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Observability is a very useful concept for determining whether the dynamics of complicated systems can be
correctly reconstructed from a single (univariate or multivariate) time series. When the governing equations of
dynamical systems are high-dimensional and/or rational, analytical computations of observability coefficients
produce large polynomial functions with a number of terms that become exponentially large with the dimension
and the nature of the system. In order to overcome this difficulty, we introduce here a symbolic observability
coefficient based on a symbolic computation of the determinant of the observability matrix. The computation of
such coefficients is straightforward and can be easily analytically carried out, as demonstrated in this paper for a
five-dimensional rational system.
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I. INTRODUCTION

When an experimental system is investigated, it is not
possible to measure all the variables required for describing
its state fully. Consequently, a space is reconstructed from the
variables measured. This can be achieved by reconstructing the
nonmeasured variables from the measured ones by using delay
or derivative coordinates [1,2], both sets being equivalent [3]
for providing a way to fully reconstruct the space from well be-
haved variables. One of the natural questions which thus arise
is to determine whether all measured variables can equivalently
fully reconstruct the state space. A very useful concept for
addressing such a question is the concept of observability for
nonlinear systems as introduced by Hermann and Kerner [4].
It is relevant to point out that a nonlinear theory must be used
in order to avoid too many oversimplifications, which can
lead to erroneous results, particularly when rational systems
(systems whose governing equations are rational functions)
are considered. It was shown that the choice of the variable
may deeply affect the quality of the reconstructed space [5,6].
In other words, there are some variables which provide a better
observability of the original state space than others.

Unfortunately, and despite some attempts [7], it is still an
open problem to address such a question when only experimen-
tal data are available. On the other hand, observability can be
rigorously determined when the governing equations—the set
of differential equations—are known. Moreover, the concept
of observability is strongly related to the determinant of a
so-called observability matrix (introduced in Sec. II) which can
be already quite complicated to compute for systems whose
dimension is not very large, particularly when these systems
are rational.

Moreover, it was intuitively understood that between a
full observability provided by a set of measurements and
a total lack of observability (for which there is not even
a single state which can be completely reconstructed from
the measurements), there are some measurements making it
possible to reconstruct only a subset of the original state space
of the system. A numerical estimation of the observability
was thus proposed by using the so-called observability coeffi-
cients [5,6,8] when derivative coordinates are used. The case

of delay coordinates was also recently addressed [9]. Unfortu-
nately, these calculations of observability coefficients combine
analytical computations with numerical simulation and are
only feasible for paradigmatic, but quite simple systems.

To quantify observability of (i) polynomial and (ii) low-
dimensional systems, a symbolic observability coefficient
based on a graphical interpretation of the flow graph similar to
the one developed in [10] was introduced in [11]. The aim of
this paper is to extend that work and show how observability
can be quantified for higher-dimensional and rational systems
by a different definition of a symbolic observability coefficient.
The subsequent part of this paper is organized as follows.
In Sec. II, the relevant concepts for the observability of
nonlinear systems are briefly introduced and the procedure
to compute the new symbolic observability coefficient is
described. In Sec. III, many examples are treated to validate
this new symbolic observability coefficient including a high-
dimensional rational system. Sec. IV gives conclusions.

II. SYMBOLIC OBSERVABILITY COEFFICIENTS

A. Differential embeddings and observability matrix

Let us start with a nonlinear dynamical system,

ẋi = fi(x1,x2,x3, . . . ,xd ), i = 1,2,3, . . . ,d, (1)

described in a d-dimensional state space and where x ∈ Rd are
the variables. The vector of state variables will be designated
by x. Let h : Rd (x) → Rm(s) be a measurement function such
as it returns a single m-dimensional time series s (m � d).
Starting with a scalar measured time series (m = 1) for the sake
of simplicity (multivariate time series will be later considered
in the subsequent part of this paper), it is possible to reconstruct
a space Rd (X) from the time series {xi(t)} where X ∈ Rd is
the vector of the d-successive Lie derivative

X =

∣∣∣∣∣∣∣∣∣∣

X1 = L0
f h(x),

X2 = L1
f h(x),

...
Xd = Ld−1

f h(x),

(2)
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and where L0
f h(x) = h(x) is designated as the first Lie

derivative (thus corresponding to the measured variable itself).
Giving a vector field f (x) the Lie derivative of the ith
component of the vector field is defined as

Lf fi(x) =
d∑

k=1

∂fi(x)

∂xk

fk(x) (3)

and the n-order derivative can be recursively calculated as

Ln
f fi(x) = Lf

[
Ln−1

f fi(x)
]
. (4)

These Lie derivatives are assumed to span the reconstructed
space Rd (X), sometimes named the differential embedding.
The change of coordinates �s : Rd (x) → Rd (X) is thus
completely defined by the vector of Lie derivatives X whose
Jacobian matrix corresponds to the so-called observability
matrix for nonlinear systems [12].

System (1) is said to be fully observable if any two arbitrary
state vectors x1 and x2 are distinguished with respect to the
measurements s = h(x), that is, that h(x1) �= h(x2) if and
only if x1 �= x2. This is equivalent to, say, that system (1)
is observable when map �s is invertible. Most of the time it is
impossible to check the global invertibility but it is sufficient
to prove that �s(x∗) is locally invertible at x∗ by showing that
the determinant of the Jacobian matrix J�s

is such as

Det[J�s
(x∗)] �= 0. (5)

If such a condition holds for every x∗ ∈ Rd (x), then �s is
said to be fully observable. The determinant Det[J�s

(x∗)]—
or equivalently Det[O(x∗)] since the observability matrix is
by definition equal to J�s

—is thus the relevant concept for
determining whether a system is observable through some
measurements or not.

B. Observability and nonlinearity

For the sake of simplicity, we consider in this paper
only systems which cannot be decomposed into independent
subsystems, that is, a system whose any row of its Jacobian
matrix,

Jf (x∗) =
[
∂f

∂x
(x∗)

]
, (6)

has at least one non-null off-diagonal element. This means that
there is no variable whose time evolution is not dependent on
the evolution of some others. Such a system is fully observable
through the measurements s if the change of coordinates �s

is such as Det[J�s
(x∗)] �= 0 [∀ x∗ ∈ Rd (x)]. Contrary to this,

any point x∗ ∈ Rd (x) is nonobservable if the Jacobian matrix
J�s

(x) is rank deficient, that is, if

Det[J�s
(x∗)] = 0, for x∗ ∈ Rd (x). (7)

In such a case, none of the states can be recovered from
the measurement x∗. This is very rarely the case for non-
decomposable systems in the sense previously mentioned.
Between these two extreme situations, there are some cases
for which system (1) is nonobservable for a so-called singular
observability manifold [13], that is, for a limited subset
Mobs

�s
of the state space Rd (x) for which DetJ�s

(x∗) = 0.

These intermediary cases are the most often encountered as
evidenced in [11,12]. They are associated with

Det[J�s
(x∗)] = g(x∗) = 0, (8)

where g(x) is a nonconstant function depending on some
variable(s) xi , and x∗ ∈ Mobs

�s
. It thus appears that the lack

of observability is strongly related by the presence of nonlin-
earities in the change of coordinates �s [10,12].

Let us illustrate these statements using the Rössler sys-
tem [14]

ẋ = −y − z,

ẏ = x + ay, (9)

ż = b + z(x − c),

as an example. When variable y is measured, the change of
coordinates �y3 between the original state space R3(x,y,z)
and the differential embedding R3(X,Y,Z) reads

�y3 =
∣∣∣∣∣∣
X = y,

Y = ẏ = x + ay,

Z = ÿ = ax + (a2 − 1)y − z.

(10)

The exponent 3 in the subscript y3 of �y3 means that the
first three Lie derivatives are considered for spanning the
reconstructed space. We use such notation for any object which
depends on not only the measured variables, but also on the
way the Lie derivatives are chosen. The associated Jacobian
matrix is

J�
y3 =

⎡
⎣0 1 0

1 a 0
a a2 − 1 −1

⎤
⎦ = Oy3 , (11)

which is also the observability matrix Oy3 of the Rössler
system when variable y is measured, and its first three Lie
derivatives are considered. The corresponding determinant is
thus

Det
[
J�y3

] = Det[Oy3 ] = 1, (12)

which never vanishes. The Rössler system is therefore fully
observable from the measurements of variable y.

Let us now measure variable x of the Rössler system. The
change of coordinates becomes

�x3 =
∣∣∣∣∣∣
X = x,

Y = ẋ = −y − z,

Z = ẍ = −b − x − ay + cz − xz,

(13)

and its Jacobian matrix

J�
x3 =

⎡
⎣ 1 0 0

0 −1 −1
−1 − z −a c − x

⎤
⎦ = Ox3 . (14)

The associated determinant

Det
[
J�x3

] = Det[Ox3 ] = x − (a + c) (15)

vanishes for the singular observability manifold Mobs,

x ∈ Mobs
x3 = {x ∈ R3|x = a + c}. (16)

The Rössler system is therefore observable from variable x for
any point x∗ ∈ R3(x,y,z)\Mobs

x3 , that is, for any point of the
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state space which does not belong to the singular observability
manifold.

As a last example with the Rössler system, let us consider
a measurement vector such as

s = h(x) =
⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦ · xT, (17)

where xT is transpose vector of x. The change of coordinates
is such as

J�
xy2 = Oxy2 =

⎡
⎣1 0 0

0 1 0
1 a 0

⎤
⎦, (18)

where the subscript xy2 means that the first Lie derivative of
x and the first two ones of variable y are considered; that
is, �xy2 = (x,y,ẏ)T. The singular observability manifold is
indeed such as

Mobs
xy2 = {x ∈ R3|Det[Oxy2 ] = 0} = R3(x), (19)

and therefore, the system is never observable from these
measurements. The tricky aspect of state space reconstruction
from multivariate measurements is that it is not only important
to correctly choose the set of measured variables but also to
choose properly the variables whose successive Lie derivatives
are added to complete the vector spanning the reconstructed
space. Thus, if the third variable used for spanning the
reconstructed space is the second Lie derivative of variable
x, then the change of coordinates becomes

Ox2y =
⎡
⎣1 0 0

0 1 0
0 −1 −1

⎤
⎦ (20)

and its determinant is such as Det[Ox2y] = −1, providing a full
observability of the original state space of the Rössler system.
As already pointed out [15], investigating the observability
of a given system through multivariate measurements is not
so straightforward because there are multiple choices for
reconstructing a d-dimensional space from a m-dimensional
set of measurements (m < d). When the minimal set of
variables is researched for reconstructing the full state of the
system, the number of successive derivatives retained for each
measured variables must be investigated too.

From these simple examples, it appears that the observ-
ability of a system through a variable is reduced by the
nonconstant polynomial terms occurring in the computations
of the determinant of the Jacobian matrix of the change
of coordinates between the original state space and the
reconstructed one. When considering rational system [16–18],
it was remarked that rational terms in such a determinant
were much more critical than nonconstant polynomial terms.
These two types of terms have therefore a crucial role in the
observability provided by a given variable.

C. A new symbolic observability coefficient

As we discussed above, there is a variety of cases between
a full observability and a full lack of observability. To quantify
this whole range of possibilities, observability coefficients,
were introduced. The first definition of an observability

coefficient was based on a numerical estimation of the
eigenvalues of the observability matrix along a trajectory in
the state space [5,6]. This coefficient had the disadvantage
of not being normalized and, consequently, of not allowing
comparison between these coefficients for different systems.
Additionally, it required a combination of costly analytical
and computational calculations which could only be applied
to reasonably simple systems like three-dimensional rational
systems or nine-dimensional quadratic systems, for instance.
Based on a graphical approach [10], a symbolic coefficient
η̆s was then introduced in Ref. [11], thus avoiding analytical
computations which can become difficult to handle when the
dimension of the system considered is large (as we see in
Sec. III G).

This symbolic coefficient η̆s was not successful in detecting
the full observability of one quadratic three-dimensional
system. Therefore, we propose in this work a new symbolic
observability coefficient ηs which (i) no longer misses full
observability, (ii) works correctly for rational systems, and
(iii) is simpler to define (and to compute) since it is more
closely related to analytical computations (but without their
complexity). The main idea underlying the new coefficient
ηs is to count the number of each type of nonconstant terms
occurring in the symbolic observability matrix Os , which is
obtained from the symbolic Jacobian, a procedure described
in detail in the following. In order to do that, there is no need
to know exactly what are these terms, but only whether they
are null, constant, polynomial, or rational.

The procedure is now explained using the Rössler sys-
tem (9) from which only variable x is measured. The case
of higher-dimensional systems is straightforward and the case
of multivariate measurements will be hereafter detailed. The
steps for calculations of ηs is as follows.

(1) Construct the symbolic Jacobian matrix J̃f from the
common Jacobian matrix Jf of the considered vector field f

by replacing each linear element Jij with 1, each nonlinear
polynomial element Jij with 1̄, and each rational element Jij

with ¯̄1 when the j th variable is present in the denominator or
by 1̄ otherwise.
Example. The Jacobian matrix

Jf =
⎡
⎣0 −1 −1

1 1 0
z 0 x − c

⎤
⎦ (21)

of the Rössler system (9) is transformed in the symbolic
Jacobian matrix

J̃f =
⎡
⎣0 1 1

1 1 0
1̄ 0 1̄

⎤
⎦. (22)

(2) Construct the symbolic observability matrix Õs as
follows. The first row defines the measurement vector h for
which we here assume that the single j th component is nonzero
(since we here consider only univariate measurements). The
second row is directly obtained from the symbolic Jacobian
matrix J̃f by copying its j th row (which, in fact, corresponds
to the second Lie derivative of the measurement s, the first
one being the measurement itself). The kth row is obtained
as follows: Transpose the (k − 1)th row of the symbolic
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observability matrix Õs just previously constructed, and then
multiply each element J̃ij of the symbolic Jacobian matrix
J̃f by the ith component of the transposed (k − 1)th row. The
multiplicative law between the symbols is defined by

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ⊗ J̃ij = 0,

1 ⊗ J̃ij = J̃ij ,

1̄ ⊗ J̃ij =
∣∣∣∣∣∣
0 if J̃ij = 0,
¯̄1 if J̃ij = ¯̄1,

1̄ otherwise,

¯̄1 ⊗ J̃ij =
∣∣∣∣0 if J̃ij = 0,
¯̄1 otherwise.

(23)

The resulting symbolic Jacobian matrix J̃ ′ is thus transformed
into a row by summing the elements of each column according
to the addition law∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ⊕ J̃ij = J̃ij ,

1 ⊕ J̃ij =
∣∣∣∣1 if J̃ij = 0,

J̃ij otherwise,

1̄ ⊕ J̃ij =
∣∣∣∣1̄ if J̃ij ∈ (0,1),
J̃ij otherwise,

¯̄1 ⊕ J̃ij = ¯̄1 ∀ J̃ij .

(24)

Example. Variable x of the Rössler system is measured; the
first row of Õx3 is thus

[1 0 0]. (25)

The second is therefore the first row of the symbolic Jacobian
matrix J̃f in Eq. (22); that is,

[0 1 1]. (26)

This row is now transposed and multiplied by the symbolic
Jacobian matrix J̃f , leading to⎡

⎣0
1
1

⎤
⎦ ⊗

⎡
⎣0 1 1

1 1 0
1̄ 0 1̄

⎤
⎦ =

⎡
⎣0 0 0

1 1 0
1̄ 0 1̄

⎤
⎦. (27)

Elements of the j th column are summed to provide the j th
element of the third row of Õx3 as

[1̄ 1 1̄]. (28)

The resulting symbolic observability matrix is thus

Õx3 =
⎡
⎣1 0 0

0 1 1
1̄ 1 1̄

⎤
⎦. (29)

(3) Compute the determinant of the symbolic observability
matrix Õs but keep explicitly all terms actually contributing
to the determinant (remove only the terms which are zero ac-
cording to the multiplicative law ⊗ as previously introduced).
Then count the number N1, N1̄, and N ¯̄1 of symbolic terms 1,
1̄, and ¯̄1, respectively, present in the determinant. The symbols
presented in the rows coming from the measurement (first row
in a univariate measurement [for example, Eq. (25)], or the m −
first rows in the case of multivariate [for example, Eqs. (31)
and (32)], with m < d the different variables measured, only
contributing once to the counting. Also a special condition
is required for rational systems that, if N1̄ = 0 and N ¯̄1 �= 0,

then N1̄ = N ¯̄1. The symbolic observability coefficients is then
equal to

ηs = N1

N1 + N1̄ + N ¯̄1

+ N1̄

(N1 + N1̄ + N ¯̄1)2

+ N ¯̄1

(N1 + N1̄ + N ¯̄1)3
. (30)

Example. The determinant of the symbolic observability
matrix Õx3 given in Eq. (29) is

DetÕx3 = 1 ⊗ (1 ⊗ 1̄ − 1 ⊗ 1).

We have, therefore, N1 = 4, N1̄ = 1, and N ¯̄1 = 0, thus leading
to

ηx3 = 4

5
+ 1

52
= 0.84.

Similarly, we have

DetÕy3 = 1 ⊗ (1 ⊗ 1 − 1 ⊗ 1),

and, consequently, N1 = 5, N1̄ = 0, and N ¯̄1 = 0, leading to
ηy3 = 1. The third determinant is

DetÕz3 = 1 ⊗ (1̄ ⊗ 1̄ − 1̄ ⊗ 0) ,

leading to N1 = 1, N1̄ = 2, and N ¯̄1 = 0, which induce ηz3 =
1
3 + 2

32 = 0.56.
The case of multivariate measurements differs because

there are m rows with a single nonzero element in the
observability matrix. The (d − m) rows remaining to construct
are obtained as detailed in step 2 where, for instance, the
(m + 1)th row of the observability matrix corresponds to the
kth row of the symbolic matrix of Lie derivatives L̃1 if variable
xk is chosen, and the (m + 2)th row of Õs to the kth row of L̃2

when the next Lie derivative of variable xk is retained or by
the lth row of L̃1 if the second Lie derivative of variable xl is
preferred, and so on.

Example. Let us consider the case where variables x and y

of the Rössler system are measured. The first two rows of the
observability matrix Õ are thus

L̃1
x = [1 0 0] (31)

and

L̃1
y = [0 1 0]. (32)

Let us start by choosing the second Lie derivative of x for
spanning our reconstructed space. The third row is

L̃2
x = [0 1 1],

and the symbolic observability is

Õx2y =
⎡
⎣1 0 0

0 1 0
0 1 1

⎤
⎦. (33)

Its determinant is

Det[Õx2y] = 1 ⊗ 1 ⊗ 1. (34)

In this determinant there are three constant elements con-
tributing to the determinant; thus, N1 = 3, N1̄ = 0, and
N ¯̄1 = 0, leading to ηx2y = 1. The Rössler system is thus fully
observable when this embedding is used from the measurement
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of variables x and y and when the second Lie derivative of x

is chosen.
Let us now choose the second Lie derivative of variable y

and not the one of variable x. The third row is now

L̃2
y = [1 1 0]

and the observability matrix

Õxy2 =
⎡
⎣1 0 0

0 1 0
1 1 0

⎤
⎦ (35)

is rank deficient, so its determinant is directly equal to 0. The
symbolic observability coefficient is therefore also equal to
zero since

Det[Õxy2 ] = 1 ⊗ 1 ⊗ 0 = 0, (36)

thus leading to N1 = 0, N1̄ = 0, and N ¯̄1 = 0, inducing
ηxy2 = 0.

III. VALIDATION OF THE NEW SYMBOLIC
OBSERVABILITY COEFFICIENT

A. Quadratic three-dimensional systems

In order to validate our defined symbolic observability
coefficient ηs , we started by comparing its values for some
three-dimensional Sprott systems [19] which were investigated
previously using the “old” symbolic coefficients η̆ whose
values can be seen in Table I in [11] and were reprinted
in Table I, with the exception of a few values that were
correctly recalculated (appearing in bold in Table I). In all
cases but one the relative observability order—a ranking
of observable variables from the one providing the best
observability of the original state space to the one returning
the worst observability—of the observability provided by the
three variables was not modified in comparison with the
new coefficient ηs ; that is, the correct ranking of observable
variables was detected by the new observability coefficient.
Results are reported in Table I.

The single exception is for system “O” for which the
observability ranking, obtained from the computation of η̆,
was y�z�x, where � means “provides a better observability
than,” which differs from the ranking y�x�z composed by
our new coefficient η (see Table I). Comparing the analytical
determinant �x3 and �z3 of the observability matrices Ox3 and
Oz3 (Table I), the former is a first-order polynomial and the
latter a second-order polynomial: According to these proper-
ties, variable z must provide an observability poorer than the
one provided by variable x since it is known that the higher the
order of the polynomial, the less observable the state space is;
see [6]. Therefore, the new observability coefficient ηs defined
in this work provides a better estimation of the observability
than the one provided by the symbolic observability coefficient
η̆. Moreover, a mistake was discovered in the value obtained for
η̆z3 for system K, which was actually η̆z3 = 0.89 (and not 1.00,
as wrongly reported in [11]). Consequently, the coefficient
η̆z3 missed the full observability provided by variable z of
system K; the new coefficient returns ηz3 = 1.00, which is a
correct estimation of the full observability. We should thus
consider that the new observability coefficient is validated for
three-dimensional quadratic systems.

B. A three-dimensional cubic system

Among the various systems proposed by Rössler, let us
investigate the cubic system [20],

ẋ = −ax − y(1 − x2),

ẏ = μ(y + 0.3x − 2z), (37)

ż = μ(x + 2y − 0.5z),

which produces a double scroll attractor. The symbolic
Jacobian matrix of this cubic system is

J̃f =
⎡
⎣1̄ 1̄ 0

1 1 1
1 1 1

⎤
⎦. (38)

The new symbolic observability coefficients are ηx3 = 0.56,
ηy3 = 0.84, and ηz3 = 0.68, thus leading to the observability
ranking y�z�x. This ranking slightly differs from the one
found with the old symbolic observability coefficient [11].
Considering the analytic determinant of the observability
matrices

�x3 = −2μ(x2 − 1)2,

�y3 = μ2(3.7μ + 0.6a − 1.2xy), (39)

�z3 = μ2(0.8μ + 2a − 1 + x2 − 4xy),

one may remark that the first one is a fourth-order polynomial
and that the last two determinants are second-order polyno-
mials of a nearly equal complexity. The variable providing
the poorest observability is the variable whose determinant
� is a function of the highest order, as predicted by the
new symbolic coefficient ηs . It is not surprising that our new
symbolic observability coefficient estimated the observability
provided by variables y and z to be large. This was confirmed
by the global models of equal quality which were found from
these two variables, as discussed in [11].

C. A three-dimensional quadratic system with symmetry

The Lorenz system [21]

ẋ = σ (y − x),

ẏ = Rx − y − xz, (40)

ż = −bz + xy,

is known for presenting a rotation symmetry around the z axis
under which the Lorenz attractor is globally left invariant. This
symmetry property can be expressed using the 3 × 3 matrix

� =
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦, (41)

which is characteristic of that symmetry. The Lorenz system
f (x) thus satisfies

� · ẋ = f (� · x). (42)

The (Lorenz) system f is said to be equivariant under the
rotation symmetry so defined by the � matrix [22].
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TABLE I. Sets of equations investigated with the determinant �i3 of the Jacobian matrix of the change of coordinates �i3 between the
original state space and the space reconstructed from the ith variable using its successive Lie derivatives. The system is fully observable when
�i3 defines a global diffeomorphism, that is, when ηi3 = 1. Values of η̆ in bold fonts are those which were correctly recalculated, compared to
those values reported in [11].

Equations �i3 = Det(Oi3 ) η̆ η Matrix J̃f

ẋ = −y − z �x3 = x − (a + c) ηx3 0.88 0.84
Rössler system ẏ = x + ay �y3 = 1 ηy3 1.00 1.00

⎡
⎣0 1 1

1 1 0
1 0 1

⎤
⎦

ż = b + z(x − c) �z3 = −z2 ηz3 0.44 0.56

ẋ = y + z �x3 = −(a + b) ηx3 1.00 1.00
System F ẏ = −x + ay �y3 = 1 ηy3 1.00 1.00

⎡
⎣0 1 1

1 1 0
1 0 1

⎤
⎦

ż = −bz + x2 �z3 = 4x2 ηz3 0.44 0.56

ẋ = −y + z2 �x3 = −2x + 2z(a + 2b) ηx3 0.81 0.68
System H ẏ = x + ay �y3 = −2z ηy3 0.88 0.78

⎡
⎣0 1 1

1 1 0
1 0 1

⎤
⎦

ż = x − bz �z3 = −1 ηz3 1.00 1.00

ẋ = −ay + xz �x3 = a(b + 1)x + a2y − axz ηx3 0.72 0.52
System K ẏ = x + by �y3 = −x ηy3 0.78 0.78

⎡
⎣1 1 1

1 1 0
1 0 1

⎤
⎦

ż = x − z �z3 = −a ηz3 0.89 1.00

ẋ = y − z �x3 = −1 − y − z ηx3 0.61 0.68
System O ẏ = ax �y3 = −a2 ηy3 1.00 1.00

⎡
⎣0 1 1

1 0 0
1 1 1

⎤
⎦

ż = bx + y + yz �z3 = b2(1 + x) + by(1 + z) − a(1 + 2z + z2) ηz3 0.72 0.52

ẋ = ay + z �x3 = −1 − 2aby ηx3 0.88 0.78
System P ẏ = −x + by2 �y3 = −1 ηy3 1.00 1.00

⎡
⎣0 1 1

1 1 0
1 1 0

⎤
⎦

ż = x + y �z3 = 1 + a + 2by ηz3 0.89 0.84

ẋ = −y + z �x3 = (a + b) − x ηx3 0.84 0.81
System G ẏ = x + ay �y3 = −1 ηy3 1.00 1.00

⎡
⎣0 1 1

1 1 0
1 1 1

⎤
⎦

ż = −bz + xy �z3 = 2(x2 − y2) + yz ηz3 0.38 0.36

ẋ = −z �x3 = −1 ηz3 1.00 1.00
System M ẏ = −x2 − ay �y3 = 4x2 ηy3 0.44 0.56

⎡
⎣0 0 1

1 1 0
1 1 1

⎤
⎦

ż = b + bx + y �z3 = 2x − ab ηz3 0.88 0.84

ẋ = −z �x3 = −2y ηx3 0.88 0.78
System Q ẏ = x − ay �y3 = 1 ηy3 1.00 1.00

⎡
⎣0 0 1

1 1 0
1 1 1

⎤
⎦

ż = bx + y2 + cz �z3 = 2b(x + −2ay) − 4y2 ηz3 0.72 0.52

ẋ = −x − az �x3 = −2a2y ηx3 0.88 0.78
System S ẏ = 1 + x �y3 = a ηy3 1.00 1.00

⎡
⎣1 0 1

1 0 0
1 1 0

⎤
⎦

ż = x + y2 �z3 = 2(1 + x + y − 2y2) ηz3 0.81 0.56

The symbolic Jacobian matrix of the Lorenz system is

J̃f =
⎡
⎣1 1 0

1̄ 1 1̄
1̄ 1̄ 1

⎤
⎦. (43)

The three symbolic observability coefficients

ηx3 = 0.75 > ηy3 = 0.16 = ηz3 = 0.16

are in agreement with the three analytical determinants of the
analytical Jacobian matrix. Indeed, these three determinants

are

�x3 = −σ 2x,

�y3 = R(σy − bx) − σyz + 2x2y, (44)

�z3 = 2[(z − R)x2 + σy2].

The first one is a first-order polynomial; the last two ones are
both third-order polynomials. Variable x therefore provides
the best observability of the original state space [6]. The two
other variables provide a lower quality for reconstructing the
original state space.
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The symmetry also plays an important role in reconstructing
the state space. For instance, as already pointed out in [23],
the x-induced differential embedding is associated with an
attractor left invariant under an inversion symmetry and no
longer with a rotation symmetry. Contrary to this, when
variable z is measured, the resulting differential embedding
produces an attractor without any residual symmetry: It is the
result from a 2 
→ 1 mapping which mods out the rotation
symmetry [22]. The singular observability manifold

Mobs
z3 =

{
(x,y,z) ∈ R3|z = R − σ

(
y

x

)2}
(45)

is quite complex (see Fig. 6(c) in [13]). The key point is that,
from the theoretical point of view, any points (±x, ± y,z) ∈
R3\Mobs

z3 from the original state space and which does not
belong to the singular observability manifold is mapped into a
single point in the z-induced differential embedding R3(Xz3 ):
This variable therefore never distinguishes symmetry-related
points. Thus variable z does not provide any observability
of the original state space stricto sensu. This means that,
rigorously speaking, the full state space is not observable
(or strongly indistinguishable in the sense of Hermann and
Kerner [4]) and, consequently, the symbolic observability
coefficient ηz3 should be zero. This clearly shows that the
computation of the observability only considers the singular
observability manifold and not the possible symmetries the
studied system may have.

In order to reconstruct a space with the rotation symmetry
the Lorenz system has, it is necessary to use at least two
variables, one which is mapped into its opposite and one
which is left invariant under the rotation. Two possible sets
of measurements are thus possible: (x,z) and (y,z). To restore
the rotation symmetry, it is necessary to take the second Lie
derivative of the variable which is mapped into its opposite
under the rotation. We have thus to consider the observability
matrices Õx2z and Õy2z. We obtained ηx2z = 1.00 and ηy2z =
0.78, which are in agreement with the determinants

�x2z = σ, (46)

which never vanishes, and

�y2z = z − R, (47)

which is a first-order polynomial, respectively. Note that if we
would have used the second Lie derivatives of z rather than
of x, we would have obtained ηxz2 = 0.78, that is, the same
value as ηy2z, thus ignoring the fact that the reconstructed
space would present a reflection symmetry (a symmetry
that a given attractor can never have) and not a rotation.
It is therefore relevant to note that symmetry properties are
badly considered by an observability analysis and that the
results should be carefully interpreted for systems presenting
equivariant properties.

D. Three-dimensional rational systems

Let us start with the example of a three species food chain
described by [24]

ẋ = x(1 − x) − xy

x + a
,

ẏ = −by + cxy

x + d
− yz

y + e
, (48)

ż = f z2 − gz2

y + h
,

where x is the normalized density of preys (rodents) at
the bottom of the food chain, y the density of a specialist
predator (snakes), and z the density of the generalist predator
(peacocks). The symbolic Jacobian matrix of this system reads

J̃f =

⎡
⎢⎢⎣

¯̄1 1̄ 0
¯̄1 ¯̄1 1̄

0 ¯̄1 1̄

⎤
⎥⎥⎦, (49)

and the symbolic observability coefficients are
(i) ηx3 = 0.56, with N1 = 1, N1̄ = 2, and N ¯̄1 = 0;
(ii) ηy3 = 0.26, with N1 = 1, N1̄ = 1, and N ¯̄1 = 3;
(iii) ηz3 = 0.30, with N1 = 1, N1̄ = 2, and N ¯̄1 = 2.
We thus have the observability ranking x�z�y, which is

in agreement with the ranking previously obtained [16]. The
corresponding analytical determinants are

�x3 = − x2y

(x + a)2(y + e)
;

�y3 too long with higher polynomical orders

than �x3 and �z3 ;

�z3 = − cdg2yz4

(x + d)2(y + h)4
. (50)

The observability ranking is mostly in agreement with the
increasing complexity of the determinants of the analytical
observability matrices. Nevertheless, the number of terms was
too large to attempt a simplification of the expression of �y3

and to be able to compare it with �z3 . On the other hand, the
ranking we found is confirmed by our ability to get a global
model from the different variables as discussed in [16] since a
global model was easily obtained from variables x and y, but
with a greater difficulty and less accuracy from variable z.

A second example of a three-dimensional rational system
consists of a simple cancer model [25], here rewritten as [17]

ẋ = ρ1x(1 − x) − α13xz,

ẏ = ρ2yz

1 + z
− α23yz − δ2y, (51)

ż = z(1 − z) − xz − α32yz,

where x is the normalized population of host cells, y the
population of immune cells, and z the population of tumor
cells. The symbolic Jacobian matrix reads

J̃f =

⎡
⎢⎣

1̄ 0 1̄

0 1̄ ¯̄1

1̄ 1̄ 1̄

⎤
⎥⎦. (52)

The symbolic observability coefficients are ηx3 = 0.56, ηy3 =
0.30, and ηz3 = 0.36, thus leading to the ranking x�z�y, as
obtained in [17] using numerical estimation of the observabil-
ity coefficients. Once again, this is also in agreement with the
complexity of the analytical determinants since

�x3 = −α2
13α32x

2z;

�y3 = y2z

[
ρ2

(1 + z)4
− α23

]

×[α23 − ρ2 + α23z(2 + z)];
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�z3 = −α23z
2[(α23 − α13)z

+ρ1(1 − 2x) + z(α13α32x
2 − ρ2)

1 + z

]
. (53)

Note that �z3 is actually simpler since it has a first-order
denominator and not a fourth-order one as �y3 . With these
two examples, we can show that our symbolic observability
coefficients are well estimating the observability for rational
systems, a feature which was not observed with the “old”
symbolic observability coefficient developed in [11].

E. A pathological rational system

Let us consider the three-dimensional rational systems
describing the dynamics of a biochemical model presented
in [26]. A substrate is transformed by enzyme E1 into product
P1, which serves as substrate for a second enzyme E2 that
transforms P1 into P2. The system thus reads

ẋ = V − σ1φ1(x,y),

ẏ = q1σ1φ1(x,y) − σ2φ2(y,z), (54)

ż = q2σ2φ2(y,z) − Ksz,

where x, y, and z are normalized using the concentrations of
substrate S and of the reaction products P1 and P2, respectively.
σ1 and σ2 are the normalized maximum rates of the enzyme
E1 and E2, q1 and q2 quantify the ratios of the dissociation
constants, V denotes the substrate injection rate, and Ks is the
apparent first-order rate constant for the removal of the final
product. The rate functions φ1 and φ2 of the allosteric enzymes
E1 and E2 are

φ1(x,y) = x (1 + x) (1 + y)2

L1 + (1 + x)2 (1 + y)2
,

(55)

φ2(y,z) = y (1 + z)2

L2 + (1 + z)2
.

Parameter values for producing chaotic solutions were σ1 =
10 s−1, q1 = 50, L1 = 5 × 108, σ2 = 10 s−1, q2 = 0.02, Ks =
2, and L2 = 100 [26]. The corresponding symbolic Jacobian
matrix reads

J̃f =
⎡
⎣

¯̄1 ¯̄1 0
¯̄1 ¯̄1 ¯̄1
0 1̄ ¯̄1

⎤
⎦. (56)

The symbolic observability coefficients are ηx3 = 0.30, ηy3 =
0.17, and ηz3 = 0.48, leading to the observability ranking
z�x�y, which contradicts the ranking provided by the
numerical estimations of the observability coefficients and the
global models we obtained from the three variables [18] (i.e.,
x�z�y).

In order to understand this disagreement, it is helpful to
remark the extremely large value of L1, which leads a possible
approximation of the rate function by

φ′
1(x,y) ≈ x (1 + x) (1 + y)2

L1
. (57)

The value of parameter L2 is large enough to only allow
fluctuations smaller than 2% in the denominator of φ2(y,z),

which can also be approximated by

φ′
2(y,z) ≈ y (1 + z)2

L2
. (58)

Using this approximated function φ′
1, the symbolic Jacobian

matrix becomes

J̃ ′
f =

⎡
⎣1̄ 1̄ 0

1̄ 1̄ 1̄
0 1̄ 1̄

⎤
⎦, (59)

since both nonlinear terms in the denominators of the rate
function in Eq. (55) do not significantly contribute to the rate
functions and for this reason we neglect them. Resolving
its determinant, we obtain that the symbolic observability
coefficients are ηx3 = 0.56, ηy3 = 0.36, and ηz3 = 0.56. The
approximated observability ranking is thus x � z�y, where
� would mean that variables x and z would provide the
same observability of the original state space in such an
approximation. This suggests that the estimation obtained
in the rigorous case is also biased and that the correct
answer should be, after all, the numerical observability ranking
x�z�y obtained in [18]. This is the single discrepancy
between the observability ranking provided by our new
symbolic observability coefficients with more rigorous results
as analytical determinants of the observability matrix, but
note that the present failure was obtained in a case where the
nonlinearities are rather pathological. This example suggests
to use approximated equations for the rate function when terms
are obviously negligible compared to others.

F. A four-dimensional quadratic system

Let us now consider a four-dimensional quadratic system
producing a hyperchaotic attractor [27]. It reads

ẋ = −y − z,

ẏ = x + ay + w,
(60)

ż = b + xz,

ẇ = −cz + dw.

Its symbolic Jacobian matrix reads

J̃f =

⎡
⎢⎢⎢⎣

0 1 1 0

1 1 0 1

1̄ 0 1̄ 0

0 0 1 1

⎤
⎥⎥⎥⎦, (61)

and the corresponding symbolic observability coefficients are
(i) ηx4 = 0.79, with N1 = 10, N1̄ = 3, and N ¯̄1 = 0;
(ii) ηy4 = 0.79, with N1 = 10, N1̄ = 3, and N ¯̄1 = 0;
(iii) ηz4 = 0.44, with N1 = 1, N1̄ = 3, and N ¯̄1 = 0;
(iv) ηw4 = 0.63, with N1 = 2, N1̄ = 2, and N ¯̄1 = 0.
The observability ranking is thus y � x�w�z, where �

means “provides the same observability as.” This ranking is
slightly different from the previously obtained ranking [10,11]
since the first two symbolic observability coefficients are
equal. According to the determinants

(i) �x4 = ad − c − x(a + d) − y − z + x2 (second
order),

(ii) �y4 = d2 − xd(1 + c) + z(1 + 2c + c2) (first order),
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(iii) �z4 = z3 (third order),
(iv) �w4 = c3z2 (second order),

variable y should provide a slightly better observability since
the corresponding determinant is of first order and not of
second order, as obtained for variable x. Note that replacing the
fourth-order Lie derivative of x with a measurement of variable
y or z leads to a full observability since ηx3y = ηx3z = 1
but not with variable w since �x3w = x − a and for which
ηx3m = 0.86. There are a variety of sets of measured variables
which provide a full observability, for example, �y3x , �y3z,
�y3w, �x2y2 , �x2w2 , and �y2w2 .

G. A 5D rational system

A model for the circadian oscillation in the Drosophila
period protein was proposed by Goldbeter [28]. This is the
five-dimensional rational model

ẋ1 = vsK
4
I

K4
I + x4

5

− vmx1

Km + x1
,

ẋ2 = ksx1 − V1x2

K1 + x2
+ V2x3

K2 + x3
,

ẋ3 = V1x2

K1 + x2
+ V4x4

K4 + x4
− x3

(
V2

K2 + x3
+ V3

K3 + x3

)
,

ẋ4 = V3x3

K3 + x3
− x4

(
V4

K4 + x4
+ k1 + vd

Kd + x4

)
,

ẋ5 = k1x4 − k2x5, (62)

which produces a limit cycle for the parameter values
reported in [28]. This system is interesting in the sense
that its complexity presents a big challenge for analytical
computation. The corresponding symbolic Jacobian matrix
reads

J̃f =

⎡
⎢⎢⎢⎢⎣

¯̄1 0 0 0 ¯̄1
1 ¯̄1 ¯̄1 0 0
0 ¯̄1 ¯̄1 ¯̄1 0
0 0 ¯̄1 ¯̄1 0
0 0 0 1 1

⎤
⎥⎥⎥⎥⎦, (63)

and the corresponding symbolic observability coefficients are
(i) ηx5

1
= 0.17, with N1 = 1, N1̄ = 4, and N ¯̄1 = 4;

(ii) ηx5
2

= 0.08, with N1 = 7, N1̄ = 42, and N ¯̄1 = 42;
(iii) ηx5

3
= 0.02, with N1 = 1, N1̄ = 32, and N ¯̄1 = 32;

(iv) ηx5
4

= 0.17, with N1 = 1, N1̄ = 4, and N ¯̄1 = 4.
(v) ηx5

5
= 0.30, with N1 = 2, N1̄ = 3, and N ¯̄1 = 3,

thus leading to the observability ranking

x5�x1 � x4�x2�x3.

This is in a rather good agreement to the analytical determi-
nants

�x5
1

= 256v4
s K

16
I k3

1V
2

3 K2
3 V1K1(

K4
I + x4

5

)8
(K3 + x3)4(K1 + x2)2

x12
5 ;

�x5
2

and �x5
3

where the complexity exceeds the order

of the other determinants;

�x5
4

= 4V 4
3 K4

3 V 3
1 K3

1 k2
s vsK

4
I

(K3 + x3)8(K1 + x2)6
(
K4

I + x4
5

)2 x3
5 ;

�x5
5

= − k4
1V

3
3 K3

3 V 2
1 K2

1 ks

(K3 + x3)6(K1 + x2)4
. (64)

The symbolic observability matrix Õ5
xi

can be easily obtained
despite of the complexity of the system. By investigating
the symbolic observability matrices, we found that the best
measurement (when there are some nonmeasured variables)
was the set (x1,x2,x3) and using the embedding provided by
�x2

2 x3x
2
5
: In such a case, there is a full observability since

ηx2
2 x3x

2
5

= 1 as confirmed by �x2
2 x3x

2
5

= ksk1. A local observ-
ability is obtained with �x2

2 x2
3 x5

, as confirmed by ηx2
2 x2

3 x5
= 0.70

and the determinant

�x2
2 x2

3 x5
= − ksV4K4

(K4 + x4)2
. (65)

A full lack of observability is obtained with �x2x
2
3 x2

5
since

Õx2x
2
3 x2

5
is rank deficient. It is here therefore demonstrated

that our symbolic observability coefficients are useful for
assessing the observability of quite high-dimensional rational
systems.

IV. CONCLUSION

Observability coefficients make it possible to assess the
observability provided by some measurements to reconstruct
a space in which distinct states in the original state space
are distinguished. Assessing the observability of quite com-
plicated systems due to their large dimensionality and/or
their rational nature cannot be performed using analytical
computations. In this work we proposed a new symbolic
observability coefficient which not only corrects the previous
one but also makes it possible to investigate rational sys-
tems. We construct a symbolic observability matrix whose
determinant is symbolically computed, allowing the counting
of the number of elements of the symbolic Jacobian matrix
contributing to it. We checked the validity of our results
with the analytical determinants or with some numerical
estimations previously reported. It remains that, as with any
observability analysis, the results must be carefully interpreted
when systems with symmetry properties are considered since
any symmetry, a global property, is poorly considered by local
analysis.
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