
PHYSICAL REVIEW E 91, 062904 (2015)

Modulational instability regions for coupled Ginzburg-Landau equations with higher
order of nonlinearities

Gholam-Ali Zakeri*

Department of Mathematics, and Interdisciplinary Research Institute for the Sciences (IRIS), California State University-Northridge,
Northridge, California 91330-8313, USA

Emmanuel Yomba†

Department of Mathematics, California State University-Northridge, Northridge, California 91330-8313, USA
(Received 15 October 2014; published 4 June 2015)

A generalized (2+1)-dimensional coupled cubic-quintic Ginzburg-Landau equation with higher-order
nonlinearities is fully investigated for modulational instability regions. We obtained the constraints that allow
the modulational instability (MI) procedure to transform the system under consideration into an analysis of the
roots of a polynomial equation of the fourth degree. Because of the complexity of the dispersion relation and
its dependence on many parameters, we study numerous examples that are presented graphically. A numerical
simulation based on a split-step Fourier method is implemented on the above equation. In addition to the general
case, we have considered some special cases that allow us to investigate the behavior of MI in different regions.
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I. INTRODUCTION

The complex Ginzburg-Landau equation (CGLE) is one
of the most studied nonlinear equations in the physics
community. It describes on a qualitative and often even on a
quantitative level a vast variety of phenomena from nonlinear
waves to second-order transitions and from superconductivity,
superfluidity, and Bose-Einstein condensation (BEC) to liquid
crystals, strings in field theory, and plasmas [1–5]. The generic
equation and its different modifications [6–12] describe dis-
sipative systems above the point of bifurcation. Dissipative
systems are more complicated than Hamiltonian ones in the
sense that, in addition to nonlinearity and dispersion, they
include energy exchanged with an external source. Dissipative
systems are common in nature. Observing nature, we can
realize that “particles” are always submerged into dissipative
media which feed their continuous motion [13]. Dissipative
systems driven far from thermal equilibrium support soliton-
like localized states. These structures are referred to as
“dissipative solitons” [13]. Exact solutions for the cubic CGLE
are available [14–16] but they are unstable.

The most straightforward modification of the model, which
opens way to the stable solitary pulse, is the introduction
of the cubic-quintic (CQ) nonlinearity, with linear gain and
cubic loss in the cubic CGLE and an additional quintic
loss that provides for the overall stability of the model.
CQCGLE with higher-order terms has been also analyzed in
the literature [17–19]. Other ways to try to stabilize the pulse
is given in coupled CQCGLEs with a cross-phase modulation
term; this extension includes spectra filtering gain, nonlinear
gain, or absorption processes and higher-order correction to
the nonlinear amplification or absorption and the intensity-
dependent refractive index [20], where interpenetration,
annihilation, and bound states of pulses could be accounted.
One fundamental problem is to check the stability of the
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pulses, which is essential for the potential applications.
Different kinds of instability may lead to phenomena such as
phase turbulence, bistability, self-oscillation, and formation
of static or moving patterns [21]. We note filamentation
instability, solitary waves, and spatial chaotic patterns are the
result of nonlinear development of modulational instability
(MI) for unstable wave modes [22–25].

It is commonly known that a continuous wave (CW) is sub-
ject to MI under the effect of nonlinearity in combination with
dispersion. In the MI process, weak perturbations imposed on
a CW state grow exponentially due to the interplay between
these nonlinear and dispersive effects. As time goes on, the
modulation increases and CW breaks into a periodic pulse
train [26]. MI is responsible for the formation of envelope
solitons in electrical transmission lines [27–29]. The effect of
MI is considered to be the main mechanism of rogue wave
formation in all media. For example, it has been shown that
MI can result in rogue formation in random wave fields [30].
Didenkulova et al. [31] demonstrated that MI can still play a
significant role in the formation of rogue waves in the ocean for
basins of 20 meters and large depth. For basins of small depth,
the influence of MI is less probable. MI is an indispensable
mechanism for the understanding of some relevant dynamical
processes in BEC systems such as generation and propagation
of solitary waves [32,33], matter-wave transport [34], and
atomic number squeezing [35,36].

Recently, the study of MI in higher-order nonlin-
ear Schrödinger (HNLS) equations has been done [37].
Mohamadou et al. [38] studied the effect of septic nonlinearity
in the MI. The MI for NLSE with cubic-quintic nonlinearities
and higher-order dispersion has been studied by Saha and
Sarma [39]. The MI criterion for CGLE has been derived and
investigated by Sabry et al. [40]. MI for the CGLE with higher-
order terms has been studied by Mohamadou et al. [21]. MI
in the CGLE with higher order, with fourth-order dispersion,
and a cubic-quintic nonlinear term has been investigated by
Tiofack et al. [41]. MI for coupled equations has been also
studied by some authors. MI in the nonlinear optical coupler
with negative-index metamaterial has been studied by Xiang
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et al. [42]. MI in two cubic-quintic CGLE with a cross
phase modulation type has been investigated in [43]. It is
therefore, of interest to investigate MI in (2+1)-dimensional
two cubic-quintic CGLE [44]. Such an investigation may throw
new light onto better understanding of the formation of pulse
on this system.

In the present paper, we study the derivation of the MI
gain regions in the (2+1)-dimensional coupled CQCGLEs.
This model is relevant to applications that the consideration
of higher-order nonlinearities is important. We obtained the
general roots of the dispersion relation. These equations
describe the subcritical bifurcation to traveling waves. The
paper is organized as follows: In Sec. II, we present the
model that describes the complex Ginzburg-Landau equation
with cubic-quintic terms. We obtained the set of constraints
that allows us to have exact continuous-wave solutions. We
performed linear stability analysis that leads to derivation of
nonlinear dispersion equation. In Sec. II A we analyzed gain
or loss and obtained a general requirement that allows the
existence of the roots of the dispersion relation to facilitate the
study of MI gain regions. In Sec. III, we report the results of
numerous examples in the form of graphs that are classified
into six groups. In Sec. III A, we present numerical simulations
by allowing an initial perturbation into a regular soliton-like
wave that resulted in a chaotic behavior. Section IV contains
conclusions and final remarks. Finally, in the Appendix, we
analyze some special cases that are offspring of the general
case of Sec. II A.

II. MODEL AND LINEAR STABILITY ANALYSIS

The system of two coupled complex Ginzburg-Landau
equations (CCGLEs) in (2+1)-dimension which arises as the
envelope equations for a subcritical bifurcation to traveling
waves could be written as follows [1]:

∂tA+ vg∂xA= χA+ γ∇2A− β|A|2A− δ|A|4A− ξ |B|2A,

(2.1)

∂tB − vg∂xB = χB + γ∇2B − β|B|2B−δ|B|4B − ξ |A|2B,

(2.2)

where the complex fields A(x,y,t) and B(x,y,t) are slowly
varying envelopes and represent the right and left traveling
waves. x and y are spatial variables and t is a temporal variable.
Subscripts x and y denote the spatial derivatives. Subscript t

denotes the temporal derivative. vg is a real positive number
representing the group velocity. χ is a real number representing
the linear gain or loss. γ is a complex number representing
the dispersion. β is a complex number representing the cubic
nonlinearity. δ is a complex number representing the quintic
nonlinearity. ξ is a complex number representing the coupling
parameter. From here on, we write a complex number z as
z = zr + izi , where zr denotes the real part and zi denotes the
imaginary part of z.

Equations (2.1) and (2.2) have the exact continuous-wave
solutions in the forms of two plane waves,

A(x,y,t) = Mei(k1x+l1y−ω1t), (2.3)

B(x,y,t) = Pei(k2x+l2y−ω2t), (2.4)

where |M| and |P | are positive real numbers representing
the amplitudes of waves A(x,y,t) and B(x,y,t), respectively.
k1, k2, l1, and l2 are real numbers representing the wave
vectors. ω1, and ω2 are real numbers representing the angular
frequencies.

We substitute the plane waves A and B given in Eqs. (2.3)
and (2.4) into the system of the coupled CCQGLEs (2.1) and
(2.2), require both imaginary and real parts to be zero, and
solve step by step the four sets of equations to obtain the
dispersion relations. It occurs that the plane waves A and B

are the solutions of the system of the coupled CCQGLEs given
in Eqs. (2.1) and (2.2) if the following dispersion relations are
satisfied:

ω1 = (
k2

1 + l2
1

)
γi + M4δi + M2βi + P 2ξi + k1vg, (2.5)

ω2 = (
k2

2 + l2
2

)
γi + M2ξi + P 4δi + P 2βi − k2vg, (2.6)

(
k2

1 + l2
1

)
γr + δrM

4 + M2βr + P 2ξr − χ = 0, (2.7)

(
k2

2 + l2
2

)
γr + M2ξr + δrP

4 + P 2βr − χ = 0. (2.8)

We note that the solution sets are functions of the system
parameters and four arbitrary parameters.

The stability of the aforementioned solutions is analyzed by
introducing the linear stability ansatz for the perturbed system
(2.3) and (2.4),

A(x,y,t) = [M + εu(x,y,t)]ei(k1x+l1y−ω1t), (2.9)

B(x,y,t) = [P + εv(x,y,t)]ei(k2x+l2y−ω2t), (2.10)

where u(x,y,t) and v(x,y,t) are small perturbations of the
carrier waves, i.e., both |u(x,y,t)| and |v(x,y,t)| are small
compared to |M| and |P |. Next, we substitute Eqs. (2.9) and
(2.10) into Eqs. (2.1) and (2.2) and keep only the terms that are
linear in u(x,y,t) and v(x,y,t), and we obtain two linearized
equations

ut + vgux = γ∇2u + 2iγ (k1ux + l1uy) − MPξ (v + v∗)

−M2(β + 2δM2)(u + u∗), (2.11)

vt − vgvx = γ∇2v + 2iγ (k2vx + l2vy) − MPξ (u + u∗)

−P 2(β + 2δP 2)(v + v∗), (2.12)

where ∗ denotes complex conjugate. We assume general
solutions of the form

u(x,y,t) = A1e
i(Kx+Ly−
t) + A∗

2e
−i(Kx+Ly−
∗t), (2.13)

v(x,y,t) = B1e
i(Kx+Ly−
t) + B∗

2 e−i(Kx+Ly−
∗t), (2.14)

where K and L are the wave numbers, 
 is the frequency
of low-frequency perturbations modulating the carrier signal,
and the parameters A1, A2, B1, and B2 are constant complex
amplitudes. The substitution of Eqs. (2.13) and (2.14) into
Eqs. (2.11) and (2.12) gives a linear homogeneous system of
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equations in terms of A1, A2, B1, B2:

(n11 + i
)A1 + n12B1 + n13A2 + n12B2 = 0, (2.15)

n12A1 + (n32 + i
)B1 + n12A2 + n34B2 = 0, (2.16)

n21A1 + n22B1 + (n23 + i
)A2 + n22B2 = 0, (2.17)

n22A1 + in42B1 + n22A2 + (n44 + i
)B2 = 0, (2.18)

in which

n11 = γ ∗(2k1K + K2 + 2l1L + L2) − iKv

+ 2M4δ∗ + M2β∗,

n12 = MPξ ∗, n13 = M2(β∗ + 2M2δ),

n21 = −M2(β∗ + 2M2δ∗), n22 = −MPξ ∗,

n23 = γ ∗(2k1K−K2+2l1L − L2) − iKv−2M4δ∗ − M2β∗,

n32 = γ ∗(2k2K+K2+2l2L+L2) + iKv + 2P 4δ∗ + P 2β∗,

n34 = P 2(β∗ + 2P 2δ), n42 = iP 2(β∗ + 2P 2δ∗),

n44 = γ ∗(2k2K−K2+2l2L−L2) + iKv − 2P 4δ∗ − P 2β∗.

Equations (2.15)–(2.18) constitute a system of four equations
with four complex variables, i.e., T(A1,B1,A2,B2) = 0 is
a 4 × 4 complex matrix and 0 is the zero vector in C4,
Since we seek a nontrivial solution of T(A1,B1,A2,B2) =
0, we require that DetT = 0. After some straightforward
calculations, we obtain the following nonlinear dispersion
relation:


4 + C
3 + D
2 + E
 + F = 0, (2.19)

where

C = −(in11 + in23 + in32 + in44),

D = −(−n2
12 − 2n22n12 − n2

22 − n13n21 + n11n23 + n11n32 + n23n32 − in34n42 + n11n44 + n23n44 + n32n44
)
,

E = −(−in21n
2
12 + in23n

2
12 + n42n

2
12 + in44n

2
12 + in11n22n12 − in13n22n12 − in21n22n12 + in22n23n12 + in22n32n12

− in22n34n12 + n22n42n12 + in22n44n12 + in11n
2
22 − in13n

2
22 + in2

22n32 + in13n21n32 − in11n23n32 − in2
22n34 − n11n34n42

− n23n34n42 + in13n21n44 − in11n23n44 − in11n32n44 − in23n32n44
)
,

F = −(
n11n

2
22n32 − n13n

2
22n32 − n12n21n22n32 + n12n22n23n32 − n11n

2
22n34 + n13n

2
22n34 + n12n21n22n34 − n12n22n23n34

+ in2
12n21n42 − in11n12n22n42 + in12n13n22n42 − in2

12n23n42 − in13n21n34n42 + in11n23n34n42 − n2
12n21n44

+ n11n12n22n44 − n12n13n22n44 + n2
12n23n44 + n13n21n32n44 − n11n23n32n44

)
.

The coefficients in Eq. (2.19) are complex and are functions of K, L, k1, k2, l1, l2, P , M , and the coefficients of Eqs. (2.1) and
(2.2).

Remark. Observe that the MI procedure transforms the study of the system of the coupled CQCGLEs (2.1) and (2.2) into the
analysis the roots of a polynomial of the fourth degree, given by Eq. (2.19).

A. Analysis of gain or loss

To investigate the gain or loss spectrum or the modulational instability regions, we must study the sign of the imaginary part
of the roots of the dispersion equation (2.19). The dispersion equation has four roots given as follows:


±
+ = ±1

2

√
−C3 + 4CD − 8E

4p2
+ 3C2

4
− 2D − p2

2 − C

4
+ p2

2
, (2.20)


±
− = ±1

2

√
−−C3 + 4CD − 8E

4p2
+ 3C2

4
− 2D − p2

2 − C

4
− p2

2
, (2.21)

where

p2 =
√

C2

4
+ −3CE + D2 + 12F

3p1
− 2D

3
+ p1

3
,

p1 = 2−1/3 3
√

p0 + 27C2F − 9CDE + 2D3 − 72DF + 27E2,

p0 =
√

(27C2F − 9CDE + 2D3 − 72DF + 27E2)2 − 4(−3CE + D2 + 12F )3.
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FIG. 1. (Color online) Regions of MI illustrating finite gain over unbounded regions associated with solutions G+ and G− of Eq. (A2),
where K and L are the wave numbers of perturbed waves, and k1 is the wave number of the continuous wave and ξr is the real part of coupling
parameter. Plots (a), (c), (e), (g), and (i) show the finite gain of MI, and their corresponding density plots (b), (d), (f), (h), and (j) show the
regions where gains occur. All plots given here exhibit a symmetry.

The quantities 
±
± depend on the values of the parameters given

in the coefficients of the dispersion relation. The spectrum gain
G(K,L) can be a positive or a negative number. For a given
set of parameters and for a particular set of values of the wave
numbers, we can specify its sign. Negative value indicates the
growth rate Im(
±

±) which means the stability of the system
because of the vanishing long term of exp[Im(
±

±)t] as t →
∞. In this case, the system remains stable under modulation,
while its positive values are signature of instabilities. The
perturbation diverges without limit as time t increases and the
corresponding solution is said to be modulationally unstable.
So the signs of Im(
±

±) determine the stability of the solution
of the system of the coupled CCQGLEs. The regions of
instability are called MI gain spectrums and are regions
where the gain G1 = 2Im(
−

−) > 0, or G2 = 2Im(
+
−) > 0,

or G3 = 2Im(
−
+) > 0, or G4 = 2Im(
+

+) > 0 occur.
The above roots given by Eqs. (2.20) and (2.21) exist

whenever p1 �= 0 and p2 �= 0. If p1 = 0 then we must have
D2 − 3CE + 12F = 0. Under this condition, p2 = 0 reduces

to C3 − 4CD + E = 0 (and C �= 0 or E �= 0). Note that these
expressions appear, for example, in p2 and Eq. (2.20). Thus
the above roots exist whenever (D2 − 3CE + 12F )(C3 −
4CD + E) �= 0. This indicates that the special case where
C = E = 0 must be considered separately. The coefficients
of Eq. (2.19) are very complicated because each coefficient
depends on many parameters. In the Appendix, we consider
the case where CE = 0. Using the results obtained in Eqs.
(2.20) and (2.21) and those given in the Appendix, we have
performed numerous examples to analyze the effects of the
parameters on the stability of the perturbed plane waves A

and B given by Eqs. (2.9) and (2.10) as discussed in the
next section. We conclude this section with the following
result:

Theorem: The system of two coupled complex Ginzburg-
Landau equations (2.1) and (2.2) has a nonlinear dispersion
equation given by Eq. (2.19) with four roots given by
Eqs. (2.20) and (2.21) subject to (D2 − 3CE + 12F )
(C3 − 4CD + E) �= 0 and at least one of C or E is nonzero.
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III. GAIN OR LOSS REGIONS

To describe regions where modulational instabilities occur
for the roots of Eq. (2.19) obtained in the pervious section,
we consider plots for G− = 2Im[
−

−] and G+ = 2Im[
+
+]. To

understand the role played by nonlinearity in modulational in-
stability we use the following parameter values and constraint
conditions associated with each case. For all cases we use
the following values for vg = 0.75, ε = 0.5, β = 2.2 + 2.6i,
γ = −0.01 + i, δ = 0.8 − i, k2 = 0.8, l1 = 7, l2 = 9, and
ξ = 3 − 2i. Figures 1(a)–1(d) and 10(a) are plotted using

the above data values and the relations given in case 1.2.
Figures 1(e), 1(f), 1(i), 1(j), 2(a), 2(b), 2(e), and 2(f) are
plotted using the additional data values given by ξ = −2, k1 =
7, k2 = 0.8, l1 = 8, and l2 = 9 and the relations given in
case 1.2. Figures 2(c) and 2(d) are plotted using data values
l1 = −l2 = 7, K = 4, and k1 = −k2 = 0.8 and the relations
in case 1.2. Plots given in Figs. 1(g), 1(h), 7(a) and 7(b) are
obtained using χ = 1.5, γ = i, ξ = 0.8 and the relations in
case 1.3. Using the above data values and the relations in case
1.4, we obtained Figs. 3(a) and 3(b). Relations in case 1.5

FIG. 2. (Color online) Regions of MI gains illustrating unbounded gains over unbounded regions associated with solutions G+ and G− of
Eq. (A2), and G1 − G4 of Eqs. (2.20) and (2.21), where K and L are the wave numbers of perturbed waves, P is the amplitude of the continuous
wave and ξr ,βr are both the real parts of coupling and cubic nonlinear terms, respectively. Panels in (a)–(h) and (m) show unbounded gains of
MI, and the corresponding density plots for (e)–(h) and (m) are given in (i)–(l) and (n), respectively.
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FIG. 3. (Color online) Regions of MI illustrating unbounded gains over unbounded regions associated with solutions G− of Eq. (A2), and
G1 − G4 of Eqs. (2.20) and (2.21), where K is the wave number of perturbed wave, M is the amplitude of the continuous wave, and ξr is the
real part of the coupling term. Panels in (a), (c), (e), (g), (i), (k), (m), and (o) show unbounded gains of MI, and their corresponding density
plots are in (b), (d), (f), (h), (j), (l), (n), and (p), respectively. The spiky regions in each plot are the chaotic regions.

are used to plot Figs. 10(b) and 7(s). We used the relations
in case 1.7 and the data values ξ = 3.2 − 2i, k1 = 8, k2 =
10, K = 10, P = 1.5, and M = 2 for obtaining plots in
Figs. 7(c) and 7(d). For generating plots in Figs. 4(c) and
4(d) we used the relations given in case 1.7 with additional data
values χ − 0.15,ε = 0.05, ξ = 0.32 − 0.2i, and δ = 0.08. For
plots in Figs. 2(e)–2(p) we used the relations in case 2.1 and
the additional data values β = 1.2 − i, δ = −0.8 − i, ε = 0.3,

ξ = 0.04 + 2i, P = εM , χ = −0.01, and γ = 0.01 + i. For
the rest of figures, we used the general case formulation of
Sec. II A, and cases 1.6, 2.2, and 2.3. We have classified our
plots into the following groups:

(i) Unbounded MI gain regions with finite gains without
chaotic regions (Fig. 1).

(ii) Unbounded MI gain regions with unbounded gains
without chaotic regions (Fig. 2).
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FIG. 4. (Color online) Regions of MI illustrating unbounded gains over unbounded regions with unstable regions are associated with
solutions G− of Eq. (A2), and G1 of Eq. (2.21), where K is the wave number of the perturbed wave, M is the amplitude of the continuous wave,
and βr is the real part of the cubic nonlinear term. Plots (a) and (c) show unbounded gains of MI, and their corresponding density plots (b) and
(d) show the regions where gains occur. All plots given here present a symmetry. The spiky region in each plot indicates the chaotic region.

(iii) Unbounded MI gain regions with unbounded gains that
include chaotic regions (Figs. 3 and 4).

(iv) Bounded MI gain regions with finite gains with chaotic
regions (Fig. 5).

(v) Bounded MI gain regions with finite gains in a mostly
chaotic regions (Fig. 6).

(vi) Bounded MI gain regions with finite gains without
chaotic regions (Fig. 7).

Figure 1 describes unbounded regions of modulation
instabilities with finite gains and their corresponding density
plots associated with each plot. Figures 1(a) and 1(c) show
variations of k1 and K on MI and illustrate two waves
moving along the K axis in the neighborhood of k1 = 0 and
moving forward with increasing amplitude, and as they are
approaching K = 0 they move apart then reflect on the positive
side of the K axis and move forward as illustrated. In this
case, G− has a much larger gain than G+. Figure 1(e) shows
the variation of ξr and K creating an M-shaped wave moving
along the K axis. Figure 1(g) shows the variation of L and K

having an up-down U-shaped wave form in the neighborhood
of the origin split and moves along the line K = −L away
from the origin. Figure 1(i) shows the variation of G+(L,ξr ).
All plots in this figure are symmetric with respect to some
axis.

Using the same data values as before, in Fig. 2 we provide
a group of plots that have unbounded regions of MI with
unbounded gains. Figures 2(a) and 2(b) show solutions
of Eq. (A2) for G+(K,ξr ) and G−(L,ξr ), respectively. In

these plots we used the constraints imposed on case 1.2
in the Appendix, which uses the assumption that CE = 0.
Figures 2(c) and 2(d) illustrate solutions of Eq. (2.20) for G1

and G4 as functions of (K,L), respectively. Figures 2(e)–2(h)
illustrate solutions of Eq. (2.20) as functions of K and P using
the general case with the assumption that CE �= 0 with their
corresponding density plots in Figs. 2(i)–2(l). Figure 2(m)
describes the solution of Eq. (2.20) as a function of L and
βr under the assumption of CE �= 0 with its corresponding
density plot in Fig. 2(n).

Figure 3 shows a collection of plots with chaotic regions.
Again all plots have some geometrical symmetries. The plots
in Fig. 3 were very time consuming to obtain. For example,
the CPU time for the plot in Fig. 3(a) was over 2 h using
an OS X processor 2.8-GHz Intel Core i7 with a 16-GB
memory, 1600 MHz DDR3. The chaotic regions in the plots
of Figs. 3(a)–3(p) are shown as spiky or dotted regions in their
density plots. Except for Fig. 3(a), the rest of the plots in this
figure exhibit unbounded regions of MI with unbounded gains.
The chaotic regions for Figs. 3(a), 3(m), and 3(o) have finite
oscillations, while the rest of plots in this figure have infinite
oscillations.

Figure 4 shows plots with mild chaotic regions with small
variation. Figure 4(a) shows the variation of K vs βr using
data values as in Fig. 1 and CE �= 0. Figure 4(c) uses case 2.1
relations. In both these plots, we have examples of unbounded
regions of MI with unbounded gain and a chaotic region with
small variations.

FIG. 5. (Color online) Regions of MI illustrating local gains over bounded regions with unstable regions are associated with solutions G1

and G4 of Eqs. (2.20)–(2.21), where K and L are the wave numbers of the perturbed waves. The spiky region in each plot indicates chaotic
region.
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FIG. 6. (Color online) Plots of solutions G1 and G4 of Eqs. (2.20) and (2.21) exhibit a chaotic behavior almost everywhere, where K and
L are the wave numbers of perturbed waves. Plots (b) and (c) are the zoomed portions at the origin of plot (a). Plot (c) shows small gains at the
origin for small values of K and L. The spiky region in each plot indicates a chaotic region. Large oscillations occur for relatively large values
of K .

The plots in Fig. 5 show MI with small gain only over a
bounded region with minor chaotic activity. No geometrical
symmetries are observed in this case. The plots were obtained
under the assumption that CE �= 0 with same data values as
in Fig. 1.

Figures 6(a) and 6(d) show examples of solutions that are
almost chaotic except over a very small region. Figures 6(b)
and 6(c) are zoomed versions of Fig. 6(a) near the origin. Plots
were obtained under the assumption that CE �= 0.

Panels in Fig. 7 illustrate finite MI gains over bounded
regions without any chaotic behaviors. Figure 7(a) shows two
circular waves colliding along the line K = −0.1L, and at the
point of collision the maximum MI gain is observed. Fig. 7(a)
was obtained using case 1.3 constraints. Figures 7(a) and 7(c)
were obtained using CE = 0 and the rest under the assumption
that CE �= 0.

In Fig. 8, we present solutions of Eq. (A2) under the
assumption obtained under the case 1.7 stated in the Appendix.
This figure illustrates the MI for unbounded gains over
unbounded regions with some chaotic regions. In Fig. 9, we
present cross-sections of some of MI gains associated with Eq.
(A2). In Fig. 10, we present solutions of Eqs. (A2) and (2.20)
of MI gains in the neighborhood of the origin.

A. Numerical simulations

In this section we consider a direct numerical simulation of
the system of equations in Eqs. (2.1) and (2.2). We introduce
a small initial modulational perturbation to continuous-wave
states with the objective of identifying nonlinear patterns
generated by the modulation instabilities. Following [26] we
consider a signal in the form of

A(x,y,0) = M[1 + Amsin(2π
1mx + 2π
2my)]

× e−iω11x−iω12y,

B(x,y,0) = P [1 + Bpsin(2π
1px + 2π
2py)]

× e−iω21x−iω22y,

where Am and Bp are modulation amplitudes, and 
1m,

2m, 
1p, and 
2p are the frequencies of weak sinusoidal
modulations imposed on the continuous waves in the x and y

directions, respectively. We use the split-step Fourier method
to solve Eqs. (2.1) and (2.2) subject to the initial conditions
given above.

The main idea behind this method is to obtain an ap-
proximate solution by assuming that for the wave solution
over a small �t , the dispersive and nonlinear effects act
independently. That is, the propagation of the wave solution
from t to t + �t is carried out in two steps. In the first step,
the nonlinearity acts alone, and in the second step, dispersion
acts alone. That is, Eqs. (2.1) and (2.2) are written as

∂tA = (−χ − γ∇2 − vg∂x)A + (−β|A|2 − δ|A|4 − ξ |B|2)A,

∂tB = (−χ − γ∇2 + vg∂x)B + (−β|B|2 − δ|B|4 − ξ |A|2)B.

Here, in each equation, the first parenthesis represents the dif-
ferential operator that accounts for dispersion and absorption
in a linear medium and the second parenthesis is a nonlinear
operator that governs the nonlinearities in pulse propagation.
Thus, the above equations can be rewritten briefly as

∂tA = D̂1A + N̂1A,

∂tB = D̂2B + N̂2B,

where D̂1 and D̂2 are the operators for dispersion and
absorption in the linear medium and N̂1 and N̂2 are the
nonlinear operators for pulse propagation as defined by the
model equations.

Then, to improve the accuracy of the standard split-step
Fourier method over one segment from t to t + �t , we adopted
the following procedure to propagate the wave:

A(x,y,t + �t) ≈ exp

(
�t

∫ t+�t

t

D̂1(x,y,t ′)dt ′
)

× exp(�tN̂1)A(x,y,t),

and similarly for B(x,y,t + �t). We approximated the in-
tegrals in the above expression by using the composite
trapezoidal rule of two subdivisions to increase the accuracy
of the result. We let Am = 0.001, Bp = 0.002, 
1m = 
2m =
0.5, 
1p = 
2p = 0.43, ω11 = ω12 = 0.3, ω21 = ω22 = 0.41,
vg = 0.75, χ = 0.6, γ = −0.01 + i, and ξ = 0.56.

We consider a simulation of Eqs. (2.1) and (2.2) to study
the evaluation of the amplitude of a continuous wave with and
without the presence of nonlinearity. In particular, we want to
consider the competing effect of cubic and quintic terms. To
ensure the accuracy of our numerical results by lessening the
influence of the error due to the computational boundary of
the regions, the spatial grid was chosen sufficiently large to
prevent problems from boundary of the regions [26]. Running
various numerical examples we note that when |β| � |δ| then
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FIG. 7. (Color online) Regions of MI illustrating finite gains over bounded regions associated with solutions G−,G+ of Eq. (A2), and
G1 − G4 of Eqs. (2.20) and (2.21), where K,L, are wave numbers of the perturbed waves, M,P are amplitudes of continuous waves, and ξr

is the real part of the coupling term. Plots (a), (c), (e), (g), (i), (k), (m), and (o) show finite local gains of MI, and their corresponding density
plots in (b), (d), (f), (h), (j), (l), (n), and (p) show the regions where gains occur.

the outcome is the generation of a periodic train of solitary
pulses. However, when |β| > |δ| then the continuous wave
turns progressively to a chaotic train of solitary pulses. This
result is in agreement with the conclusion given in [45].

Figure 11 shows how evolution of a continuous wave
progressively turns into a chaotic mode for amplitude as a
function of (x,t) when y is kept fixed. In Figs. 11(a)–11(c),

the strength |β| of the cubic nonlinearity is increased while
we kept the magnitude of strength of the quintic nonlinearity
δ = 0.8 − i fixed. Figures 12(a) and 12(b) show the evolution
of a continuous wave when the strength of the cubic term is
slightly larger than the strength of the quintic term; the solution
after some time becomes chaotic. Figure 12(c) is a snapshot
of amplitude |A(x,y,c)| when t is fixed. In Figs. 11(a)–11(c)
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FIG. 8. (Color online) MI for unbounded gains over unbounded regions with some chaotic regions for solutions of G−,G+ of Eq. (A2)
using case 1.7 stated in the Appendix. The spiky region in each plot is the chaotic region.

FIG. 9. (Color online) Plots of MI gains associated with solutions G−,G+ of Eq. (A2). Panels in (a), (b), and (c) are related to Figs. 1(a),
2(c), and 1(i), respectively.

FIG. 10. (Color online) Regions of MI gains for solutions G− of Eq. (A2) and G1 of Eq. (2.20). Panels in (a), (b), and (c) are related to
zoom portion of plots in Figs. 1(a), 3(c), and 2(k), respectively.

FIG. 11. Evolution of a plane wave with initial perturbation by a weak sinusoidal wave leading to chaotic behavior when the strength of
the cubic nonlinearity is more than the strength of the quintic nonlinearity, |β| > |δ|, for δ = 0.8 − i. Plots for |B|2 are similar to (a)(c). We
have let y = 0.
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FIG. 12. Panels (a) and (b) show the evolution of a plane wave leading to chaotic behavior when the strength of cubic nonlinearity is slightly
more than the strength of quintic nonlinearity, |β| > |δ|, for β = 0.8 − 1.01i, δ = 0.8 − i, and y = 0. Plots for |A(c,y,t)|2 and |B(c,y,t)|2
when x is fixed are similar to (a) and (b). Panel (c) shows a snapshot of amplitude magnitudes for a continuous wave as function of x,y at time
t = 2.1.

and in Figs. 12(a) and 12(b) we kept y fixed to plot
the magnitudes of the amplitudes. The plots of amplitude
magnitudes when x is kept constant are similar to those in
Figs. 11 and 12. The chaotic behavior shown in the Figs. 11
and 12 is not surprising because we know from the literature
that the cubic Ginzburg-Landau equation (GLE) [46,47], the
cubic-quintic GLE [48,49], and the coupled GLEs [50] exhibit
spatiotemporal chaos (when driven away from equilibrium,
spatially extended systems can exhibit irregular behavior in
space and time; this phenomenon is commonly referred to as
spatiotemporal chaos [46]).

IV. CONCLUSIONS AND FINAL REMARKS

A generalized (2+1)-dimensional coupled cubic-quintic
Ginzburg-Landau equation with higher-order nonlinearities
was investigated for the existence of modulational instability
regions. We obtained a nonlinear dispersion relation as a
fourth-degree polynomial with complex-valued coefficients.
General roots of this equation were analyzed by considering
gain spectrums of modulational instability expression as
twice the imaginary part of each root of dispersion equation.
Because of the complexity of the roots, we imposed a set
of constraints that allows us to investigate modulational
instability regions. Dispersion relation depends on several
parameters; thus for better understanding of the behavior
of solutions, we performed numerous examples and we
presented the results graphically.

Our results are classified into six subclasses: (i) unbounded
MI gain regions with finite gains without chaotic regions, (ii)
unbounded MI gain regions with unbounded gains without
chaotic regions, (iii) unbounded MI gain regions with un-
bounded gains that include chaotic regions, (iv) bounded MI
gain regions with finite gains with chaotic regions, (v) bounded
MI gain regions with finite gains in a mostly chaotic regions,
and (vi) bounded MI gain regions with finite gains without
chaotic regions.

We have shown from cases 1.1–1.4 stated in the Appendix
that when keeping all parameters fixed, then as the real part
of quintic nonlinearity increases the waves amplitudes and
the coefficient of linear gainor loss decrease. We obtained
conditions under which the dispersion equation (2.19) has
valid solutions for the general case. In addition to the general
case, we also considered some special cases that allowed
us to investigate the behavior of MI in different regions. A

numerical simulation that is based on a split-step Fourier
method was used to investigate the perturbed associated
problem. Performing various numerical examples we noted
that when |β| � |δ|, then the outcome is the generation of
a periodic train of solitary pulses. However, when |β| > |δ|,
the obtained train of solitary pulses exhibits chaotic behavior.
The method used in this paper can be applied to a large class
of generalized Korteweg–de Vries equations given in [51].
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APPENDIX

The roots of the dispersion relation given by Eq. (2.19)
for the general case are given by Eqs. (2.20) and (2.21). In
Sec. II A, we showed that the roots of the dispersion relation
exist if (D2 − 3CE + 12F )(C3 − 4CD + E) �= 0 and at least
one of C or E is nonzero. In this section we analyze the
behavior of the roots of the dispersion equation under the
assumption that CE = 0. This assumption leads to three cases
that are discussed below. For the sake of simplicity of notation,
we define a non-negative function that depends on the real parts
of the six parameters in the coupled CQCGLE equations and
the two continuous-wave amplitudes as follows.

Definition. The real-valued wave-vector component func-
tion for the system of two coupled complex Ginzburg-Landau
equations (2.1) and (2.2) having continuous-wave solutions
(2.3) and (2.4) is given by

φ(M,P,k1) =
√

χ − k2
1γr − M4δr − M2βr − P 2ξr

γr

. (A1)

Case 1. C = E = 0. Let us first consider the special case when
C = E = 0, reducing Eq. (2.19) to


4 + D
2 + F = 0. (A2)

The roots of Eq. (A2) are determined explicitly. Their
expressions are given as


±
+ = ±2−1/2

√
−D +

√
D2 − 4F,


±
− = ±2−1/2

√
−D −

√
D2 − 4F . (A3)
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The values of 
±
± depend upon the values of the parameters in

the coefficients of the dispersion relation. The sign of Im(
±
±)

determines the stability of the continuous-wave solutions of
the system of the coupled CQCGLE equations given by
Eqs. (2.1) and (2.2). We study the dependence of the imag-
inary parts of the roots of the dispersion relation given by
Eq. (A3). The constraint conditions C = 0 and E = 0 give
four additional equations upon expanding these quantities and
setting real and imaginary of each equal to zero. We must select
the parameters so that these four constraints together with the
two constraints given in Eqs. (2.7) and (2.8) hold true. These
constraints help us to select four arbitrary parameters among
the ten parameters we have in this problem. These relations
are as follows:

γr

(
k2

1 + l2
1

) + M4δr + M2βr + P 2ξr − χ = 0,

γr

(
k2

2 + l2
2

) + M2ξr + P 4δr + P 2βr − χ = 0,

γi[(k1 + k2)K + (l1 + l2)L] = 0,

2γr (K2 + L2) + 2δr (M4 + P 4) + βr (M2 + P 2) = 0,

Re(E) = 0, Im(E) = 0. (A4)

Solving the system of equations (A4) leads to the following
cases.

Case 1.1.

γr = 0, L = −K(2k1γi + vg)

2l1γi

, l2 = − l1(vg − 2k2γi)

2k1γi + vg

,

M =
√

−
√

ξr (βr − ξr ) + βr − ξr

2δr

,

P =
√√

ξr (βr − ξr ) − βr + ξr

2δr

,

χ = −βrξr + β2
r − 2ξ 2

r

4δr

, δi = δr (βi − ξi)

2(βr − ξr )
.

In this case, from the above expressions for |M|, |P |, χ, and
δi , while keeping all other parameters fixed, we can conclude
that as δr , the real part of quintic nonlinearity, increases, then
|M|, |P |, and χ , the wave amplitudes and the coefficient of
linear gain or loss decrease, and δi increases. That is, the quintic
nonlinearity puts a damping effect on the linear gain or loss and
the wave amplitudes. From the above expressions we conclude
in this case that L and K are proportional, and likewise l1 and
l2. These phenomena are illustrated in Figs. 1–10.

Case 1.2.

γr = 0, L = −K(2k1γi + vg)

2l1γi

, M = P,

P =
√

− βr

2δr

, χ = −2βrξr − β2
r

4δr

, ξiξr = 0,

We note that as the real part of the coefficient of the quintic
term, δr , increases, the remaining parameters are fixed, then
the value of |M|, |P |, and χ decrease. This differs from case
1.1 in that the wave amplitudes of M and P are the equal. On
the other hand, as βr , the real part of coefficient of the cubic
nonlinearity, increases, so does the linear gain or loss. These
phenomena are illustrated in Figs. 1–10.

Case 1.3.

γr = 0, P = M, l2 = −l1, k2 = −k1,

M =
√

− βr

2δr

, χ = −2βrξr + β2
r

4δr

, ξi = 0,

This case is similar to case 1.2, except that K and L are not
necessarily proportional, and k1, k2, l1, l2 are as prescribed
here.

Case 1.4.

M = P, k2 = −k1, l2 = l1 = φ(P,P,k1), P =
√√

β2
r − 8K2γrδr − βr

4δr

,

k1 =
√

2P 2
[
γi

(
2γiξiξr + v2

gδr

) + γr

(
2γiξ 2

r − v2
gδi

)] + v2
g(γiβr − βiγr ) − vg

4γi

,

where the function φ is given by (A1). In this case, both continuous waves have the same amplitude, when keeping all other
parameters fixed and allowing δr to increase, would results in the decrease of the continuous wave amplitudes. On the other hand,
if we let the real part of the dispersion coefficient, γr to go to zero then the wave amplitudes go to zero too.

Case 1.5.

k2 = −k1, L = 0, P =
√√−16K2γrδr − 16M4δ2

r − 8M2βrδr + β2
r − βr

4δr

l1 = φ(M,P,k1), l2 = φ(P,M,k1)

where the function φ(M,P,k1) is given in Eq. (A1) and k1 is given by the following expression:

k1 = −{vg[2(M4 + P 4)δr + (M2 + P 2)βr ][βiγi + 2(M2 + P 2)(γiδi + γrδr ) + βrγr ]}/{
2
[
βi

{
(M2 + P 2)βr

(
γ 2

i + γ 2
r

)
+ 2δr

[
γ 2

i (M4 + P 4) + (M2 + P 2)2γ 2
r

]} + 2δi

{
βr

[
γ 2

i (M2 + P 2)2 + (M4 + P 4)γ 2
r

]
+ 2(M6 + M4P 2 + M2P 4 + P 6)δr

(
γ 2

i + γ 2
r

)}]}
,
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and a similar but much longer expression for ξi in terms of
M , P, and other coefficient parameters. As expected, as δr

decreases, wave amplitudes increase, as we have seen in other
cases.

Case 1.6.

l2 = −l1, K = 0, M = P,

k2
2 = k2

1, l2
1 = φ2(P,P,k1),

P =
√

4l2
1γi(βiγr − γiβr )

8l2
1γi(γiδr − δiγr ) − ξr (γiξi + γrξr )

,

L =
√

−P 2(2P 2δr + βr )

γr

.

In this case both continuous-wave amplitudes M and P are the
same and as γi increases then |P | increases to an asymptotic

value given by
√

−βr

8δr
. This asymptotic value also shows that

as δr increases |P | deceases, too. In addition, as γr , the real
part of dispersion, decreases so does L.

Case 1.7.

γi = 0, l1 = φ(M,P,k1), l2 = φ(P,M,k2),

L =
√

−2(K2γr + (M4 + P 4)δr ) + (M2 + P 2)βr

2γr

,

and solving ReE = 0 and ImE = 0 we obtain two very long
expressions for ξi and δi in terms of M,P,K,k1,k2. In this case
the solution is valid only for small values of γr . Otherwise, as
γr gets arbitrary large then L is asymptotically given by

√−K2

which is not valid since L is a real value.
Case 2. Assume that C = 0 but E �= 0. In this case, the

dispersion equation is given by


4 + D
2 + E
 + F = 0,

and its roots are given by


±
+ = ±1

2

√
−2E

q2
− 2D − q2

2 + q2

2
,


±
− = ±1

2

√
2E

q2
− 2D − q2

2 − q2

2
, (A5)

where

q2 =
√

D2 + 12F

3q1
− 2D

3
+ q1

3
,

q1 = 2−1/3 3
√

q0 + 2D3 − 72DF + 27E2,

q0 =
√

(2D3 − 72DF + 27E2)2 − 4(D2 + 12F )3.

The above solutions (A5) are valid if q1q2 �= 0. This constraint
reduces to D2 + 12F �= 0 for the existence of solutions in this
case. Setting the real and the imaginary parts of C = 0, and
from the two equations (2.7) and (2.8), we have the following
four equations to solve:

k2
1γr + l2

1γr + M4δr + M2βr + P 2ξr − χ = 0,

k2
2γr + l2

2γr + M2ξr + P 4δr + P 2βr − χ = 0,

γi[(k1 + k2)K + (l1 + l2)L] = 0,

2[(K2 + L2)γr + (M4 + P 4)δr ] + (M2 + P 2)βr = 0.

By solving the above system of equations, we obtain the
following results described in terms of cases.

Case 2.1.

γi = 0, l1 = φ(M,P,k1), l2 = φ(P,M,k2),

L =
√

−2[K2γr + (M4 + P 4)δr ] + (M2 + P 2)βr

2γr

.

This case is very similar to case 1.7, thus we expect a similar
behavior to occur in gain or loss regions.

Case 2.2.

L = 0, k2 = −k1, l1 = l2 = φ(P,M,k1),

M =
√√−16δr (K2γr + P 4δr ) − 8P 2βrδr + β2

r − βr

4δr

,

where the component continuous-wave vector function
φ(P,M,k1) is given in Eq. (A1). Here as |δr | increases, the two
wave amplitudes asymptotically become equal, i.e., |M| = |P |
provided that δr < 0 for large values of |δr |. This shows in this
case that the two waves do not have the same amplitudes for
small values of |δr |.

Case 2.3.

L = − (k1 + k2)K

l1 + l2
,

K =
√

− (l1 + l2)2[2(M4 + P 4)δr + (M2 + P 2)βr ]

2[(k1 + k2)2 + (l1 + l2)2]γr

,

l1 = φ(M,P,k1), l2 = φ(P,M,k1).

The above solution is valid whenever γr is not zero. A decrease
in the value of γr would result in larger values for |L| and |K|.

Since some of these relations are too complicated to analyze
analytically, we have performed numerous examples and the
results are presented graphically for better illustration. Finally,
for case 3, we assume C �= 0 and E = 0. The results are
similar to case 2, except that the condition for the existence of
solutions reduces to (D2 + 12F )(C2 − 4D) �= 0. In the case
where ReE = 0 and ImE = 0, we have six free parameters
and the remaining other parameters are determined as in
case 2. The case that requires CE �= 0 was already discussed in
Sec. II A.
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Frantzeskakis, and B. A. Malomed, Phys. Rev. A 68, 035602
(2003).

[33] K. Kasamatsu and M. Tsubota, Phys. Rev. A 74, 013617 (2006).
[34] D. I. Choi and Q. Niu, Phys. Rev. Lett. 82, 2022 (1999).
[35] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M.

Kasevich, Science 291, 2386 (2001).
[36] K. Burnett, M. Edwards, C. W. Clark, and M. Shotter, J. Phys.

B 35, 1617 (2002).
[37] W. P. Hong, Z. Naturforsch 61, 225 (2006).
[38] A. Mohamadou, C. G. Latchio Tiofack, and T. C. Kofané,
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