the same of the map employed
in Ref. [40] to produce strong anomaly diffusion. The other
model comes from the choice

�q,r (x) = exp(lnq xr ) − 1, r = 1 − 1/α, (26)

where the parameter q mediates the strong laminar map (25)
as q → ∞ and Thaler’s map at q = 1. For the choice (26) we
have

fq,r (x) = �q−1,r−q [1 + �q,r (x) + �q,r (x + 1)]. (27)

For both cases (25) and (27) the invariant measure is given by
direct substitution of corresponding � into Eq. (17).

From the models discussed above, many other maps with
exact invariant measures can be generated via topological
conjugacy if we just choose a diffeomorphism ω from [0,1] to
itself. For example, ω = f/2 for any f given by Eq. (18) are
possible choices. If we choose ω = f1/2/2 from map (21), a
new rational map U = ω ◦ T1/2 ◦ ω−1 conjugate with Thaler’s
map T1/2 follows:

U (x) =
{

1
2f1/2(2x) = x(1+2x)

1+2x−4x2 , x ∈ [0,1/2),
1
2f1/2 ◦ h1(2x) = x(1−2x)

1−6x+4x2 , x ∈ [1/2,1],
(28)

with measure μU (x) = μ1/2 ◦ f −1
1/2(2x). The map U above has

the same behavior of α = 1/2 in Thaler’s map near x = 0.
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A seemingly different case from the indifferent fixed point
maps discussed here is Boole’s map [48],

B(x) = x − 1

x
, (29)

from R \ {0} to itself. It is easy to see that map B(x) has uni-
form invariant density throughout a real line, and thus infinite
measure, if we look at Boole’s integral identity

∫ ∞
−∞ g(x) dx =∫ ∞

−∞ g ◦ B(x) dx, valid for any integrable function g [48].
Despite not having an indifferent fixed point, Boole’s map
behaves like a α = 1/2 map. For example, V = ω−1 ◦ B ◦ ω

with ω = 1/(1 − x) − 1/x on (0,1) yields the rational map
[49]

V (x) =
{

x(1−x)
1−x−x2 , x ∈ [0,1/2),

1−2x
1−3x+x2 , x ∈ [1/2,1],

(30)

with indifferent fixed points x = 0 and x = 1 and measure
μV = μB ◦ ω = ω.

IV. INVARIANT MEASURE AS A MEASUREMENT
OF INFORMATION

The exact characterization of an invariant measure is known
to be a key issue in nonlinear dynamics because it rules the
occupation probabilities of the iterates over entire phase space.
Nevertheless, the predictive potential of exact measures goes
beyond the statistical description of deterministic systems. We
intend to explore here an idea that was recently introduced in
Ref. [29]: the precise knowledge of the measure also enables us
to estimate information by observing the transition dynamics
along the phase space.

We often turn to symbolic dynamics to simplify analysis of
a dynamical system, representing their trajectories by infinite
length sequences using a finite number of symbols. Since we
are dealing here with two-branch maps, let us consider the
usual partition of the interval [0,1] into two cells, A0 = [0,z]
and A1 = (z,1]. According to this approach, any trajectory
{xt } can be represented by a sequence of binary digits {st }
such that st corresponds to the cell where xt belongs, i.e.,
st = k for xt ∈ Ak; see Fig. 1. Then redundancies that may
appear in {st } are eliminated by considering the algorithmic
information, which is defined as the length of the shortest
possible program able to reconstruct the sequence {st } on a
universal Turing machine [16].

Within the symbolic dynamics approach, easier procedures
are possible if the invariant measure is exactly known. To better
understand how the invariant measure can assist in eliminating
redundancies and making the calculation of observables more
efficient, let us consider the following observable [29]:

χ (x) = σ [T (x)][1 − σ (x)], (31)

where σ (x ∈ A1) = 1 and σ (x ∈ A0) = 0. Equation (31)
works like a filter, returning 1 whenever a transition from
A0 to A1 happens and 0 otherwise. Now we can compare the
convergence of time averages for different observables under
the same trajectories by using the Stepanov-Hopf ratio ergodic
theorem [50], ∑t−1

k=0 ϑ[T k(x)]∑t−1
k=0 ϕ[T k(x)]

→
∫

ϑ dμ∫
ϕ dμ

, (32)

holding almost everywhere as t → ∞ for non-negative
observables as long as they are integrable over μ. The
limiting ratio (32) can also be regarded as a consequence of
Birkhoff’s ergodic theorem [51] for the particular case of finite
measure ergodic maps. On the other hand, in the case of infinite
measure ergodic maps [52], we have to deal with averages
of the type

∑t−1
k=0 ϑ[T k(x)]/ζ (t), which does not converge to

a simple constant. In fact, it strongly depends on the initial
condition x (more details in Sec. V). Thus, the usefulness of
ratio (32) is evident: it gives us pointwise convergence without
depending on the finiteness of measure.

By means of filter (31) we leave aside the complete
description of trajectories considering only the jumps from
A0 to A1. From ratio (32) we have

t−1∑
k=0

ϑ[T k(x)] ∼ γNt (x), γ =
∫

ϑ dμ∫
χ dμ

, (33)

as t → ∞, where Nt (x) is the number of jumps from A0 to
A1, given by

Nt (x) =
t−1∑
k=0

χ [T k(x)]. (34)

Thus, the calculation of
∫

χ dμ plays a central role here since
it depends on the partition z. For unimodal maps we have (see
remark [14])∫

χdμ =
{

μ
[
T −1

0 (z),z
]
, z � x∗,

μ
[
T −1

0 (z),T −1
1 (z)

]
, z > x∗,

(35)

where x∗ is the nonzero root of x∗ = T (x∗), whereas for
piecewise expanding maps we have∫

χdμ =
{

μ
[
T −1

0 (z),z
]
, z � c,

μ
[
T −1

0 (z),c
]
, z > c.

(36)

It is easy to see that, for both Eqs. (35) and (36), the quantity∫
χ dμ has concave behavior with global maxima at z = x∗

and z = c, respectively. Thus, the coefficient γ has a unique
global minimum at these partitions, thereby maximizing the
number of entrances Nt . Interestingly, the way how Nt is
maximized defines whether the map is unimodal or expanding,
because x∗ and c have quite distinct roles in the evolution of
trajectories.

One of the applications is the calculation of finite-time Lya-
punov exponents �t (x), which rules the asymptotic separation
of initially nearby trajectories according to

|δxt | ∼ |δx0| exp[�t (x0)ζ (t)]. (37)

For finite measure maps, it is widely known that ζ (t) ∼ t . On
the other hand, for infinite measure maps, the most general
instability regime is given by the sublinear growth rate

ζ (t) ∼ lα(t)tα, 0 � α � 1, (38)

where lα(t) is slowly varying at infinity and with particu-
lar asymptotes l0(t → ∞) = ∞ and l1(t → ∞) = 0. Slowly
varying means that limx→∞ lα(ax)/lα(x) = 1 for any positive
a. The direct relationship between map equation and sublinear
growth rate (38) was recently given in Ref. [28] (see also
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Ref. [29]), namely,

ζ (t) ∼ 1

φ−1(t)
×

{
sin(πα)/πα, 0 � α < 1,

1/ ln t, α = 1,
(39)

where T ′ ∼ 1 − 1/xφ′ as x → 0. By comparison with Eq. (19)
we have

φ′(x) ∼ − 1

x[x/�′(x)]′
, x → 0, (40)

up to a multiplicative constant. Evidently φ(x → 0) rules
φ−1(t → ∞). The generalized finite-time Lyapunov exponent
is therefore given by ϑ = ln |T ′|, but it is much more simple to
calculate the number of entrances Nt (x) than the summation∑t−1

k=0 ln |T ′(x)| if μ is exactly known. Thus, we have the
alternative and more efficient formula

�t (x) ∼ γ
Nt (x)

ζ (t)
, t → ∞. (41)

This approach was successfully employed for Thaler’s map;
see Ref. [29]. Of course, Eq. (41) can also be used for finite
measure maps and unimodal maps via Eq. (35) with ζ (t) = t .

V. INFINITE MEASURE IMPLIES MITTAG-LEFFLER
STATISTICS OF OBSERVABLES

Given that summations
∑t−1

k=0 ϑ[T k(x)] strongly depend on
the initial condition x for infinite measure systems, we are
interested in the statistics of such quantities when x behaves
like a random variable. Following the Darling-Kac approach
[53], the strategy for finding the asymptotic statistics is based
on the calculation of moments,

In(t) = E

{[
t−1∑
k=0

ϑ(T k(x))

]n}
, (42)

with E{ } denoting the expectation value.
The limiting ratio (32) tells us that the asymptotic statistics

of In(t) does not depend on the choice of non-negative observ-
able ϑ provided it is integrable over μ and that the summation∑t−1

k=0 ϑ[T k(x)] is suitable normalized. Furthermore, ratio (32)
also suggests the existence of an asymptotically separable den-
sity function p(x,t) ≡ pt (x) ∼ rtρ(x) ∼ r(t)ρ(x) such that

I1(t) =
t−1∑
k=0

∫
ϑ(x)pk(x) dx ∼

t−1∑
k=0

rk

∫
ϑ(x)ρ(x) dx

∼
∫

r(t) dt

∫
ϑ dμ (43)

as t → ∞, where r(t) does not depend on the observable,
so that

∫
r(t)dt cancels itself out. For Lyapunov exponents

(ϑ = ln |T ′|) we know that r(t) ∝ ζ ′(t) due to subexponential
instability, therefore p(x,t) ∼ ζ ′(t)ρ(x) as t → ∞, up to
a multiplicative constant. This asymptotic separable form
also proves to be quantitatively consistent with relationships
between infinite measure and subexponential instability; see
Ref. [28].

If, on the one hand, the limiting ratio (32) tells us that
the statistics of observables is universal, on the other hand,
Darling-Kac approach requires the use of a Markov process
with stationary transitions. Given that T is a Markov map, the

choice of filter (30) via standard partition of the phase space
meets this criterion since most part of laminar trajectories are
compressed as “state A0.”

By performing the Laplace transform t �→ s on Eq. (43)
with ϑ = χ , the first moment is given by

Ĩ1(s)

ζ̃ (s)
=

∫
p̃(x,s)

sζ̃ (s)
χ (x) dx → C, s → 0, (44)

where C ∝ ∫
χ dμ is a positive constant. The calculation of

the second moment is as follows:

I2(t) ∼ 2!
∫ ∫

χ (x1)χ (x2)y2(x1,x2,t) dx1 dx2, (45)

where

y2(x1,x2,t) =
∫ t

0

∫ t2

0
p(x1,t1)p(x2,t2 − t1) dt1 dt2, (46)

resulting in sĨ2(s)[sζ̃ (s)]2 → 2!C2 as s → 0. Similar calcula-
tions lead to the immediate extension for all n � 1:

s
Ĩn(s)

[sζ̃ (s)]n
→ n!Cn, s → 0. (47)

Now, by applying Karamata’s Tauberian theorem [54] to
Eqs. (38) and (47), one finally has

lim
t→∞ E

{{∑t−1
k=0 χ [T k(x)]

Cζ (t)

}n}
= n!

�n(1 + α)

�(1 + αn)
. (48)

For α = 1 we have the degenerate case∑t−1
k=0 χ [T k(x)]

ζ (t)
→ C, t → ∞, (49)

which is similar to Birkhoff’s ergodic theorem for linear ζ (t)
[51]. For 0 � α < 1, the numbers on the right side of Eq. (48)
are just the moments of the Mittag-Leffler probability distri-
bution with unit expected value. For α = 0 the Mittag-Leffler
distribution becomes the exponential distribution 1 − e−ξ on
ξ � 0. For 0 < α < 1 the corresponding probability density
function mα(ξ ) is

mα(ξ ) = �1/α(1 + α)

αξ 1+1/α
gα

[
�1/α(1 + α)

ξ 1/α

]
, (50)

where gα stands for the one-sided Lévy stable density, whose
Laplace transform is g̃α(s) = exp(−sα) [55]. Since the Mittag-
Leffler distribution is uniquely characterized by its moments
(48), one has

lim
t→∞ Prob

{∑t−1
k=0 χ [T k(x)]

Cζ (t)
< z

}
=

∫ z

0
mα(ξ ) dξ. (51)

The constant C is given by C = κ
∫

χ dμ, where κ is such
that C is well defined even in the infinite measure regimes; see
Ref. [29] for more details. The quantity Cζ (t) is known as a
return sequence in the infinite ergodic theory [15].

The results above give the statistics of the number of jumps
Nt but, as we have previously mentioned, such results are also
valid for any non-negative observables that are integrable over
μ; see Eq. (33). It is worth mentioning that the statistics of
Nt is usually considered in the literature by means of renewal
theory. Despite providing the correct Mittag-Leffler statistics
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of jumps, renewal theory does not provide the real number of
entrances into A1; for a detailed discussion see Ref. [29].

Another important point is that the Darling-Kac approach
also tells us that, inversely, Mittag-Leffler statistics implies
sublinear growth rate (38); see Ref. [53] for more details.

VI. CONCLUDING REMARKS

The goal of this paper was to investigate for which kinds of
mappings there exist invariant measures, how many of them,
whether they are equivalent (from the topological viewpoint),
and what are their ergodic properties. Typically these issues
are discussed in the framework of finite measure systems,
separately from the infinite ones, which are relatively less
known. Here we took a different perspective: by using a
new IPFP approach, invariant measures are placed as the
starting point, and their connections with the kind of instability
(weakly or fully chaotic) and corresponding ergodic regimes
are then drawn. For one-dimensional ergodic maps, Mittag-
Leffler statistics of observables is an unequivocal signature of
subexponential Lyapunov instability (weak chaos), and this
is a direct consequence of infinite invariant measures. After
some parametric change, e.g., from α < 1 to α > 1, if an
infinite invariant measure becomes a probability measure, then

Lyapunov instability becomes exponential and Mittag-Leffler
density becomes a Dirac δ function, which are signatures of
finite measure ergodic systems. Thus, the strength of invariant
measure plays the role of order parameter between weak
(subexponential) and fully developed chaos.

Subexponential instability implies zero Lyapunov exponent
in the conventional sense, and its relationship with infinite
measures, as outlined here, may have parallels to other kinds
of systems. We can mention, for instance, chaotic attractors
that lose stability in some invariant subspace by varying a
parameter. For such systems, the so-called blowout bifurcation
[56] occurs when the most positive normal Lyapunov exponent
of the attractor crosses zero at the point of loss of stability.
Interestingly, at least two models exhibit infinite measures
similar to α = 1 PM maps when undergoing blowout bifurca-
tion: chaotic motion of two identical dissipatively coupled one-
dimensional mappings [57] and the drift-diffusion model [58].

ACKNOWLEDGMENTS
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1997).

[2] A. G. Lozowski, M. Lysetskiy, and J. M. Zurada, IEEE Trans.
Neural. Netw. 15, 1268 (2004).

[3] A. Csordás, G. Györgyi, P. Szépfalusy, and T. Tél, Chaos 3, 31
(1993).

[4] Hao Bai-lin, Chaos (World Scientific, Singapore, 1984).
[5] S. V. Ershov and G. G. Malinetskii, USSR Comput. Maths.

Math. Phys. 28, 136 (1988).
[6] F. K. Diakonos and P. Schmelcher, Phys. Lett. A 211, 199 (1996).
[7] D. Pingel, P. Schmelcher, and F. K. Diakonos, Chaos 9, 357

(1999).
[8] S. Koga, Prog. Theor. Phys. 86, 991 (1991); ,J. Phys. Soc. Jpn.

75, 114006 (2006).
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[29] P. Nazé and R. Venegeroles, Phys. Rev. E 90, 042917 (2014).
[30] Ulam’s numerical method was recently extended to maps with

indifferent fixed points, though it is not applicable to their infinite
measure regimes; see R. Murray, Discrete Contin. Dyn. Syst. 26,
1007 (2010).

[31] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
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