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Mechanism for stickiness suppression during extreme events in Hamiltonian systems
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José Danilo Szezech Jr.,2 and Sergio Roberto Lopes1,*

1Departamento de Fı́sica, Universidade Federal do Paraná, 81531-980 Curitiba, PR, Brazil
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In this paper we study how hyperbolic and nonhyperbolic regions in the neighborhood of a resonant island
perform an important role allowing or forbidding stickiness phenomenon around islands in conservative systems.
The vicinity of the island is composed of nonhyperbolic areas that almost prevent the trajectory to visit the island
edge. For some specific parameters tiny channels are embedded in the nonhyperbolic area that are associated to
hyperbolic fixed points localized in the neighborhood of the islands. Such channels allow the trajectory to be
injected in the inner portion of the vicinity. When the trajectory crosses the barrier imposed by the nonhyperbolic
regions, it spends a long time abandoning the vicinity of the island, since the barrier also prevents the trajectory
from escaping from the neighborhood of the island. In this scenario the nonhyperbolic structures are responsible
for the stickiness phenomena and, more than that, the strength of the sticky effect. We show that those properties
of the phase space allow us to manipulate the existence of extreme events (and the transport associated to it)
responsible for the nonequilibrium fluctuation of the system. In fact we demonstrate that by monitoring very
small portions of the phase space (namely, ≈1 × 10−5% of it) it is possible to generate a completely diffusive
system eliminating long-time recurrences that result from the stickiness phenomenon.
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I. INTRODUCTION

Understanding the transport properties of Hamiltonian
systems is one of the major objectives in the statistical analysis
of dynamical systems [1,2]. Recent works have shown that for
a large class of systems, including those exhibiting mixed
phase space, the transport cannot be treated considering just
ergodic theory or the random phase approximation [3]. One
class of such systems is low-dimensional (3/2 or 2 degrees
of freedom) Hamiltonian systems (1/2 degree of freedom
corresponds to a periodical disturbance). Low-dimensional
Hamiltonian systems commonly exhibit nonuniform phase
spaces composed of regular (islands) and chaotic regions.
The interface between these regions is far from being a
smooth surface, and the dynamics near the edge between
chaotic and regular regions is very complex and has been
not well understood so far. The complexity comes mainly
due to the presence of stickiness of the boundaries of islands
[4]. The sticky effect forces a trajectory injected into the
boundary area to stay near the boundary for long periods
of time. One of the main consequences of this phenomenon
is the existence of power law tails in the Poincaré recurrence
times, making the system exhibit distribution of recurrence
times with algebraic decay for long times rather than an
exponential decay as expected for a normal transport system
[3,5–10].

Some features of the kinetics of Hamiltonian systems
are important to understand anomalous transport and super
diffusion. The phase space topology of theses systems plays
a crucial role in the anomalous transport and in sticky
phenomena [11,12]. Many problems of science such as particle
advection in fluids [13,14], transport in plasma fusion devices
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[2,15], celestial mechanics [16], and many others have found
applications in stickiness occurrences.

Previous works have studied properties of the boundaries
between regular and chaotic regions focusing mainly on the
role of the stickiness of the dynamics [17,18] and the cantori
structures derived from the breakup of tori [19]. When the
system exhibits stickiness, the dynamics of orbits in chaotic sea
is observed to be intermittent, where after periods of chaotic
motion away from the influence of a sticky island, the system
exhibits periods of almost regular motion. However, as far as
we know, no completely satisfactory theoretical explanation is
available for stickiness.

In this paper we study how characteristics of the topology
of the system, namely, hyperbolic and nonhyperbolic regions
in the neighborhood of a resonant island, perform an important
role in order to establish the presence and, more than that, the
strength of the sticky effect. We show that the sticky effect is
associated with the presence of injection channels related to the
crossing of stable and unstable manifolds of hyperbolic fixed
points in the vicinity of the island, allowing the trajectories to
shift between sticky and nonsticky areas of the phase space.
We show that the effectiveness of such channels to capture
trajectories to the sticky area is closely related to the degree
of hyperbolicity of the close surrounding area of hyperbolic
fixed points located in the neighborhood of an island. Finally
we make use of the presence of the hyperbolic channels to
avoid (control) extreme recurrence events and the anomalous
transport associated to it, resulting from a trajectory injection
into the sticky area.

This work is organized as follows: in Sec. II we focus our
attention on the model and present definitions for nonhyperbol-
icity of the phase space. In Sec. III we develop our main results
concerning the effect of the (non)hyperbolic surrounding of
resonance island in the dynamics of the system, and our
conclusions are presented in Sec. IV.
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II. THE MODEL

Here we characterize a hyperbolic region of the phase space
S as an ensemble for which the tangent phase space splits
continuously into stable (SM) and an unstable (UM) mani-
folds. SM and UM are invariant under the system dynamics:
infinitesimal displacements in the stable (unstable) direction
suffer exponential decay as time goes forward (backward) [20].
In addition, it is required that the angles between the stable and
unstable directions be uniformly bounded away from zero. In
this way, in order to quantify the degree of nonhyperbolicity
related to the phenomena we describe in this paper, let us
consider an initial condition (p0,x0) and an unit vector v,
whose temporal evolution is given by

vn+1 = J (pn,xn)vn/||J (pn,xn)vn||, (1)

where J (pn,xn) is the Jacobian matrix of the map. For n

large enough, v is parallel to the Lyapunov vector u(p,x)
associated to the maximum Lyapunov exponent λu of the map
orbit starting by (p0,x0). A backward iteration of the same orbit
gives us a new vector vn that is parallel to the direction s(p,x),
the Lyapunov vector associated to the minimum Lyapunov
exponent λs [21]. For regions where λs < 0 < λu the vectors
u(p,x) and s(p,x) are tangent to the UM and SM, respectively,
of a point (p,x).

The (non)hyperbolic degree of a region S can be studied
computing the local angles between the two manifolds

θ (p,x) = cos−1(|u · s|) (2)

for (p,x) ∈ S [22]. So θ (p,x) ∼ 0 denotes tangency between
UM and SM at (p,x). The general method used to calculate
the θ angles follows Ref. [23].

Chaotic orbits of two-dimensional mappings are often
nonhyperbolic since the SM and UM are tangent in infinitely
many points. As an illustration of this effect we consider a
periodically kicked rotor subjected to a harmonic potential
function, the Chirikov-Taylor map [2], whose dynamics is
two-dimensional. The dynamics of a periodically kicked rotor
can be described in a periodic phase space [−π,π ) × [−π,π ),
whose discrete-time variables pn and xn are, respectively, the
momentum and the angular position of the rotor just after the
nth kick, with the dynamics given by the following equations:

pn+1 = pn + K sin(xn),mod 2π, (3)

xn+1 = xn + pn+1,mod 2π, (4)

where K is related to the kick strength.
In order to exemplify the dynamics of the Chirikov-Taylor

map and its sticky phenomena, Fig. 1(a) displays a portion
of the phase space for a typical trajectory of the system for
K = 3.0. The denser areas near the island result from the sticky
effect due to the time the trajectory remains near the edge of
the island. To characterize the hyperbolicity of the surrounding
areas of the island Fig. 1(b) displays the local angle between
stable and unstable manifolds (θ ), Eq. (2), near the resonant
island. It is clear that the major part of the vicinities of the
island is composed of strong nonhyperbolic areas, represented
by dark blue (gray) areas in Fig. 1(b) (tangencies between
UM and SM). A small fraction of the vicinity is observed

FIG. 1. (Color online) (a) Phase space for the kicked rotor map;
darker regions around the main island reflect the effect of the
stickiness. (b) Phase space distribution of angle between unstable
and stable manifold; dark (blue) tones mean strong nonhyperbolicity.
(c) An example of the edge detection algorithm used here to compute
the vicinity of the island. In the inset we display magnification
showing details of the edge. (d) Probability distribution function of
the angle between stable and unstable manifolds, ρ(θ ).

in red, yellow, and green (pale gray) tones and corresponds
to angles greater than 30◦ and is responsible for the weak
hyperbolic part of the vicinities. The role of both areas will
be clear later in the text. In Fig. 1(b) we also define the angle
φ = arctan(p/x), defined in the interval [−π/2,+π/2]. Due
to the symmetry of maps 3–4 we do not use the traditional
[−π,π ) interval for φ since the hyperbolic properties and also
locations of the fixed points of the left-hand side of the main
island replicate those of the right-hand side. The 18 hyperbolic
points located in the neighborhood of the main island are
identified as black bullets in Fig. 1(b). The coordinates (x,p)
and the angle φ of each one of the hyperbolic and elliptic points
of period 18 in the neighborhood of the main island are shown
in Table I. In order to make clear what we call the vicinity of the

TABLE I. Phase space position and polar angle of the 18 elliptic
and hyperbolic points of period 18 in the neighborhood of the main
island and the local maxima of F 100

in (φ).

Hyperbolic Points Elliptic Points

x p φ x p φ max
[
F 100

in (φ)
]

0.00 ∓1.36 −1.57 ±0.09 ∓1.20 −1.50 −1.57
±0.21 ∓0.95 −1.35 ±0.39 ∓0.54 −0.95 −1.34
±0.64 0.00 0.00 ±0.93 ±0.54 0.53 0.00
±1.16 ±0.95 0.69 ±1.29 ±1.20 0.75 0.68
±1.36 ±1.36 0.79 ±1.38 ±1.47 0.82 0.79
±1.36 ±1.57 0.86 ±1.29 ±1.68 0.92 0.86
±1.16 ±1.80 1.00 ±0.93 ±1.87 1.11 1.00
±0.64 ±1.80 1.23 ±0.39 ±1.68 1.34 1.23
±0.21 ±1.57 1.44 ±0.09 ±1.47 1.51 1.44
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island, Fig. 1(c) displays the result of our algorithm for edge
island detection [24], with details magnified in the inset. For
numerical computation of the edge of an island, the algorithm
considers a thick region surrounding all islands. The thickness
parameter ε = 0.0025 was used in all computed results.

Finally in Fig. 1(d) we plot the probability distribution
function of the angles between SM and UM ρ(θ ), so ρ(θ )dθ

represents the probability of finding an angle between θ and
θ + dθ in the phase space ensemble displayed in Fig. 1(b).
The large plateau for small θ angles reflects the strong
nonhyperbolic character of the region.

III. RESULTS

When a trajectory is initialized near the mains island sticky
area, but it is not a sticky trajectory, it leaves the vicinity
of the island quickly following the unstable manifold of the
hyperbolic points of period 18 located near the main island.
To make it clear in Fig. 2(a) we plot the unstable manifold
of the hyperbolic points of period 18 located near the main
island, and Fig. 2(b) displays in red (gray) the phase portrait of
many trajectories, initialized in a small circle in phase space
and located near the vicinity of the main island. As can be
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FIG. 2. (Color online) (a) Unstable manifold of the hyperbolic
points of period 18 located near the main island. (b) Phase portrait
of a bunch of trajectories initialized in a small region near the main
island. As time goes on almost all trajectories leave the vicinity of
the island following the unstable manifold.

FIG. 3. (a) Probability distribution function of an income angle
in the vicinity of an island on the Chirikov-Taylor map. (b) Average
time spent in the sticky area as a function of the injected angle. (c)
Magnification of panels (a) and (b) near the maxima of F (1)

in (φ).

observed, almost all particles follow the unstable manifold
displayed in black in Fig. 2(a). Just initial conditions started
or injected almost tangent to the stable manifold remain near
the island after just a few interactions.

The topological properties of the phase space in the vicini-
ties of an island play an important role in the sticky mechanism.
To explore the relation between topological characteristics of
the phase space and the way trajectories visit an island vicinity
and stick to it, we define the probability density function
F (1)

in (φ) for trajectories injected into the vicinity of the island
considering the vicinity computed by our algorithm [Fig. 1(c)].
F (1)

in (φ)dφ is the probability that a typical chaotic trajectory
will visit the vicinity of the island through an angle between φ

and φ + dφ. In Fig. 3 we plot F (1)
in (φ) [Fig. 3(a)] as well as the

average time the trajectory remains in the vicinity of the island
when injected in the vicinity by a particular angle [Fig. 3(b)].
In Fig. 3(c) we magnify the gray region of Figs. 3(a) and
3(b). Observe that although the major part of the trajectories
are injected by just a few angles inside the red-yellow-green
(light gray) tones of regions around the island in Fig. 1(a)
(weak hyperbolic regions), these specific trajectories spend,
on average, a short time mapping the sticky area. Trajectories
are easily injected into the sticky areas by weak hyperbolic
areas surrounding the island, but almost all of them are also
easily ejected from it. Those trajectories do not contribute to
the phenomena of stickiness and do not make any substantial
changes in the Poincaré recurrence time for the dynamics.

In order to distinguish sticky trajectories from those that
just reach the island edge and leave it quickly, we compute the
probability density function F (100)

in (φ) of trajectories injected
into the sticky area by a specific angle considering that once a
trajectory reaches the vicinity of the island, it remains mapping
the same set of points as computed by our algorithm of island
edges detection for at least 100 iterations. We identify such
trajectories as sticky ones. Those trajectories are close related
to the dynamics forced by the homoclinic tangle occurring
near the main island [25,26]. In this scenario the occurrence
of lobes in the phase space explains how a trajectory can
stick in the boundary of an island, but the effectiveness of
the sticky process is not theoretically fully understood. As a
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FIG. 4. (a) Probability distribution function of income angle into
the right vicinity of the main island of the Chirikov map. The left
side of the island displays symmetric results as pointed out in Table I.
(b) Average spent time in the sticky area as a function of the injected
angle. (c) Probability distribution function of the outcome angle from
the vicinity of the main island of the Chirikov map. (d) Average spent
time in the sticky area as a function of the ejected angle. (e) Probability
distribution of the injected angle, subjected to the condition that the
time of stickiness be greater than 1000 iterations.

result of the different levels of hyperbolicity of the regions
around the main island, each hyperbolic fixed point region has
its own characteristics allowing or prohibiting the injection
and/or ejection of trajectories. For some hyperbolic points
the lobes areas associated to it are very small. Additionally,
in a scenario of strong nonhyperbolicity just lobes smashed
near the hyperbolic fixed points contribute effectively to the
injection and/or ejection of trajectories. Early evidence of
this mechanism was reported in Ref. [27]. The dynamics
resulting from this scenario is plotted in Fig. 4(a). Almost
all sticky trajectories are injected in the vicinity of the island
in very specific intervals of angles. Each angle interval is
directly related to the angular location of the chain of periodic
hyperbolic points [set as black bullets in Fig. 1(c)] and has its
own maximum resulting from different levels of hyperbolicity
of each region. This scenario leaves each hyperbolic fixed point
vicinity to exhibit different rates of injection and/or ejection
events. All trajectories that are not tangent enough to the stable
manifold of the hyperbolic fixed point do not cross the tiny
hyperbolic channel produced by the crossing between stable
and unstable manifolds of the fixed point and cannot be injected
into the stick area.

Considering those trajectories injected into the stickiness
remaining mapping the edge for at least 100 iterations, we
compute in Fig. 4(b) the average time they spend near the
island (sticky trajectories) as a function of the injected angle.
In Fig. 4(c) we graph the probability distribution function

of sticky trajectories as a function of the ejected angle
F 100

out (φ). The almost discrete nature of the distribution is
clear. All ejected trajectories follow the unstable manifold of
the hyperbolic fixed points moving along a narrow channel
departing from the fixed point. We plot in Fig. 4(d) the average
time the trajectories stay in the sticky region (at least 100
iterations inside the sticky area) as a function of the outcome
angle. From Fig. 4(d) we can conclude that sticky trajectories
are ejected only by few angle intervals φout = φ[max(τout)].
Therefore, we are able to calculate the probability F(φ)dφ

that a given trajectory will enter the sticky region considering
only trajectories that leave these region through the angle
φout. The result is plotted in Fig. 4(e). The great similarity
between F and F (100)

in suggests that our previous conclusions
are consistent. Therefore, we can argue that the local maximum
of F (100)

in represents the sticky angles, i.e., the angles that, once
a trajectory is injected from one of them, there is a great
probability that this trajectory turns out to be stuck to the
island. These maxima correspond to the same region where
hyperbolic points are located, confirming the hypothesis that
these points provide a channel for a typical trajectory to enter
in the sticky region. Figures 4(a) and 4(e) clearly show that
both figures are almost identical, a strong suggestion that all
trajectories leave the sticky regions by the hyperbolic channels
departing from the hyperbolic fixed points.

The presence of stickiness around an island is predicted
by theory [4,18], but an analysis of Fig. 4(a) shows that the
effectiveness of a trajectory injection or ejection by a particular
hyperbolic channel is not the same for all fixed points, as can
be observed by the different amplitudes of maxima of F (100)

in in
Fig. 4(a). In order to make clear the role of the hyperbolicity of
the close vicinity of the hyperbolic fixed points in the injection
and ejection phenomena of sticky trajectories, first, we present
as an example in Fig. 5(a) the degree of hyperbolicity of
one of the hyperbolic points of period 18 located around
the main island of the Chirikov-Taylor map. As observed in
Fig. 5(b) the probability density function ρ(θ ) exhibits just
a sharp maximum due to the almost unique angle between a
stable and unstable manifold computed in the close vicinity
of the fixed point. All other fixed points display similar sharp
peaks in the probability density function ρ(θ ); nevertheless
each hyperbolic point has its own angle for the maximum of
ρ(θ ) characterizing its own degree of hyperbolicity. Second, to
demonstrate the relation between the degree of hyperbolicity of

FIG. 5. (Color online) (a) Degree of hyperbolicity of the vicinity
(ε = 0.0025) of one of the 18 fixed points located around the main
island of map 4. (b) ρ(θ ) characterized by just one maximum when
computed near a fixed point around the main island.
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FIG. 6. The effectiveness of the injection channels measured
using max F 100

in as a function of the angle between UM and SM.

the close vicinity of the fixed points, and the effectiveness of the
hyperbolic channels related to each fixed point to capture sticky
trajectories, we graph in Fig. 6 the maxima of the function
F 100

in (φ) as a function of the degree of hyperbolicity measured
by the angle for which the function ρ(θ ) exhibits a maximum
θ (ρmax). The black line is a power law fitting that serves us
as a guide to the eye. The result displayed in Fig. 6 clearly
shows that the effectiveness of the channels is a function of
the degree of hyperbolicity of the close region of the fixed
points. Small values of θ (ρmax) are related to the fact that just
a very small portion of the surrounding area of the fixed point is
occupied by the injection and/or ejection hyperbolic channel.
As a result the function F (100)

in (φ) reveals a relatively small
maximum, meaning that just a small fraction of trajectories
can cross the channel in an injection or ejection process from
the sticky area.

Such properties of the phase space allow us to manipulate
the nonequilibrium fluctuation of the system. To show that
it is possible to control the nonequilibrium fluctuations that
arise due to the presence of stickiness, we track the position
of the trajectory, and once it maps small circles of radius
0.003 (corresponding to ≈1 × 10−5% of the phase space)
centered in each of the hyperbolic points of period 18, we
perturb the trajectory, so a possible crossing of the channel and
consequent stick of the trajectory is avoided. Numerically, we
perform a restart of the trajectory outside the injection channel.
Results for the Poincaré recurrence time for the system with
and without the control mechanism for two values of K ,
K = 3.0 and K = 3.565 (a large stickiness case), are plotted
in Fig. 7. Black bullets and a green up-triangle display the
time distributions for Poincaré recurrence without any control
mechanism. As can be observed for large recurrence time, a
strong fluctuation of the exponential law is observed. In fact for
large recurrence time the distribution has a power law decay
as a result of the sticky phenomena in the recurrence time. The
time distribution of the Poincaré recurrence time for the system
subjected to our control mechanism is displayed as red squares
and a blue down-triangle. For this case, almost all fluctuation
for long recurrence time is absent, corroborating the idea that

FIG. 7. (Color online) Recurrence time for the Chirikov-Taylor
map with and without control.

all nonequilibrium fluctuation in the system is now absent
since the stickiness is avoided. Additionally we observe that
the exponential rate for both K values is the same, supporting
the idea that the behavior of the system is now completely
diffusive independently of the K value. All results here are
presented for two values of K , but similar results are obtained
for other values of the nonlinear parameter.

IV. CONCLUSIONS

We have described in this paper a mechanism to suppress
the effect of stickiness based on the knowledge of the
nonhyperbolic structures on the edge of an island of a
Hamiltonian two degrees-of-freedom system. We have shown
that the effectiveness of an island edge to sticky trajectories is
directly related to the degree of hyperbolicity of small areas
surrounding hyperbolic points around the island. The vicinity
of the island is composed of two very distinct characteristics,
namely, a strong nonhyperbolic region and, superposed on
it, hyperbolic tinny channels related to stable manifolds of
hyperbolic points located in the vicinity. We have shown that
monitoring those vicinity areas of the phase space, it is possible
to generate a normal diffusive processes without (almost) any
influence of the large recurrence time due to the stickiness
phenomena. Our control mechanism turns the original power
law fitted recurrence time distribution for the system into a
exponential fitted time distribution, avoiding the system from
exhibiting extreme events in the dynamics. Moreover, once
under control, we can turn the original nondiffusive system
into a diffusive one, applying control of small portions of
phase space.
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413, 91 (2005).
[15] J. D. Szezech Jr., I. L. Caldas, S. R. Lopes, P. J. Morrison, and

R. L. Viana, Phys. Rev. E 86, 036206 (2012).
[16] C. Efthymiopoulos, G. Contopoulos, and N. Voglis, Celestial

Mech. Dyn. Astron. 73, 221 (1999); M. Harsoula, C.
Kalapotharakos, and G. Contopoulos, Mon. Not. R. Astron. Soc.
411, 1111 (2011).

[17] G. M. Zaslavsky, Physica D 168-169, 292 (2002).

[18] L. A. Bunimovich and L. V. Vela-Arevalo, Chaos 22, 026103
(2012).

[19] R. S. Mackay, J. D. Meiss, and I. C. Percival, Physica D 13, 55
(1984).

[20] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dy-
namical Systems, and Bifurcations of Vector Fields (Springer,
New York, 2002).

[21] C. Grebogi, S. M. Hammel, J. A. Yorke, and T. Sauer, Phys.
Rev. Lett. 65, 1527 (1990).

[22] Y. C. Lai, C. Grebogi, J. Yorke, and I. Kan, Nonlinearity 6, 779
(1993).

[23] F. Ginelli, P. Poggi, A. Turchi, H. Chaté, R. Livi, and A. Politi,
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