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We investigate chaos in mixed-phase-space Hamiltonian systems using time series of the finite-time Lyapunov
exponents. The methodology we propose uses the number of Lyapunov exponents close to zero to define
regimes of ordered (stickiness), semiordered (or semichaotic), and strongly chaotic motion. The dynamics is then
investigated looking at the consecutive time spent in each regime, the transition between different regimes, and
the regions in the phase space associated to them. Applying our methodology to a chain of coupled standard
maps we obtain (i) that it allows for an improved numerical characterization of stickiness in high-dimensional
Hamiltonian systems, when compared to the previous analyses based on the distribution of recurrence times; (ii)
that the transition probabilities between different regimes are determined by the phase-space volume associated
to the corresponding regions; and (iii) the dependence of the Lyapunov exponents with the coupling strength.
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I. INTRODUCTION

In weakly chaotic Hamiltonian systems regions of regular
(periodic and quasiperiodic) and chaotic motion typically
coexist in the phase space [1,2]. In high dimensions, due to
Arnold diffusion, all initial conditions leading to chaotic mo-
tion are connected in the phase space building a single chaotic
component [1]. Even if the volume of the regular regions
becomes vanishingly small, as expected for high-dimensional
nonlinear systems, the dynamics inside the chaotic component
of the phase space is strongly affected by such regions.
This happens because trajectories approaching nonhyperbolic
regions or regular motion remain close to them a long time
before visiting again other parts of the chaotic component
of the phase space. This signature of weak mixing (or weak
chaos) is known as stickiness [3–8].

Since the work in Ref. [3], the main quantification of
stickiness in Hamiltonian systems has been through the
fat-tail distribution of Poincaré recurrence times (see, e.g.,
Refs. [4,8,9]). An alternative approach is to use finite-time
Lyapunov exponents (FTLEs) [10–12], with recent applica-
tions using large deviation techniques [7,13] and the cumulants
[14,15] of the FTLE distribution. In area-preserving maps,
stickiness generically occurs at the border of two-dimensional
Kolmogorov-Arnold-Moser (KAM) island [1] (i.e., at one-
dimensional tori). The recurrence time is a measure of the time
the trajectory spends around such structures before returning
to the chaotic sea (stickiness happens also to one-parameter
families of parabolic orbits [16,17] and even to isolated
parabolic fixed points [4,18,19]). Near the nonhyperbolic
structures, the local instability of chaotic trajectories is reduced
so that FTLEs can be used to characterize phase-space regions
of interest [11–13,20,21]. Stickiness has also been studied
in higher-dimensional systems [9,10,14,15,21,22], and long
recurrence times can be due to different nonhyperbolic regions
and tori of different dimensionalities [23]. An improved
characterization of stickiness events (long recurrence time)
thus requires us to measure the number of stable and unstable
directions in the trajectory during this event. Froeschlé con-
jectured that lower-dimensional tori could not exist [1,24,25].

In early studies in the 1980s such events of stickiness to
lower-dimensional tori were reported in some systems [21] but
were not found in other examples [10]. Even if invariant tori do
not exist, a small local Lyapunov exponent could effectively act
as a lower-dimensional trap. This is similar to almost invariant
sets [26,27], which are regions in phase space where typical
trajectories stay (on average) for long periods of time.

In this paper we introduce a methodology that uses time
series of local Lyapunov exponents to define regimes of
ordered, semiordered, and totally chaotic motion and obtain
an improved characterization of stickiness in high-dimensional
Hamiltonian systems. We illustrate this general procedure in
a chain of coupled standard maps and confirm that stickiness
events of different times length are dominated by trajectories
with different FTLEs. A significant improvement of the
characterization of sticky motion in high-dimensional systems
is found. We also characterize the FTLEs for small couplings
and compare them to expected universal properties in fully
chaotic systems [28]. The method proposed here is general
and can be used to investigate Hamiltonian systems in any
dimension.

The paper is divided as follows. In Sec. II we describe the
Hamiltonian model we use to illustrate our method. In Sec. III
we introduce our method to compute and analyze time series of
local Lyapunov exponents. This methodology is then applied
to the symplectic model of coupled standard maps in Sec. IV.
Section V summarizes the main results of the paper.

II. THE COUPLED MAPS MODEL

We use a time-discrete 2N -dimensional Hamiltonian sys-
tem obtained as the composition T ◦ M of independent one-
step iteration of N symplectic two-dimensional maps M =
(M1, . . . ,MN ) and a symplectic coupling T = (T1, . . . ,TN ).
As a representative example of two-dimensional maps we
choose for our numerical investigation the standard map:

Mi

(
pi

xi

)
=

(
pi + Ki sin(2πxi) mod 1
xi + pi + Ki sin(2πxi) mod 1

)
, (1)
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and for the coupling

Ti

(
pi

xi

)
=

(
pi + ∑N

j=1 ξi,j sin[2π (xi − xj )]
xi

)
, (2)

with ξi,j = ξj,i = ξ√
N−1

(all-to-all coupling). The motivation
for working with this system is that in the limit of small
coupling ξ → 0 it can be understood looking at the dynamics
of the N uncoupled maps. This system was studied in
Refs. [6,9] using recurrence time distribution. This allow us
to critically compare the benefits of our methodology. In all
numerical simulations we used K1 = 0.5214 for the map M1

and K2 = K3 = 0.5108 for the maps M2 and M3.

III. METHOD

In this section we describe the method proposed in this
work. To be illustrative, we present numerical simulations for
the system defined in Sec. II.

A. Lyapunov spectrum and the classification of ordered,
semiordered or semichaotic, and chaotic regimes

Consider a chaotic trajectory in a closed Hamiltonian
system which, after reducing the phase-space dimension due
to global invariant of motion, has N degrees of freedom.
For long times t the trajectory ergodically fills the whole
chaotic component of the phase space, which is characterized
by a spectrum of N Lyapunov exponents {λ(∞)

i=1...N }, where
λ

(∞)
1 > λ

(∞)
2 , . . . ,λ

(∞)
N > 0 [29]. The central ingredient of our

analysis is the spectrum of FTLEs computed along a trajectory
during a window of size ω where we obtain a time-dependent
spectrum {λ(ω)

i }(t) = {λ(ω)
i }. The window size ω has to be

sufficiently small to guarantee a good resolution of the
temporal variation of the λ

(ω)
i , but sufficiently large in order to

have a reliable estimation (see Refs. [10–12]). The probability
density function of λ

(ω)
i has been extensively studied [7,10–12].

Here we go beyond the study of the probability density function
and explore temporal properties in the time series of {λ(ω)

i }.
Figures 1(a) and 1(b), for N = 2 and 3, respectively, show

the time series of λ
(ω)
i (i = 1, . . . ,N). The sharp transitions

towards λ
(ω)
i ≈ 0 motivate the classification in regimes of

motion [20,21] as (a) ordered (λ(ω)
1,2 ≈ 0), (b) semiordered or

semichaotic (λ(ω)
1 > 0; λ(ω)

2 ≈ 0), and (c) chaotic (λ(ω)
1,2 > 0).

For a system with N degrees of freedom we will say that the
trajectory is in a regime of type S

(N)
M if it has M local Lyapunov

exponents λ
(ω)
i > εi , where εi � λ

(∞)
i are the small thresholds.

This means that S(N)
0 and S

(N)
N are ordered and chaotic regimes,

respectively. Whenever there is no ambiguity, we will drop the
superscript S

(N)
M = SM to have a simpler notation.

Practical implementations of the general method described
above require the choice of a few parameters and conventions.
First, the window size ω and the threshold εi directly affect
the classification in regimes. They can be thought of as
the phase-space resolution of the analysis and should be
chosen so that they provide maximal information about
the regions of interest. Unless stated otherwise, we use
ω = 100 and εi ≈ 0.10〈λ(ω)

i 〉, where 〈. . .〉 denotes average
over t , where t = 1, . . . ,tL (even though the classification

in regimes is strongly ω-dependent, our conclusions are not
sensitively affected by variations around the chosen values).
Another important choice is the method for computation
of the FTLEs. We use Benettin’s algorithm [30,31], which
includes the Gram-Schmidt reorthonormalization procedure.
The decreasing order of λ

(ω)
i is valid on average, but inversions

of the order (λ(ω)
i+1 > λ

(ω)
i ) may happen for some times t , and

we have chosen to impose the order of λ
(ω)
i for all t . Finally, it is

possible to decide how to sample the time series λ
(ω)
i . While the

FTLEs are defined for all t , there is a trivial correlation between
the values of FTLEs inside a window of size ω because they are
computed using the same points of the trajectory. In order to
avoid this trivial correlation, the series of λ

(ω)
i can be computed

using nonoverlapping windows, i.e., plotting λ
(ω)
i only every

ω time steps (a choice we adopt in our simulations).

B. Identifying phase-space regions

In order to understand the properties of the time series {λ(ω)
i }

it is useful to consider the phase-space regions associated
to each regime SM . We denote by μ(A) the phase-space
volume (Liouville measure) of region A in the bounded phase
space �, i.e., μ(�) ≡ 1. The most important distinction is
between the regions of regular �regular and chaotic �chaos

motion. In Hamiltonian systems, typically μ(�chaos) > 0 and
μ(�regular) > 0. In principle, the regular region �regular can
be subdivided according to the dimensionality of the tori.
However, according to Froeschlé’s conjecture, in a 2N -
dimensional phase space, tori with dimension N have positive
measure and thus μ(�regular) = μ(�tori) [1,24,25]. For N > 1,
the chaotic region �chaos is expected to build a single ergodic
component because tori of N dimension do not partition
the 2N -dimensional phase space in different regions, and
therefore any chaotic trajectories eventually explores (through
Arnold diffusion) the whole �chaos. Our interest is not to test
the Froeschlé conjecture or Arnold diffusion, but to show
the insights about the chaotic dynamics we can obtain using the
time series of {λ(ω)

i } together with the definition of the regimes
SM . One application is to use the regimes SM to split the chaotic
component of the phase space in meaningful components. This
is done by considering the set of points X (N)

M in the phase space
leading to each regime SM as

X (N)
M = lim

tL→∞ xt (xt ∈ SM ), (3)

where tL is the total length of the trajectory and xt ∈ SM

indicates that at time t the trajectory at xt had {λ(ω)
i } ∈ SM .

Figure 2 shows numerical estimates of the phase-space
regions obtained for each regime SM in the chain of coupled
maps defined in Sec. II. The regime S0 (or the ordered regime)
is associated to the region localized close to the border of the
KAM island of the uncoupled case [compare to Fig. 2(a)].
Points which belong to the regime S1 are close to the center
of the torus from the uncoupled case. This suggests that when
trajectories are inside the region related to regime S1, they
more likely penetrate inside the torus from the uncoupled case.
In the chaotic sea both regimes S1 and S2 are visible. These
results are naturally understood in the perturbative limit (small
coupling ξ � 1). The regime S0 corresponds to λ

(100)
i ≈ 0 for
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FIG. 1. (Color online) Illustration of the method proposed to define the regimes SM . Time series of the spectrum of FTLEs {λ(ω=100)
i }, with

i = 1, . . . ,N , for the map (1)–(2) with ξ = 10−3. (a) Case N = 2 and the thresholds ε1 = 0.1 and ε2 = 0.05 are represented by dash-dotted
and dotted lines, respectively. (b) Case N = 3 and the thresholds ε1 = 0.1, ε2 = 0.08, and ε3 = 0.06 are represented by dash-dotted, dotted,
and dashed lines, respectively.

every i = 1, . . . ,N , which is expected when the trajectory is
stuck close to the N -dimensional tori built as the product of
the one-dimensional tori of the uncoupled maps. In contrast,
SM for M > 0 implies that at least one FTLE λ

(ω)
i � 0 and

therefore the trajectory projected in one map can be both in
the chaotic and regular regions (e.g., S1 for N = 2 can be
obtained from λ

(ω)
1 � 0,λ

(ω)
2 ≈ 0 or from λ

(ω)
1 ≈ 0,λ

(ω)
2 � 0).

Altogether, these observations confirm that our method allows
for a meaningful division of the chaotic component of the phase
space and can thus be used to identify regions of interesting
dynamics. In the case where partial barriers exist inside the
chaotic component, such as in area-preserving maps with
mixed phase space [2], we expect the regions obtained through
our method to depend weakly on ω and to coincide with those
obtained from the partial barriers.

IV. RESULTS

In this section we apply the Lyapunov time-series method-
ology described in Sec. III to the 2N -dimensional system de-
fined in Sec. II. We compute and interpret four basic properties

of the method: the total time spent in each regime (residence
time), the transition between regimes, the consecutive time in
each regime, and the scaling of Lyapunov exponents.

A. Residence time in each regime

The first and most basic quantity we measure is the
probability P (SM ) of finding the trajectory in each regime,
defined as the fraction of the total time tL that xt ∈ SM

(i.e., P (SM ) = ∑tL
t=0 δt∈SM

/tL, where δt∈SM
= 1 if t ∈ SM and

δt∈SM
= 0 otherwise).

Figure 3 shows the probabilities P (SM ) for the map with
N = 2,3 as a function of the coupling strength ξ . We now
explain the behavior of P (SM ) with ξ by discussing the effect
of coupling ξ on the phase-space regions associated to SM ,
as defined in Sec. III B. By the ergodicity of �chaos, P (SM )
corresponds to the (normalized) volume of the region related
to regime SM in the phase space

P (SM ) = μ(SM )

μ(�chaos)
= μ(SM )

1 − μ(�tori)
. (4)

FIG. 2. (Color online) Phase space projected in (x1,p1) for different configuration of the N -coupled standard maps defined in Sec. II.
(a) N = 1 (uncoupled case), showing 102 randomly started initial conditions and plotting as dots 104 iterations of each of them. A large KAM
island can be seen at the center of the plot; (b) N = 2 and coupling strength ξ = 10−3; (c) N = 3 and ξ = 10−3. Symbols with different colors
in panels (b, c) show points xt ∈ SM belonging to regimes S0 (blue circles), S1 (red points), and S2 (green points). These points were computed
starting a single trajectory in the chaotic region of all maps and iterating it 5 × 106 times.
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FIG. 3. (Color online) Residence time in each regime SM .
(a) N = 2 with ε1 = 0.1 and ε2 = 0.05. (b) N = 3 with ε1 = 0.1,
ε2 = 0.08, and ε3 = 0.06. In panel (a) the values obtained with
ω = 100 are compared with results for ω = 50 and ω = 500 (gray
curves). Only for the case M = 1 do the gray curves (right for ω = 50
and left for ω = 500) show a shift in the x axis ξ . Estimations for
each ξ are based on a trajectory with length tL = 1010.

The results of Fig. 3 show that the chaotic region is the largest
region in phase space for any coupling, while the region
associated to S1 has a larger volume than S0 for couplings
ξ � 1.3 × 10−1. For larger ξ we see oscillations with a local
maximum close to ξ ∼ 2 × 10−1 for the cases M = 0 and
M = 1.

We now interpret the ξ dependence observed in Fig. 3 by
arguing how the different terms in Eq. (4) vary with ξ . We
denote by μ(Uj ) the measure of tori for the j th map with
control parameter Kj in the uncoupled case ξ = 0 (which we
assume to be approximately equal to the measure of the KAM
islands). For small coupling ξ ≈ 0 we expect that most tori of
the uncoupled maps to survive and therefore:

(i) μ(�tori) ≈ ∏N
j=1 μ(Uj ), which in the simple case of

μ(Uj ) = μ for all j reduces to μ(�tori) ≈ μN . (ii) μ(SM=0)
corresponds to a small volume around �tori, i.e., μ(SM=0) ∼
μ(�tori) ≈ P (S0)/[1 + P (S0)]. (iii) For μ(SM �=0) we have that
N − M maps are in their corresponding KAM island (with
probability μ(Uj )) and M maps in the chaotic area [with
probability 1 − μ(Uk)]. For example, for N = 3 and M = 2
we have that

μ(SM=2) = μ(U1)[1 − μ(U2)][1 − μ(U3)]

+μ(U2)[1 − μ(U1)][1 − μ(U3)]

+μ(U3)[1 − μ(U1)][1 − μ(U2)].

In general this leads to

μ(SM ) ≈
∑
j1

. . .
∑
jM

∏
j∈{j1,...,jM }

(1 − μj )
∏

j /∈{j1,...,jM }
μj ,

where the last product is over all j = 1, . . . ,N except j ∈
{j1, . . . ,jM}. In the simple case of μ(Uj ) = μ, it reduces to
μ(SM ) ≈ (

N

M

)
μN−M (1 − μ)M.

We now consider the effect of growing ξ . In the spirit of
the KAM theorem, the tori of the coupled maps (generated as
the product of the N maps) are expected to be robust to small
couplings ξ , which act as a perturbation. This explains why
the curves in Fig. 3 are essentially flat for small ξ . Increasing
ξ even further, the nonlinearity of the system increases, and
therefore μ(�tori) is expected to decrease [μ(�tori) → 0 for
ξ � 0]. This reduction of the tori leads to an increase in the
denominator of Eq. (4) and explains the observed tendency
of reduction of P (SM ) for all regions related to stickiness
(M < N ). Indeed, for ξ > 0.5 no signature of tori or stickiness
was detected numerically and P (SM=N ) = 1. The nontrivial
dependencies of P (SM<N ) in Fig. 3 appear at ξ ∼ 2 × 10−1

values, close to the values of ξ for which the last tori disappear
(see also Fig. 7.2 in Ref. [6]). In this regime the volume of
the tori is already negligible μ(�tori) � 0, but stickiness is still
effective (notice that even zero measure nonhyperbolic sets
can lead to stickiness [7,17]). The denominator in Eq. (4)
is therefore 1 − μ(�tori) ∼ 1, not significantly affected by
further increases of ξ , and therefore not driving the reduction
of P (SM<N ). Small variations of a control parameter of
the system (in this case ξ ) are known to lead to sensitive
creation and destruction of tori, with nontrivial dependencies
on the stickiness [5]. We can thus expect that, close to the
disappearance of the tori, the small volume of stickiness
regions μ(SM<N ) fluctuate with ξ leading even to an increase
with ξ . It is interesting to note that this nontrivial increase
with ξ appears for P (SM=0) in Fig. 3 precisely when the
curves P (S0<M<N ) show a sharp decreasing fluctuation. This
suggests an exchange between measure of different sticky
regions associated to regimes SM<N , without interference of
the much larger fully chaotic component SM=N .

B. Transitions between regimes

We now focus on the transition between regimes. The
simplest analysis correspond to the two-time (joint) proba-
bility P (SM → SM ′), computed as the fraction of the total
trajectory time tL that xt ∈ SM and xt+1 ∈ SM ′ . The prob-
abilities considered in the previous section can be obtained
as

∑
SM

P (SM → SM ′ ) = P (SM ′ ) and
∑

SM′ P (SM → SM ′) =
P (SM ). Figure 4(a) shows the dependence of P (SM → SM ′)
on ξ for our model. We notice that P (SM → SM ′ ) is equal to
P (SM ′ → SM ). This is expected considering that the system
is ergodic, volume preserving, and time reversible. The
dependence of P (SM → SM ′ ) on ξ follows a similar pattern
observed for P (SM ) in Fig. 3. More information is obtained
from the conditional probability

PM,M ′ ≡ P (SM → SM ′ |SM ) ≡ P (SM → SM ′ )

P (SM )
, (5)

which quantifies the probability that trajectories at SM will
move to SM ′ . The results shown in Fig. 4(b)–(d) show for all
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FIG. 4. (Color online) Transition between regimes SM as a func-
tion of the coupling strength ξ . (a) Transition probability P (SM →
SM ′ ); (b)–(d) conditional probability PM,M ′ defined in Eq. (5) of
moving to M ′ given that the trajectory was at M . Estimations for
each ξ based on a single trajectory with length tL = 1010 in the case
of N = 2 coupled maps and ε1 = 0.1 and ε2 = 0.05.

SM that (i) persistence in the same SM [P (SM ↔ SM |SM )] is
dominant and (ii) the most likely transitions occur between
neighboring regimes (e.g., P2,1 > P2,0). The only (slight)
deviations of this picture happen for large values of ξ , close to
the disappearance of the KAM island. Altogether, these results
confirm that in the perturbative regime (ξ � 1) stickiness
happens approaching the region of regular motion of different
maps one after the other (in opposite to a direct approach from
S0 to SM=N ).

C. Consecutive time in each regime

The results of the previous section confirm that residence
in the same regime is the dominant behavior. This motivates
us to study the time τM spent consecutively in a regime
SM (i.e., τM is the time between two consecutive transitions
between different regimes, the first to SM and the second out
of SM ). In a trajectory of length tL we collect a series of
τM . We are mainly interested in the probability distribution
P (τM ) [or equivalently its cumulative Pcum ≡ ∑∞

τ ′
M=τM

P (τ ′
M )]
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FIG. 5. (Color online) Comparison between our method and the
analysis based on recurrence time. The cumulative distribution
Pcum(τM ) of times τM is shown for each regime SM<N for ω = 100
and (a) N = 2 and (b) N = 3. In panel (a) the gray curves show
results for ω = 50 and ω = 500. Only for the case M = 1 do the gray
curves (left for ω = 50 and right for ω = 500) show a shift in the x

axis ξ . The cumulative distribution Pcum(τ ) for recurrence times τ to
a region in the chaotic component of the phase space (in SM=N ) for
(c) N = 2 and (d) N = 3. For comparison, in panel (c) we show the
results obtained combining the normalized curves for M0 + M1 (blue
dotted line: divided by 1.7 × 103 for convenience of scale) of panel
(a), and in panel (d) the normalized curves for M0 + M1 + M2 (blue
dotted line: divided by 103) of panel (b). Results obtained using maps
of Sec. II with ξ = 10−3, ε1 = 0.1 and ε2 = 0.05 for the case N = 2
and ε1 = 0.1, ε2 = 0.08 and ε3 = 0.06 for the case N = 3.

for different SM in the limit tL → ∞. These distributions
should be compared to the distribution of recurrence times
τ , defined as the time between two successive entries to a
predefined recurrence region (usually taken in the fully chaotic
component of the phase space). Events in the tails of P (τ ) are
associated to times for which the trajectory is stuck to the
nonhyperbolic components of the phase space and P (τ ) is
the traditional method to quantify stickiness in Hamiltonian
systems [3,4,8,9].

The numerical simulations in Fig. 5 confirm that the
distribution obtained summing Pcum(τM ) for ordered and
semiordered regimes (or SM<N ) is equivalent to cumulative
distribution Pcum(τ ) obtained using recurrences. This is in
agreement with the association of long consecutive times in
regimes of ordered and semiordered motion to long recurrence
times. Looking at the individual distributions Pcum(τM ) provide
valuable additional information on the sticky motion. For
semiordered motion (when 0 < M < N ) we observe an expo-
nential tail after an intermediate decay with scaling β ≈ 0.5.
This behavior confirms the interpretation given in Ref. [9].
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More interestingly, the M = 0 case shows an asymptotic
algebraic decay which characterize stickiness. While the
scaling is compatible with the results obtained using recurrence
time, Pcum(τM=0) obtained in our methodology provides a
better characterization of the scaling (over several orders of
magnitudes) and allows for an independent analysis of the
different regimes. These properties are essential when dealing
with high-dimensional systems (which may contain different
preasymptotic regimes) and for an accurate estimation of the
stickiness exponent γ . Finally, Fig. 5(a) shows that all decays
discussed above remain (qualitatively) the same for different
choices of ω, with the curve for M = 1 showing the largest
sensitivity on ω [as in Fig. 3(a)].

D. Scaling of Lyapunov exponents

So far we have focused on the temporal properties of the
time series of FTLEs λ

(ω)
i and how they change with the

coupling strength ξ . We now consider how the values of
the Lyapunov exponents respond to an external perturbation,
which in our case is the coupling to the other maps. It is
known that the largest exponent λ

(∞)
1 is extremely sensitive to

perturbation. More specifically, Daido’s relation [28,32] states
that for small couplings ξ to another chaotic system, a universal
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FIG. 6. (Color online) Sensitivity of the FTLEs for small cou-
plings. The difference between the finite-time Lyapunov exponent in
the coupled (〈λ(ω)

i 〉) and uncoupled (〈�(ω)
i 〉) maps as a function of

| ln(ξ )|−1, where ξ is the coupling strength. Results are shown for
N = 2 (i = 1,2) and different time windows ω (a)–(b) 102, (c)–(d)
104, and (e)–(f) 106. Black dashed lines in panels (c)–(f) are the
expected linear behaviour, consistent with Eq. (6). Panels in the left
column [(a), (c), and (e)] were computed for the full time series, while
on the right column [(b), (d), and (f)] only FTLEs in the regime S2

were used. The different colors correspond to different choices of
threshold imposed to define the FTLE: 〈λ(ω)

i 〉ε1 uses ε1 = 0.1〈λ(ω)
i 〉

while 〈λ(ω)
i 〉ε2 uses ε2 = 0.9〈λ(ω)

i 〉, where 〈λ(ω)
i 〉 is computed over the

full time series (left column).

logarithmic singularity is observed,

λ
(ω→∞)
i − �

(ω→∞)
i ≈ c

| ln(ξ )| , (6)

where �
(ω→∞)
i are the unperturbed Lyapunov exponents, c

is a constant, and i = 1, . . . ,N . This relation is valid for
totally chaotic systems and for small mismatches between
Lyapunov exponents of the uncoupled systems compared
to their fluctuations [32]. Here we investigate the relation
λ

(ω)
i − �

(ω)
i as a function of ξ , for distinct values of ω and

different regimes SM . To this end we compute the temporal
averages of the FTLEs 〈λ(ω)

i 〉 for times t such that {λ(ω)
i } ∈ SM .

Our numerical simulations reported in Fig. 6 show that
small values of ω lead to a situation in which 〈λ(ω)

i 〉 ≈ 〈�(ω)
i 〉

at a finite value of ξ [Figs. 6(a) and 6(b)], while larger values of
ω lead to situations in which 〈λ(ω)

i 〉 �= 〈�(ω)
i 〉 for any ξ . These

results depend crucially on our choice to impose the order of
λ

(ω)
i for all t , as discussed in Sec. III A. This makes the average

over the trajectory time 〈λ(ω)
i 〉 to be ω-dependent and different

from the average over the Lyapunov time λ
(ω→∞)
i . Applying the

analysis without the division in regimes SM leads to strongly
fluctuating results [Figs. 6(a), 6(c), and 6(e)]. Much smoother
results [Figs. 6(b), 6(d), and 6(f)] are obtained when we apply
our method and compute 〈λ(ω)

i 〉 only for t in the fully chaotic
regime SN . Looking at these smoother results we observe that
the difference in Lyapunov exponents scales as 1/| ln ξ |, but
that even for ω → ∞ the sticky motion leads to a deviation
from Daido’s relation (6) (curves are shifted vertically).

V. CONCLUSIONS

In summary, we have proposed a method to characterize
the dynamics of Hamiltonian systems with mixed phase space
based on time series of finite-time Lyapunov exponents. Using
this method it is possible to define and study with high accuracy
the time evolution of regimes of ordered, semiordered, and
totally chaotic motion. This allows for an individualized
characterization of the different stickiness mechanisms, im-
proving alternative methods based on the statistics of recur-
rence times or on the distribution of finite-time Lyapunov
exponents.

We applied our method to a chain of coupled standard
maps and showed how the frequency of different regimes,
and the transition probabilities between them, are related
to the volume of different phase-space regions. Using the
consecutive time in distinct regimes we have reproduced
previous results obtained using recurrence times and showed
that our method allows for a significant improvement in the
characterization of the sticky motion (e.g., in the determination
of the scaling exponents). This indicates that our method can
be used to characterize stickiness in general high-dimensional
systems and is particularly suited for cases in which different
regions of sticky motion coexist. We have also shown that the
dependence on the coupling strength of the largest Lyapunov
exponents, after conveniently using our procedure, tend to
follow only the qualitative universal properties of fully chaotic
system.

Results obtained in a simple chain of standard maps confirm
that our methodology can be applied to high-dimensional
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systems and problems of current interest, such as controlling
Fermi acceleration [33], galactic models [34], and plasma
physics [35]. Another example of application is to associate
each regime SM with effective Hamiltonian functions, a
procedure used to reproduce the complicated dynamics of
kicking electrons [36] or the high harmonic generation in
laser-assisted collisions [37].
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suggesting the analysis performed in Sec. IV D.

[1] A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic
Dynamics (Springer-Verlag, New York, 1992).

[2] J. D. Meiss, Rev. Mod. Phys. 64, 795 (1992).
[3] B. V. Chirikov and D. L. Shepelyansky, Physica D 13, 395

(1984).
[4] R. Artuso, Physica D 131, 68 (1999).
[5] G. M. Zaslavsky, Phys. Rep. 371, 461 (2002).
[6] E. G. Altmann, Ph.D. thesis, Max Planck Institut für Physik

Komplexer Systeme, 2007.
[7] R. Artuso and C. Manchein, Phys. Rev. E 80, 036210 (2009).
[8] G. Cristadoro and R. Ketzmerick, Phys. Rev. Lett. 100, 184101

(2008).
[9] E. G. Altmann and H. Kantz, Europhys. Lett. 78, 10008

(2007).
[10] H. Kantz and P. Grassberger, Phys. Lett. A 123, 437 (1987).
[11] J. D. Szezech, S. R. Lopes, and R. L. Viana, Phys. Lett. A 335,

394 (2005).
[12] M. Harle and U. Feudel, Chaos, Solitons Fractals 31, 130 (2007).
[13] T. Laffargue, K.-D. N. T. Lam, J. Kurchan, and J. Tailleur,

J. Phys. A: Math. Theor. 46, 254002 (2013).
[14] C. Manchein, M. W. Beims, and J. M. Rost, Chaos 22, 033137

(2012).
[15] C. Manchein, M. W. Beims, and J. M. Rost, Physica A 400, 186

(2014).
[16] P. Gaspard and J. R. Dorfman, Phys. Rev. E 52, 3525 (1995).
[17] E. G. Altmann, A. E. Motter, and H. Kantz, Phys. Rev. E 73,

026207 (2006).
[18] R. Artuso and A. Prampolini, Phys. Lett. A 246, 407 (1998).
[19] M. Sala, C. Manchein, and R. Artuso, arXiv:1410.4806.
[20] G. Contopoulos, L. Galgani, and A. Giorgilli, Phys. Rev. A 18,

1183 (1978).

[21] A. Malagoli, G. Paladin, and A. Vulpiani, Phys. Rev. A 34, 1550
(1986).

[22] D. Mingzhou, T. Bountis, and E. Ott, Phys. Lett. A 151, 395
(1990).

[23] S. Lange, M. Richter, F. Onken, A. Bäcker, and R. Ketzmerick,
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