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Experimental observation of three-frequency quasiperiodic solution in a ring of unidirectionally
coupled oscillators
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The subject of the experimental research supported with numerical simulations presented in this paper is an
analog electrical circuit representing the ring of unidirectionally coupled single-well Duffing oscillators. The
research is concentrated on the existence of the stable three-frequency quasiperiodic attractor in this system. It is
shown that such solution can be robustly stable in a wide range of parameters of the system under consideration
in spite of a parameter mismatch which is unavoidable during experiment.
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I. INTRODUCTION

The interaction of dynamical systems and networks of
coupled oscillators has been a subject of intensive scientific
investigation for the last few decades. In general, such
structures of linked oscillators have been studied in the context
of various types of synchronization between them or transition
from regular system behavior to chaos or hyperchaos. Among
the possible ways to chaotic motion a transition via a sequence
of consecutive Hopf-type bifurcations can be distinguished—
the Landau-Hopf transition to the turbulence [1,2]. Later
Newhouse, Ruelle, and Takens (NRT) [3,4] formulated the
theorem that just after the third successive Hopf bifurcation
the three-dimensional (3D) torus decays into a strange chaotic
attractor, in effect, of arbitrarily small perturbation—the
so-called NRT scenario. Validity of this scenario has been
verified in a large family of dynamical systems. On the other
hand, other researchers have shown numerical, experimental,
and also analytical results which confirm the possibility of
the stable 3D torus existence. Grebogi et al. performed a
numerical experiment which confirmed that smooth nonlinear
perturbations do not destroy the stability of the three-frequency
quasiperiodicity [5,6], which is important from the physical
application point of view. The three-frequency quasiperiodic-
ity has been also detected numerically in continuum systems
defined by the Ginzburg-Landau equation [7] and a variety of
papers on three coupled oscillators [8–13]. Moreover, even the
existence of a stable four-frequency torus has been observed
experimentally in a semiconductor system with pn junctions
[14]. Further progress in theoretical and numerical analysis
of this problem has been developed in the last decade of the
20th century and at the turn of the century [15–21]. In this
area, works by Feudel et al. [15,16] and Anischenko et al. [17]
have high significance. They explained the existence of the 3D
torus as an effect of a certain kind of the system’s symmetry
and demonstrated possible ways to chaos via three-frequency
quasiperiodic solution. Other interesting results in this area
of research, particularly in the context of our work, showed
the transition to high-dimensional chaos via destruction of
the 3D torus in a ring of unidirectionally coupled oscillators
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[22–24]. Also in recent years some cases of multifrequency
quasiperiodic behavior have been reported [25–27]. These
works concern self-excited or externally excited oscillators.
However, even more interesting are recent reports on chains
or globally coupled phase oscillators with frequency detuning
which allow us to observe dimensionally growing quasiperi-
odic regimes, e.g., four- and five-frequency torus [28,29], as
in the classical Landau-Hopf scenario.

Especially noteworthy are reports on the experimental
detection of quasiperiodic solutions of higher dimension
(� 3). Besides the case mentioned above [14] the frequency
quasiperiodicity has been observed in an experimental me-
chanical system composed of a forced elastic cable with
concentrated masses [30]. Earlier, the way to chaos via a
three-frequency quasiperiodic solution has been demonstrated
experimentally in work by Linsay and Cumming [31]. In other
cases, the experimental transition from quasiperiodicity to
chaos, in which there are still visible traces of a three-frequency
torus, i.e., its decay into a strange attractor is not complete,
has been observed by Libchaber et al. [32] (Rayleigh-Bénard
experiment with helium) and Martin et al. [33] (power
spectrum of the BSN crystal).

In the present work the dynamics of the ring (closed array)
of unidirectionally coupled single-well Duffing oscillators is
analyzed. Numerical simulations are compared and verified
by experiment carried out on a specially constructed electrical
circuit. We have concentrated on the existence of the 3D
quasiperiodic attractor in this system. The existence of the 3D
torus in a ring of three unidirectionally coupled Lorenz systems
has been demonstrated and analyzed in detail by Pazo et al.
[22,23] and Sanchez et al. [24]. Unfortunately, they detected
numerically this interesting effect only in a very narrow range
of control parameters. Therefore it was very difficult to verify
this numerical result experimentally, due to the influence of
noise or parameter mismatch, which is unavoidable in the
real electrical circuit [24]. We show, coming back to these
papers, that such 3D torus can be robustly stable in a wide
range of parameters of the ring system under consideration,
even in the presence of parameter mismatch. According
to the above-mentioned concepts, the phenomenon of the
three-frequency quasiperiodicity accompanies the transition
from regular (periodic) to irregular (chaotic, hyperchaotic)
dynamics along the ring. Speaking more precisely—from a
so-called periodic rotating wave to a chaotic rotating wave
[22,24].
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FIG. 1. Scheme representing a ring of seven unidirectionally
coupled oscillators.

II. THE SYSTEM

The system under consideration is a closed ring of N

unidirectionally coupled oscillators, shown in Fig. 1. As a node
system we took an autonomous single-well Duffing oscillator
given by

ẍj + dj ẋj + ajxj + bjx
3
j = 0, (1)

where aj , bj , and dj are real positive parameters. Introducing
the substitution yj = ẋj and assuming diffusive coupling
between the oscillators we can describe the dynamics of each
j th ring node by the following pair of first-order Ordinary
differential equations (ODEs):

ẋj = yj ,
(2)

ẏj = −ajxj − bjx
3
j − djyj + σ (μjxj−1 − κjxj ),

where σ is an overall coupling coefficient, which is considered
as the control parameter; μj , κj are coupling coefficients for
each individual oscillator.

III. EXPERIMENTAL CIRCUIT

For the purpose of experimental analysis the real circuit,
shown in Fig. 2, has been constructed. This network is
composed of seven electrical Duffing oscillators coupled
according to unidirectional configuration (see Fig. 1) given
by Eq. (2). The constructed board is a double-sided PCB, i.e.,
some paths are routed on the top layer and the remaining ones
on the bottom layer. Detailed structural schemes of a single
oscillator in the ring and the structure of coupling resistors are
shown in Figs. 3(a) and 3(b), respectively. These components
of the circuit are also marked with corresponding rectangular
boxes 1 and 2 in Fig. 2.

In order to shorten and simplify further presentation, which
is based on the description of the single-node system only, we
assumed that resistance and capacity in each j th oscillator are
represented by the same symbol, i.e., Rnj = Rn and Cnj = Cn,
where n is a number of the resistor or capacitor in the j th
oscillator [see Figs. 3(a) and 3(b)].

The electrical Duffing system [Fig. 3(a)] consists of
LM358N operational amplifiers, AD663JN multipliers, resis-
tors, capacitors, a 2 × 10 pin header, jumpers, and a power

FIG. 2. Electrical circuit of seven unidirectionally coupled, non-
linear Duffing oscillators. One of these subsystems is marked with
the rectangular box 1 and the corresponding structure of coupling
resistors is marked with box 2.

strip. The LM358N operational amplifier is a dual low-power
amplifier. The voltage of the amplifier is 3–32 V and the
temperature range 0 °C–70 °C. The AD633JN multiplier is
characterized by a very high accuracy—the maximum multi-
plication error is 2%. Its voltage is from ±8 to ±18 V and the
temperature range 0 °C–70 °C. The cubic nonlinearity in the
system (2) is realized by means of these multipliers. Nominal
values characterizing resistors and capacitors are as follows:
R1 = R2 = 1.0 M�, R3 = R5 = R6 = R8 = R9 = 100.0 k�,
R0 = R4 = R7 = R10 = 10.0 k�, and C1 = C2 = 10.0 nF.

The Rs resistor, visible in Fig. 3(a), implements a coupling
between the oscillators. They are drawn in a simplified
manner in Fig. 3(b). In fact, each of the resistors is composed
of groups (rows) of resistors, a 2 × 10 pin header and
jumpers by means of which it is possible to set the coupling
between adjacent oscillators. Individual resistors connected
in rows [Fig. 3(b)] have the following nominal values of
resistance: R11 = R12 = R13 = R14 = R15 = R16 = R17 =
R18 = R19 = 10.0 k�,R20 = R21 = R22 = R23 = R24 = R25

= R26 = R27 = R28 = 1.0 k�, and R29 = R30 = R31 =
R32 = R33 = R34 = R35 = R36 = R37 = 100.0 �.

A differential equation of each j th Duffing oscillator,
coupled unidirectionally in the ring, was derived on the
basis of the circuit scheme shown in Fig. 3(a). A general
integral equation illustrating the correlation between the signal
components of this circuit is as follows:

w1 = − 1

R1C1

∫
w3dt − 1

R2C1

∫
w1dt − 1

R3C1

∫
wdt

− 1

R4C1

∫
w2dt. (3)

Next, more detailed relationships resulting from the circuit
structure [Fig. 3(a)],

w = − 1

R7C2

∫ (
−R6

R5
w1

)
dt, w3=−Rs1

R10

(
−R9

R8
w

)
−Rs1

R0
q,
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FIG. 3. Schemes of the j th Duffing oscillator coupled in the ring (a) and coupling resistor (b).

and characteristics of the AD633JN multiplier w2 = w3

V 2
M

can be
introduced into Eq. (3). Then, integrating such complemented
Eq. (3) we have

ẅ + 1

R2C1
ẇ + R6

R3R5R7C1C2
w + R6

V 2
MR4R5R7C1C2

w3

= R6Rs

R1R5R7R0C1C2
q − R6R9Rs

R1R5R7R8R10C1C2
w, (4)

where VM = 10.0 V is a constant characterizing the AD633JN
multiplier and the variable q represents a coupling (driving)
signal from the wj−1 subsystem. After dividing by ω2

0V0 Eq. (4)
can be written in a dimensionless form,

1

V0ω
2
0

ẅ + 1

R2C1ω0

1

V0ω0

ẇ + 1

V0
w + R3

R4

1

V 2
MV0

w3

= R3Rs

R1R0

1

V0
q − R3R9Rs

R1R8R10

1

V0
w, (5)

where V0 = 1.0 V is a reference voltage (see Ref. [34]) and
ω2

0 = R6
R3R5R7C1C2

represents a nominal frequency of the system
(1), i.e., calculated for nominal resistances given above. Hence,
the reference value for all subsystems is ω2

0 = 107 s−2, so
ω0 = 3162.3 s−1. Finally, Eq. (5) takes the general form of
Eq. (2) after taking into account the actual parameter mismatch
and the following substitutions introducing dimensionless

variables:

xj = wj

V0
, ẋj= ẇj

V0ω0

, xj = ẅj

V0ω
2
0

,

x3
j = w3

j

V 2
MV0

, xj−1 = qj

V0
,

and parameters aj = ω2
j

ω2
0

(ω2
j is calculated according to the same

formula as ω2
0 but for actual values of resistances), bj = R3j

R4j
,

dj = 1
R2j C1j ω0

, μj = R3j Rsj

R1j R0j
, and κj = R3j R9j Rsj

R1j R8j R10j
.

Before the experiment the resistances and capacities of the
experimental circuit (Fig. 2) had been precisely measured.
On the basis of these values dimensionless parameters of
the system (2) were calculated using the above formulas.
In Table I dimensionless equivalents of real parameters are
presented and compared with corresponding nominal rates. As
we can see, deviations from the nominal rate are not larger than
5%.

IV. EXPERIMENT VERSUS NUMERICAL SIMULATIONS

In the first stage of studies presented here we have
carried out numerical simulations for identical node systems
characterized by nominal values of parameters. Then system
(2) is reduced to a ring of identical unidirectionally coupled

062906-3



BORKOWSKI, PERLIKOWSKI, KAPITANIAK, AND STEFANSKI PHYSICAL REVIEW E 91, 062906 (2015)

TABLE I. Dimensionless equivalents of real parameters of
individual Duffing oscillators [Eq. (2)] measured from experimental
circuit.

J aj bj dj κ j μj

1 1.0000 9.940 0.031 67 0.984 0.987
2 1.0065 10.015 0.031 38 0.992 0.993
3 1.0148 10.107 0.031 21 1.004 1.003
4 0.9948 9.898 0.031 53 0.982 0.982
5 1.0393 10.320 0.032 05 1.023 1.021
6 1.0137 10.056 0.031 83 0.998 0.995
7 0.9953 9.853 0.031 49 0.976 0.976
Nominal 1.0000 10.000 0.031 62 1.0000 1.0000

Duffing oscillators,

ẋj = yj , ẏx = axj − dyj + σ (xj−1 − xj ), (6)

where a, b, and d assume nominal rates from Table I.
The increasing number of coupled items was analyzed.

This analysis showed that for N � 5 there appears a three-
frequency quasiperiodic attractor in the investigated system.
In Figs. 4(a) and 4(b) a bifurcation diagram of individual
node variable and the corresponding course of the four largest
Lyapunov exponents (LEs), calculated for the ring of N = 7
oscillators, are presented. In Fig. 4(b) the range of the σ

parameter, where the 3D torus occurs, is distinguished with
the three largest LEs of zero value in the spectrum (black,
gray, and black dashed), i.e., (0, 0, 0, −, −, . . . ). As we
can see this solution appears as an effect of consecutive
Hopf-type bifurcations, starting from equilibrium through
the limit cycle and two-dimensional (2D) torus. Detailed
analytical study of the transition from stable equilibrium to
the limit cycle via Hopf bifurcation in the ring of coupled
Duffing oscillators [Eq. (6)] is presented in Ref. [35]. The 3D
torus dominates in the interval σ�[0.0433, 0.0478]. Further

FIG. 4. Bifurcation diagram of individual node variable x1 (a),
and corresponding courses of the four largest LEs (b) for the ring of
seven coupled identical Duffing oscillators [Eq. (6)] versus coupling
coefficient σ . Parameters: a = 1.0; b = 10.0, d = 0.3162.

FIG. 5. Bifurcation diagram of individual node variable x1 (a),
corresponding courses of four largest LEs (b) and their enlargement
(c) for the ring of seven coupled Duffing oscillators with parameter
mismatch [Eq. (2)]. Values of parameters are taken from Table I.

increase of the coupling strength causes destruction of the
3D torus, direct transition to chaos, and next, after a small
increase of σ , to hyperchaos on T 2 (2D torus)—two positive
and two zero values of LEs (+, +, 0, 0, −, −, . . . ) in the
spectrum.

Being motivated by the above results of numerical simu-
lations, indicating the possibility of 3D torus subsistence in
a wide area of the system parameters, we have attempted to
confirm these results in the experiment. We decided to build
the ring composed of seven oscillators (Fig. 2) because for this
case the σ interval of the 3D torus existence achieves relatively
large size.

Bifurcation diagrams of the system variable and Lyapunov
exponents versus coupling coefficient, computed from a
numerical model of a real circuit, are demonstrated in Fig. 5(a),
and Figs. 5(b) and 5(c), respectively. As we can see, the
inclusion of the parameter mismatch in the numerical model
compressed the dimensionless σ range of existence of the 3D
quasiperiodic solution. However, the 3D torus still exists, as it
is clearly indicated in Fig. 5(b) and its enlargement [Fig. 5(c)]
with an interval of three zero LEs (σ�[0.049 50, 0.050 25]).

The robustness of the three-frequency quasiperiodicity has
been proved in experiment. In Figs. 6(a)–6(e) the juxtaposition
of numerical and experimental results, which illustrates the
transition from periodic [Fig. 6(a)] to chaotic motion [Fig. 6(e)]
via 2D torus [Fig. 6(b)], 3D torus [Fig. 6(c)], and torus
period doubling [Fig. 6(d)], is presented. Poincaré cross
sections [or phase portraits in Fig. 6(a)] and frequency spectra
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FIG. 6. Juxtaposition of Poincaré cross sections (upper rows) and frequency spectra (bottom rows) simulated numerically—left column: (a)
σ = 0.0368; (b) σ = 0.0490; (c) σ = 0.0500; (d) σ = 0.0505; (e) σ = 0.0515 and generated experimentally—right column: (a) σ = 0.0490;
(b) σ = 0.0660; (c) σ = 0.0680; (d) σ = 0.0700; (e) σ = 0.0730.

[fast Fourier transform (FFT) analysis] reconstructed from
experiment [right column of Figs. 6(a)–6(e)] are compared
with corresponding numerical equivalents [left column of
Figs. 6(a)–6(e)]. After a short interval of limit cycle ex-
istence [Figs. 2(a) and 2(b)] a wide range of 2D torus
continuation occurs with frequency spectra containing two
dominant peaks representing incommensurate frequencies �0

and �1 [Fig. 6(b)]. The appearance of a third independent
frequency �2 in the spectrum and the structural similarity
of Poincaré cross sections reconstructed from experiment and
simulations, noticeable in Fig. 6(c), confirm the robust stability
of the observed 3D quasiperiodic attractor. Further increase
of coupling strength causes the return of 3D torus, next its
period doubling [Fig. 6(d)], and after that transition to chaos
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on T 2 [Fig. 6(e)], i.e., chaotic motion on 2D torus with the
LE spectrum (+,0,0, − , − , . . .), via a sequence of torus
period-doubling bifurcations illustrated by the LE diagram
in Fig. 2(c).

We can observe a good agreement of simulations and
experiment, although the data collected from the real circuit
are disturbed with some noise, which is unavoidable in
the experiment. One difference is a shift of experimentally
detected solutions to larger values of σ ; i.e., bifurcations in
the real circuit take place for σ being about 0.012–0.022
bigger than a corresponding numerical one. There is also
a visible analogous, but very small shift (about 1%–2%) in
frequency spectra [bottom row of Figs. 6(a)–6(e)]. Probably,
this problem can be explained by somewhat different saturation
limits of individual operational amplifiers in the real circuit.
Nevertheless, it is most important here that experimental and
numerical sequences of bifurcations and the observed system
responses are equivalent.

V. REMARKS AND CONCLUSIONS

Demonstrated results of experimental investigation and
its numerical equivalent corroborate that the phenomenon of
three-frequency quasiperiodicity can be observed in rings of
unidirectionally coupled autonomous Duffing oscillators. Its
existence, indicating the qualitative disagreement with the
classical NRT scenario [3,4], can be explained by spatiotempo-
ral symmetry of the system under consideration which arises
from symmetric Hopf bifurcation appearing due to invariant
character of the ring of identical oscillators under the cyclic
group [22,36]. It leads to an additional rotational degree of
freedom which can be a source of the third incommensurate
frequency stabilizing the 3D torus. Then, the ring dynamics can
be considered as a superposition of periodic rotational forcing
and responses of individual oscillators. Other explanations of
this phenomenon are connected with suppression of lockings in
modulated rotating waves in systems with rotational symmetry
[37] or some disparity in the frequencies of the torus [24].
In the case under consideration high-frequency �0 of the
rotating wave coexists with two remaining, incommensurate
low frequencies represented by frequency differences �1–�0

and �1–�2 [see frequency spectra in Fig. 6(c)]. Such disparity
can diminish an effect of resonant interactions between these
frequencies which is destroying for the torus. On the other
hand, our study proves that three-frequency quasiperiodicity
is kept on, in spite of some symmetry breaking caused
by parameter mismatch. However, its relatively consider-
able influence on the system dynamics [Figs. 5(a)–5(c)] in
comparison with the case of identical oscillators [Figs. 4(a)
and 4(b)] is clearly visible. This influence manifests with some
shift in the sequence of bifurcations in both cases, reducing the
range of the 3D torus existence in a disturbed version of the
considered ring. In addition, qualitatively different evolution to
chaotic motion can be observed. In the case of identical nodes,
direct transition from 3D torus to chaos takes place, while for
slightly different parameters of nodes return conversion from
the 3D to 2D quasiperiodic attractor analysis is observed before
the transition to chaos via consecutive torus period-doubling
bifurcations.

Summing up, we confirmed numerically and verified
experimentally the existence of a stable three-frequency
quasiperiodic solution in the ring of unidirectionally coupled
Duffing oscillators. The mechanism of such robust stability
can be explained as an effect of an additional rotational degree
of freedom and its structural separation from the response
of oscillators. On the other hand, it has been shown that
initiation and propagation of the rotating wave is possible also
in rings of real nonidentical oscillators where ideal symmetry
of the ring is broken. Moreover, such parameter mismatch does
not destroy the three-frequency quasiperiodicity. Our research
allows us to conjecture that existence of the three-frequency
quasiperiodicity can be a phenomenon which is characteristic
for rings of unidirectionally coupled oscillators. Obviously, a
verification of this conjecture requires further analysis of such
cases which can shed a light on the nature of the rotating wave
phenomenon.
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