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A Kadomtsev-Petviashvili- (KP-) type equation appears in fluid mechanics, plasma physics, and gas dynamics.
In this paper, we propose an integrable semidiscrete analog of a coupled (2 + 1)-dimensional system which
is related to the KP equation and the Zakharov equation. N -soliton solutions of the discrete equation are
presented. Some interesting examples of soliton resonance related to the two-soliton and three-soliton solutions
are investigated. Numerical computations using the integrable semidiscrete equation are performed. It is shown
that the integrable semidiscrete equation gives very accurate numerical results in the cases of one-soliton evolution
and soliton interactions.
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I. INTRODUCTION

Nonlinear evolution equations (NEEs) appear in almost all
branches of physics, such as fluid mechanics, plasma physics,
optical fibers, and solid state physics. The nonlinear wave
phenomena of dispersion, dissipation, diffusion, reaction, and
convection are very important in nonlinear wave equations.
Since the concept of solitons for the Korteweg–de Vries (KdV)
equation was introduced, there has been considerable interest
in this kind of special NEE, such as the Burgers equation, the
nonlinear Schrödinger (NLS) equation, and the Boussinesq
equation.

Compared with one-dimensional NEEs, (2 + 1)-
dimensional coupled systems are more attractive in describing
nonlinear phenomena in real physical situations. Some
(2 + 1)-dimensional NEEs exhibit not only localized coherent
structures such as curved-line solitons, half-straight-line
solitons, and dromions [1,2], but also inelastic interactions,
e.g., resonance [3], reconnection [4], and annihilation [5].

Zakharov formulated the system of equations

iEt + 1

2
Exx − nE = 0, (1)

ntt − nxx − 2(|E|2)xx = 0 (2)

for the ionic sound wave under the action of a ponderomotive
force due to a high-frequency field and for a Langmuir wave
[6]. Here Ee−iωpt is the normalized electric field of the
Langmuir oscillation, n is the normalized density perturbation,
x is the normalized spatial variable, t is the time variable, and
the subscripts denote partial derivatives. For an ion sound wave
propagating in only one direction, for example, in the positive
x direction, one can suppose that

nt
∼= −nx. (3)

Under this assumption Eq. (2) can be simplified as follows:

nt + nx + (|E|2)x = 0. (4)

The interactions of solitons of the system (1) and (4) were
studied by the inverse scattering technique in [7].
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In the present work, we consider the following (2 + 1)-
dimensional soliton equation:

iut + uxx + uv = 0, (5a)

vt + vy + (|u|2)x = 0, (5b)

where i = √−1, u is a complex function of two scaled space
coordinates x and y and time t , and v is a real function.
Equations (5) are similar to the integrable Zakharov equations
(1) and (4) when x = y in Eq. (5b). Maccari [8] obtained
Eqs. (5) by an asymptotically exact reduction method based
on Fourier expansion and spatiotemporal rescaling from the
Kadomtsev-Petviashvili (KP) equation. He also constructed
the Lax pair for the system. The Painlevé property of the
system (5) was investigated in [9] and its doubly periodic
solutions were given by using the extended Jacobian elliptic
function expansion method [10]. Traveling wave solutions of
the system were obtained in [11,12]. The interaction dynamics
between the two solitons, especially the soliton resonant
interactions, was studied in [13]. However, it appears that
N -soliton solutions of the system (5) have not been given
by use of the Hirota method.

Over the decades, integrable discretizations of soliton equa-
tions have received considerable attention [14–17]. Ablowitz
and Ladik proposed a method to construct integrable discrete
analogs of soliton equations based on Lax pairs [18,19]. Hirota
proposed a bilinear method to construct integrable discrete
analogs of soliton equations based on bilinear equations
[20–22]. Applications of integrable discretizations of soliton
equations have been considered in various fields [23–27]. In
our recent work, we proposed an integrable semidiscrete ana-
log of coupled integrable dispersionless equations [28,29]. The
key step there is the discretization of bilinear differential oper-
ators under gauge invariance. Considering the physical back-
ground and potential application of the (2 + 1)-dimensional
system (5), we aim to study its semidiscrete analog and the
dynamics of soliton solutions of the semidiscrete system.

The remainder of this paper is organized as follows. In
Sec. II, we derive N -soliton solutions of the system (5) by use
of the Hirota method. In Sec. III, we present a semidiscrete
analog of the system in the spatial direction. In Sec. IV, numer-
ical computations of the semidiscrete system are performed.
Interactions of multisoliton solutions, especially the resonance
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of two solitons, are investigated by means of their asymptotic
behaviors in Sec. V. Conclusions are given in Sec. VI. Finally
we present the N -soliton solution of the semidiscrete system
by the Pfaffian technique in the Appendix.

II. BILINEAR FORM AND SOLITON SOLUTIONS

Through the dependent-variable transformations

u = g

f
, v = 2(ln f )xx, (6)

where g and f are complex and real functions of x, y, and t ,
respectively, the bilinear form of system (5) is expressed as(

iDt + D2
x

)
g ·f = 0, (7)

(DxDt + DxDy)f ·f + gg∗ = 0, (8)

where the bilinear Hirota operators in the first term apply to
a pair of functions. Here the bilinear differential operator is
defined by [30]

Dn1
x1

Dn2
x2

a ·b ≡
(

∂

∂x1
− ∂

∂x ′
1

)n1
(

∂

∂x2
− ∂

∂x ′
2

)n2

× a(x1,x2) ·b(x ′
1,x

′
2)|x ′

1=x1,x
′
2=x2 . (9)

In [13], one-soliton and two-soliton solutions of (7) and (8)
were found. We get the result that the one-soliton solution can
be expressed in the form

g = exp(η1), (10)

f = 1 + a(1,1∗) exp(η1 + η∗
1), (11)

with η1 = k1x + p1y + ik2
1 t and a(1,1∗) =

− 1
2(k1+k∗

1 )(ik2
1−ik∗2

1 +p1+p∗
1 )

. Here k1 and p1 are complex

constants and η∗ denotes the complex conjugate of η.

The two-soliton solution is in the following form:

g = exp(η1) + exp(η2) + a(1,2,1∗) exp(η1 + η2 + η∗
1)

+ a(1,2,2∗) exp(η1 + η2 + η∗
2), (12)

f = 1 + a(1,1∗) exp(η1 + η∗
1) + a(1,2∗) exp(η1 + η∗

2)

+ a(2,1∗) exp(η2 + η∗
1) + a(2,2∗) exp(η2 + η∗

2)

+ a(1,2,1∗,2∗) exp(η1 + η2 + η∗
1 + η∗

2), (13)

with ηj = kjx + pjy + ik2
j t (j = 1,2). Here the coefficients

are defined by the formulas

a(j,l∗) = − 1

2
(
kj + k∗

l

)(
ik2

j − ik∗2
l + pj + p∗

l

) , (14)

a(i,j ) = 2(ki − kj )
( − ik2

i + ik2
j − pi + pj

)
, (15)

a(i∗,j ∗) = 2(k∗
i − k∗

j )
(
ik∗2

i − ik∗2
j − p∗

i + p∗
j

)
, (16)

a(i,j,k∗) = a(i,j )a(i,k∗)a(j,k∗), (17)

a(i,j ∗,k∗) = a(i,j ∗)a(i,k∗)a(j ∗,k∗), (18)

a(i,j,k∗,l∗) = a(i,j )a(i,k∗)a(i,l∗)a(j,k∗)a(j,l∗)a(k∗,l∗),
(19)

where kj and pj are complex constants. In the same way, we
can construct the three-soliton solution,

g = exp(η1) + exp(η2) + exp(η3)

+ a(1,2,1∗) exp(η1 + η2 + η∗
1) + a(1,3,1∗) exp(η1 + η3 + η∗

1) + a(2,3,2∗) exp(η2 + η3 + η∗
2)

+ a(1,2,2∗) exp(η1 + η2 + η∗
2) + a(1,3,3∗) exp(η1 + η3 + η∗

3) + a(2,3,3∗) exp(η2 + η3 + η∗
3)

+ a(1,2,3∗) exp(η1 + η2 + η∗
3) + a(1,3,2∗) exp(η1 + η3 + η∗

2) + a(2,3,1∗) exp(η2 + η3 + η∗
1)

+ a(1,2,3,1∗,2∗) exp(η1 + η2 + η3 + η∗
1 + η∗

2) + a(1,2,3,1∗,3∗) exp(η1 + η2 + η3 + η∗
1 + η∗

3)

+ a(1,2,3,2∗,3∗) exp(η1 + η2 + η3 + η∗
2 + η∗

3), (20)

f = 1 + a(1,1∗) exp(η1 + η∗
1) + a(2,2∗) exp(η2 + η∗

2) + a(3,3∗) exp(η3 + η∗
3)

+ a(1,2∗) exp(η1 + η∗
2) + a(2,1∗) exp(η2 + η∗

1) + a(2,3∗) exp(η2 + η∗
3) + a(3,2∗) exp(η3 + η∗

2)

+ a(1,3∗) exp(η1 + η∗
3) + a(3,1∗) exp(η3 + η∗

1)

+ a(1,2,1∗,2∗) exp(η1 + η2 + η∗
1 + η∗

2) + a(1,3,1∗,3∗) exp(η1 + η3 + η∗
1 + η∗

3)

+ a(1,2,1∗,3∗) exp(η1 + η2 + η∗
1 + η∗

3) + a(1,3,1∗,2∗) exp(η1 + η3 + η∗
1 + η∗

2)

+ a(1,2,2∗,3∗) exp(η1 + η2 + η∗
2 + η∗

3) + a(2,3,1∗,2∗) exp(η2 + η3 + η∗
1 + η∗

2)

+ a(1,3,2∗,3∗) exp(η1 + η3 + η∗
2 + η∗

3) + (2,3,1∗,3∗) exp(η2 + η3 + η∗
1 + η∗

3)

+ a(2,3,2∗,3∗) exp(η2 + η3 + η∗
2 + η∗

3) + a(1,2,3,1∗,2∗,3∗) exp(η1 + η2 + η3 + η∗
1 + η∗

2 + η∗
3), (21)
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where the coefficients are defined as in (14)–(19), and in
general

a(i1,i2, . . . ,in,j
∗
1 , . . . ,j ∗

m)

=
∏

1�k<l�n

a(ik,il)
∏

1�k�n,1�l�m

a(ik,j
∗
l )

∏
1�k<l�m

a(j ∗
k ,j ∗

l ).

(22)

From the above expressions for the one-, two-, and three-
soliton solutions, we know that the exact N -soliton solution of
Eqs. (5) is in the following form:

f =
(e)∑

μ=0,1

exp

⎡
⎣ N∑

j=1

μjηj +
2N∑

j=N+1

μjη
∗
j−N +

2N∑
1�i<j

μiμjAij

⎤
⎦ ,

(23)

g =
(o)∑

ν=0,1

exp

⎡
⎣ N∑

j=1

νjηj +
2N∑

j=N+1

νjη
∗
j−N +

2N∑
1�i<j

νiνjAij

⎤
⎦ ,

(24)

where

ηj = kjx + pjy + ik2
j t, j = 1,2, . . . ,N, (25)

η∗
j = conjugate of ηj , j = 1,2, . . . ,N, (26)

exp(Ai,j ) = a(i,j ), i < j = 2,3, . . . ,N, (27)

exp(Ai,N+j ) = a(i,j ∗) i,j = 1,2, . . . ,N, (28)

exp(AN+i,N+j ) = a(i∗,j ∗), i < j = 2,3, . . . ,N. (29)

Here αj and γj are both real parameters relating respectively
to the amplitude and phase of the ith soliton. The sum

∑(e)
μ=0,1

indicates summation over all possible combinations of μi =
0,1 under the condition

N∑
j=1

μj =
N∑

j=1

μN+j , (30)

and
∑(o)

ν=0,1 indicates summation over all possible combina-
tions of νi = 0,1 under the condition

N∑
j=1

νj =
N∑

j=1

νN+j + 1. (31)

The form of the N -soliton solution (23) and (24) is the same
as that of the combined Schrödinger-KdV equation in [31].
The proof of the N -soliton solution here can be completed by
induction and is similar to the one in [31]. The reader can find
the details there.

It is known that soliton solutions of many integrable systems
(e.g., of Schrödinger type or the KP equation of B-type) can be
expressed in Pfaffian form. In the Appendix, we construct the
N -soliton solution to the semidiscrete system (32) by using
the Pfaffian technique.

III. INTEGRABLE DISCRETE ANALOG OF THE
(2 + 1)-DIMENSIONAL SYSTEM

We consider the discrete system[
iDt + 4

ε2
sinh2

(Dn

2

)]
gn ·fn = 0, (32a)

4

ε
(Dt + Dy)fn+1 ·fn + gn+1g

∗
n + gng

∗
n+1 = 0, (32b)

where the bilinear difference operator exp(δDn) in the sinh
function is defined by

exp(δDn)a ·b ≡ a(n + δ)b(n − δ), (33)

and the parameter ε can be regarded as a spatial discrete step.
With the variable transformation

un = gn

fn

, wn = ln
fn+1

fn

, (34)

the bilinear equations (32) can be cast into the form

iun,t ε
2 + (un+1 + un−1)ewn−wn−1 − 2un = 0, (35a)

4(wn,t + wn,y) + ε(u∗
nun+1 + unu

∗
n+1) = 0. (35b)

Setting

vn = 1

ε2

2
(
fn+1fn−1 − f 2

n

)
f 2

n

= 2

ε2
(ewn−wn−1 − 1) (36)

and substituting it into (35a) results in

iut ε
2 + (

2u + ε2uxx

) (
1 + ε2

2
v

)
− 2u + O(ε2) = 0. (37)

The coefficient of the term ε2 is

iut + uxx + uv = 0. (38)

By changing n to n − 1 in (35b) and subtracting one from the
other, we get

4(∂t + ∂y)ewn−wn−1 + ewn−wn−1ε(E − 1)

× (un−1u
∗
n + u∗

n−1un) = 0, (39)

or equivalently,

4(∂t + ∂y)

(
1 + ε2

2
vn

)

+ ε

(
1 + ε2

2
vn

)
(E − 1)(un−1u

∗
n + u∗

n−1un) = 0. (40)

Here E is the shift operator Ean = an+1. The continuum limit
of (40) as ε → 0 is

vt + vy + (|u|2)x = 0. (41)

Thus (35) gives a semidiscrete analog of the system (5). From
the derivation above, by eliminating w in (35), we obtain the
following semidiscrete system for u and v:

iun,t + un+1 + un−1 − 2un

ε2
+ (un+1 + un−1)vn

2
= 0, (42a)

vn,t + vn,y +
(

1 + ε2

2
vn

)

× un(u∗
n+1 − u∗

n−1) + u∗
n(un+1 − un−1)

2ε
= 0. (42b)
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Remark 1. By multiplying both sides Eq. (42a) by u∗
n,

employing the conjugate, and then subtracting one of the two
equations from the other, we have

i(|un|2)t+ 1

ε2
[(un+1 + un−1)u∗

n − (u∗
n+1 + u∗

n−1)un]

+ 1

2
[u∗

nvn(un+1+un−1)−unvn(u∗
n+1+u∗

n−1)] = 0.

By summation over n, we get

d

dt

+∞∑
n=−∞

|un|2 = 0,

which proves that the total energy
∑∞

n=−∞ |un|2 is conserved.
Numerical computation is given in the next section.

Remark 2. One can check that the first bilinear equation of
(5), i.e., Eq. (7), is the same as that of the nonlinear Schrödinger
equation. It is well known that the Davey-Stewartson equation,
a two-dimensional NLS equation that appears as the shallow-
water limit of the Benney-Roskes equation, arises from the
two-component KP hierarchy [32]. It was pointed out in [33]
that the discretization of the NLS equation can be obtained
from reduction of the two-component KP hierarchy. Hence
we believe that the semidiscrete system (42) must have a
relation with the two-component KP hierarchy. Meanwhile,
since the (2 + 1)-dimensional system (5) is derived from the
KP equation via an asymptotically exact reduction method,
the relation between the semidiscrete system (42) and the
differential-difference KP equation [34,35]


(ut + 2uy − 2uuy) = (2 + 
)uyy (43)

deserves further consideration. Here u = u(y,t,n) and 


denotes the forward difference operator defined by 
fn =
fn+1 − fn.

The one-soliton solution for (32) has the form

fn = 1 + b(1,1∗) exp (η1 + η∗
1), gn = exp (η1), (44)

with

η1 = k1n + p1y + q1t, q1 = i

ε2
(ek1 + e−k1 − 2), (45)

b(1,1∗) = − ε(ek1 + ek∗
1 )

4(ek1+k∗
1 − 1)(p1 + p∗

1 + q1 + q∗
1 )

, (46)

p1 and k1 are complex constants and η∗
1 is the complex

conjugate of η1. If we set x = nε and k1 = εk̃1, we get the
following asymptotic relation:

η1 = k̃1x + p1y + q1t, (47)

q1 = i

ε2
(ek̃1ε + e−k̃1ε − 2) = ik̃2

1 + O(ε), (48)

b(1,1∗) = −1

2(k̃1 + k̃∗
1 )(p1 + p∗

1 + q1 + q∗
1 )

+ O(ε). (49)

This shows that the one-soliton solution of the semidiscrete
equation yields that of the continuous equation through the
continuum limit ε → 0.

The one-soliton solutions for un and vn are expressed as

un = gn

fn

= eη1

1 + b11e
η1+η∗

1

= 1

2
√

b11
eiIm(η1)sech

(
Re(η) + ln b11

2

)
, (50)

vn = 2

ε2

(
fn+1fn−1

f 2
n

− 1

)

= 2

ε2

[
(1 + b11e

2Re(η1+k1))(1 + b11e
2Re(η1−k1))

(1 + b11e2Re(η1))2
− 1

]
, (51)

with b11 = b(1,1∗). The two-soliton solution of the semidis-
crete system has the form

fn =1 + b(1,1∗) exp (η1 + η∗
1) + b(1,2∗) exp (η1 + η∗

2)

+ b(2,1∗) exp (η2 + η∗
1) + b(2,2∗) exp (η2 + η∗

2)

+ b(1,2,1∗,2∗) exp (η1 + η2 + η∗
1 + η∗

2), (52)

gn = exp(η1) + exp(η2) + b(1,2,1∗) exp(η1 + η2 + η∗
1)

+ b(1,2,2∗) exp(η1 + η2 + η∗
2), (53)

with the coefficients

b(i,j ∗) = − ε(eki + ek∗
j )

4(eki+k∗
j − 1)(pi + p∗

j + qi + q∗
j )

, (54)

b(i,j ) = −4(eki − ekj )(pi − pj + qi − qj )

ε
(
eki+kj + 1

) , (55)

b(i∗,j ∗) = −4(ek∗
i − ek∗

j )(p∗
i − p∗

j + q∗
i − q∗

j )

ε
(
ek∗

i +k∗
j + 1

) , (56)

where ηj = kjn + pjy + qj t , 1 � i,j � 2, with complex
constants k1, k2, p1, and p2 and the dispersion relation qj =
i e

kj +e
−kj −2

ε2 . Setting x = nε, kj = εk̃j , in the continuum limit
ε → 0, we obtain

ηj = k̃j x + pjy + qj t, qj → ik̃2
j , (57)

b(i,j ∗) → − 1

2(k̃i + k̃∗
j )(pi + p∗

j + qi + q∗
j )

= a(i,j ∗),

(58)

b(i,j ) → −2(k̃i − k̃j )(pi − pj + qi − qj ) = a(i,j ), (59)

b(i∗,j ∗) → −2(k̃∗
i − k̃∗

j )(p∗
i − p∗

j + q∗
i − q∗

j ) = a(i∗,j ∗).
(60)

Thus we conclude that the two-soliton solutions of the
semidiscrete system reduce to those of the continuous system
through the continuum limit ε → 0. Substituting (52) and (53)
into (34) and (36), we obtain the two-soliton solutions un and
vn, respectively.

The exact N -soliton solutions to Eqs. (32) have the forms

fn =
(e)∑

μ=0,1

exp

⎡
⎣ N∑

j=1

μjηj +
2N∑

j=N+1

μjη
∗
j−N +

2N∑
1�i<j

μiμjBij

⎤
⎦ ,

(61)
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FIG. 1. (Color online) Numerical solution of the one-soliton solution at t = 4.

gn =
(o)∑

ν=0,1

exp

⎡
⎣ N∑

j=1

νjηj +
2N∑

j=N+1

νjη
∗
j−N +

2N∑
1�i<j

νiνjBij

⎤
⎦ ,

(62)

where

ηj = kjn + pjy + qj t, qj = i
(
ekj + e−kj − 2

)
/ε2, (63)

η∗
j = complex conjugate of ηj , j = 1,2, . . . ,N, (64)

exp(Bi,j ) = b(i,j ), i < j = 2,3, . . . ,N, (65)

exp(Bi,N+j ) = b(i,j ∗), i,j = 1,2, . . . ,N, (66)

exp(BN+i,N+j ) = b(i∗,j ∗), i < j = 2,3, . . . ,N. (67)

Following the proof of the one- and two-soliton solutions, one
can show that the exact N -soliton solutions of the semidiscrete
system reduce to those of the continuous system in the
continuum limit.

IV. NUMERICAL COMPUTATIONS

In this section, two examples will be used to show that
the integrable semidiscretization is a powerful scheme for
the numerical solution of the system (5). They include (1)
propagation of the one-soliton solution, and (2) interaction
of the two-soliton solutions. We employ the Crank-Nicholson

scheme for the system (42), the central difference scheme in the
y direction, and the Dirichlet condition. We choose the exact
one-soliton solution and two-soliton solutions of the system
(5) as the initial and boundary values.

Example 1: One-soliton propagation. The parameters
taken for the one-soliton solution are k1 = 0.6 + 0.3i, p1 =
−0.25 − 0.4i. The number of grid points is taken as 250 in
an interval of width 25 in the x domain, which implies a
mesh size of ε = 0.1. The number of grid points is 400 in an
interval of width 40 in the y direction. The time-step size is
taken as 
t = 0.05. Figure 1 displays the numerical solution
of the one-soliton problem at t = 4. The L∞ norm is 0.0385
for |u|2 and 0.0422 for v at t = 4. It is noted that the numerical
error is mainly due to the error of the dispersion relation.
In other words, even after a fairly long time, the numerical
solution of a soliton preserves its shape very well except for a
phase shift.

Example 2: Two-soliton interaction. The parameters taken
for the two-soliton solution are k1 = 0.6 + 0.3i, k2 = −0.5 +
0.5i, p1 = −0.25 − 0.4i, p2 = 0. Figure 2 shows the exact
two-soliton solution of |u|2 and v. Figure 3 displays the
numerical solution for the collision of the two solitons.
The profiles show that the collision of two solitons is well
simulated.

V. DYNAMIC PROPERTIES

In the following discussion, we fix the discrete step
ε = 1 in the solutions (61) and (62). For b(1,2) 	= 0 in
(55), namely, b(1,2,1∗,2∗) 	= 0 in (52), the two solitons
possess four arms and display regular interaction as shown

FIG. 2. (Color online) Exact solution for the collision of the two-soliton solution at t = 4.
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FIG. 3. (Color online) Numerical solution for the collision of two solitons at t = 4.

in Fig. 4. One can see that the two obliquely moving solitons
pass through each other without affecting each other and
keep their original shapes and velocities invariant during
the whole propagation. Therefore, the regular interaction
between the solitons is completely elastic. The elastic
interaction is shown in Fig. 4. The parameters are chosen
as k1 = 0.6 + 0.3i, k2 = 0.37 − 0.02i, p1 = −0.0185 −
0.192i, p2 = −0.240 690 307 6 − 0.119 744 223 4i.

When b(1,2,1∗,2∗) = 0, that is, b(1,2) = 0 in (55), resonant
interactions can happen. The resonant interactions in this case
are called the “minus resonance” [36,37], namely, after the
solitons interact with each other, the amplitudes decrease;
sometimes the amplitudes can even reach zero. The resonant
situation here is similar to that in the continuous case. In order
to analyze the amplitudes of the resonant solitons, we rewrite
the two-soliton solutions as follows:

u →

⎧⎪⎪⎨
⎪⎪⎩

u1 = 1
2
√

b(1,1∗)
eiη1I sech(η1R + ln b(1,1∗)

2 ), η2R → −∞, η1R ∼ 0,

u2 = 1
2
√

b(2,2∗)
eiη2I sech

(
η2R + ln b(2,2∗)

2

)
, η1R → −∞, η2R ∼ 0,

u3 = 0, η1R → +∞, η1R − η2R ∼ 0,

(68)

and in the second case when |b(1,2)| 
 1,

v →

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v1 = 1
4 (e2k1R + e−2k1R − 2)sech2

(
η1 + ln b(1,1∗)

2

)
, η2R → −∞, η1R ∼ 0,

v2 = 1
4 (e2k2R + e−2k2R − 2)sech2

(
η2 + b(2,2∗)

2

)
, η1R → −∞, η2R ∼ 0,

v3 = B1+
√

b(1,2∗)b(2,1∗)b(1,1∗)b(2,2∗)Re
[(

e
k∗
1 −k∗

2 +e
k∗
2 −k∗

1 −2
)

cosh
(
η1−η2+ 1

2 ln b(1,2∗)b(1,1∗ )
b(2,1∗)b(2,2∗ )

)]
(

2
√

b(1,1∗)b(2,2∗) cosh
(
η1R−η2R+ 1

2 ln b(1,1∗ )
b(2,2∗ )

)
+2

√
b(1,2∗)b(2,1∗) cosh

[
η1I −η2I + 1

2 ln b(1,2∗)
b(2,1∗)

)]2 ,

η1R → +∞, η1R − η2R ∼ 0,

(69)

where

B1 = b(1,1∗)b(2,2∗)
(
e2k1R−2k2R + e2k2R−2k1R − 2

) + b(1,2∗)b(2,1∗)
(
e2k1I −2k2I + e2k2I −2k1I − 2

)
.

According to (68) and (69), the interaction between two
solitons is investigated in Fig. 5. The parameters are chosen
as k1 = 0.5 + 0.20i, k2 = 0.37 − 0.02i, p1 = −0.0185 −
0.192i, p2 = −0.240 690 307 6 − 0.119 744 223 4i. We find
that the two solitons possess three branches extending to
infinity; this is called the triple-wave structure [37]. Therefore,
one can see that for the potential |un|2, the amplitude of the
third branch is zero. The third branch has a high and steep
wave hump for the potential vn. These phenomena can also be
found in the continuous case.

When b(1,2,1∗,2∗) → 0, as in the continuous case,
another type of resonance is shown in Fig. 6.
The parameters are chosen as k1 = 0.500 000 01 +
0.200 000 01i, k2 = 0.37 − 0.02i, p1 = −0.0185 − 0.192i,

p2 = −0.240 690 3076 − 0.119 744 223 4i and now b(1,2) =
5.222 108 512 × 10−9 + 4.762 0148 44 × 10−9i. In Fig. 6(a),

the two solitons generate a small-amplitude soliton (in fact the
amplitude is close to zero here) in the vicinity of the crossing
point, which is different from those in Fig. 5(a). It looks as if
the two solitons separate from each other into two parts. But
in Fig. 6(b), the line solitons interact to create a particularly
high and steep wave hump in the vicinity of the crossing point,
which is also different from those in Fig. 5(b). The resonant
interaction under the situation b(1,2,1∗,2∗) → 0 is similar to
that in the continuous case.

Three-soliton solutions can be obtained from (61) and
(62) by setting N = 3. The elastic interaction among
three solitons is shown in Fig. 7 with parameters
chosen as k1 = 0.6 + 0.3i, k2 = 0.37 − 0.02i, k3 = 0.2 +
0.1i, p1 = −0.0185 − 0.192i, p2 = −0.240 690 307 6 −
0.119 744 223 4i, p3 = −0.1 − 0.25i. The resonant int-
eraction among three solitons is much more complicated
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FIG. 4. (Color online) The elastic interaction of two solitons at t = 20.

FIG. 5. (Color online) Resonant interactions between two solitons at t = −10 when b(1,2) = 0.

FIG. 6. (Color online) Resonant interactions between two solitons at t = 20 when b(1,2) → 0.
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FIG. 7. (Color online) Elastic interactions between three solitons at t = 20.

than that of two solitons. Here only one case is depicted
in Fig. 8 with the parameters k1 = 0.5 + 0.2i, k2 = 0.37 +
0.02i, k3 = 0.24 + 0.257i, p1 = 0.0185 + 0.092i, p2 =
−0.173 412 314 8 + 0.164 255 776 6i, p3 = −0.6 − 0.3i.

VI. CONCLUSION

To summarize, we presented here a semidiscrete integrable
version for a (2 + 1)-dimensional system and derived their
N -soliton solutions by using the Pfaffian technique. Based
on the asymptotic behavior of the two-soliton solutions (52)
and (53) and graphical analysis, we analyzed the dynamics
of the interactions. It is shown that the regular interaction is
completely elastic (i.e., Fig. 4), and two types of resonance
occur between the two solitons, both of which are noncom-
pletely elastic (i.e., Figs. 5 and 6). A triple structure (Fig. 5)
in the process of the interactions and a high wave hump in
the vicinity of the crossing point (i.e., Fig. 6), are observed.
Based on the results obtained, it is natural to further consider
the integrability of the differential-difference system, such
as the Bäcklund transformation, the Lax pair, and infinite
conservation laws.
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APPENDIX

A Pfaffian is the square root of a skew-symmetric de-
terminant of order 2n, and consequently the properties of
Pfaffians are closely related to those of determinants [30].
Let A = det(aj,k) (1 � j, k � 2n), where aj,k = −ak,j . The
Pfaffian expression of A is

A = [Pf(1,2,3, . . . ,2n)]2.

For example, if n = 1, we have
∣∣∣∣ 0 a12

−a12 0

∣∣∣∣ = a2
12 = [Pf(1,2)]2. (A1)

FIG. 8. (Color online) Resonant interactions between three solitons at t = 20.
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If n = 2, we get∣∣∣∣∣∣∣∣∣

0 a12 a13 a14

−a21 0 a23 a24

−a31 −a32 0 a34

−a41 −a42 −a43 0

∣∣∣∣∣∣∣∣∣
= (a12a34 − a13a24 + a14a23)2 = [Pf(1,2,3,4)]2. (A2)

We rewrite the original Eqs. (32) as follows:

iDtgn ·fn + gn+1 ·fn−1 + gn−1fn+1 − 2gnfn = 0, (A3a)

4(Dt + Dy)fn+1 ·fn + gn+1g
∗
n + gng

∗
n+1 = 0, (A3b)

and define the Pfaffian elements:

Pf(ai,aj ) = i
eki − ekj

eki+kj + 1
eηi+ηj ,

(A4a)

Pf(a∗
i ,a

∗
j ) = −i

ek∗
i − ek∗

j

ek∗
i +k∗

j + 1
eη∗

i +η∗
j ,

Pf(ai,a
∗
j ) = −i

eki + ek∗
j

eki+k∗
j − 1

eηi+η∗
j , (A4b)

Pf(ai,b
∗
j ) = (a∗

i ,bj ) = 0, Pf(ai,bj ) = Pf(a∗
i ,b

∗
j ) = δij ,

(A4c)

Pf(bi,bj ) = 0, Pf(b∗
i ,b

∗
j ) = 0,

(A4d)
Pf(bi,b

∗
j ) = i

4(pi + p∗
j + qi + q∗

j )
,

Pf(d0,β) = Pf(aj ,β) = Pf(a∗
i ,β) = Pf(b∗

j ,β) = 0,

Pf(bi,β) = 1, (A4e)

Pf(d0,aj ) = eηj , Pf(d0,a
∗
j ) = eη∗

j , Pf(d0,bi) = Pf(d0,b
∗
i ) = 0,

(A4f)

where δij is the Kronecker delta function and

ηi = kin + piy + qit, qi = i
(
eki + e−ki − 2

)
,

i = 1,2, . . . ,N.

Theorem 1. The N -soliton solution to Eqs. (32) can be
expressed in the Pfaffian form

fn = Pf(a1,a2, . . . ,aN ,a∗
1 ,a∗

2 , . . . ,a∗
N,b1,b2, . . . ,bN ,b∗

1,

b∗
2, . . . ,b

∗
N ) = Pf(·), (A5)

gn = Pf(d0,β,a1,a2, . . . ,aN ,a∗
1 ,a∗

2 , . . . ,a∗
N,b1,

b2, . . . ,bN ,b∗
1,b

∗
2, . . . ,b

∗
N ) = Pf(d0,β,·), (A6)

where we use the notation (·) for the sake of simplicity.
We introduce the Pfaffian elements cp and cm as

Pf(d0,cp) = 0, Pf(cp,ai) = (−ieki − 1
)
eηi ,

(A7)
Pf(cp,a∗

i ) = (
iek∗

i − 1
)
eη∗

i ,

Pf(d0,cm) = 0, Pf(cm,ai) = (
ie−ki − 1

)
eηi ,

(A8)
Pf

(
cm,a∗

i ) = (−ie−k∗
i − 1

)
eη∗

i .

In what follows, we denote Pf(·) by (·) for the sake of
simplicity. From the properties of Pfaffians, we get the
following differential and difference formulas for fn and gn,

fn+1 = (
d0,cp,·) + (·) , (A9a)

gn+1 = i (d0,β,·) + i(cp,β,·), (A9b)

fn−1 = (d0,cm,·) + (·), (A9c)

gn−1 = −i(d0,β,·) − i(cm,β,·), (A9d)

fn,t = − (
cm,cp,·) + i (·) + (d0,cm,·) − (

d0,cp,·) , (A9e)

gn,t = −(d0,cm,cp,β,·) − i(d0,β,·) − (cp,β,·) + (cm,β,·).
(A9f)

The substitution of (A9) into (A3a) implies

− i
(
d0,cm,cp,β,·) (·) + i (d0,cm,·) (cp,β,·)
− i

(
d0,cp,·) (cm,β,·) + i (d0,β,·) (

cm,cp,·) = 0,

which vanishes due to the Pfaffian identity [30]

(a1,a2,a3,a4,1,2, . . . ,2m)(1,2, . . . ,2m)

− (a1,a2,1,2, . . . ,2m)(a3,a4,1,2, . . . ,2m)

+ (a1,a3,1,2, . . . ,2m)(a2,a4,1,2, . . . ,2m)

− (a1,a4,1,2, . . . ,2m)(,a2,a31,2, . . . ,2m).

= 0. (A10)

Thus we proved that (A5) and (A6) satisfy Eq. (A3a).
Furthermore, in order to confirm that (A5) and (A6) satisfy
(A3b), we introduce a new auxiliary element β∗ and define
new Pfaffian entries as follows:

(d0,β
∗) = (aj ,β

∗) = (a∗
i ,β

∗) = (bj ,β
∗) = 0, (b∗

i ,β
∗) = 1.

(A11)
It is easy to verify that

fn,t + fn,y = − i

4
(β,β∗,·), (A12a)

fn+1,t + fn+1,y = − i

4

[(
β,β∗,d0,cp,·) + (β,β∗,·)] ,

(A12b)

g∗
n = (d0,β

∗,·), (A12c)

g∗
n+1 = −i(d0,β

∗,·) − i(cp,β∗,·). (A12d)

(see the Appendix in [38] for reference). By substituting
(A12) and (A9) into (A3b), Eq. (A3b) is reduced to the
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Pfaffian identity

i[
(
d0,cp,·) + (·)](β,β∗,·) − i[

(
β,β∗,d0,cp,·) + (β,β∗,·)] (·)

+ [i (d0,β,·) + i(cp,β,·)](d0,β
∗,·) − [i(d0,β

∗,·) + i(cp,β∗,·)] (d0,β,·)
= −i

(
β,β∗,d0,cp,·) (·) + i

(
d0,cp,·) (β,β∗,·) + i(cp,β,·)(d0,β

∗,·) − i(cp,β∗,·) (d0,β,·)
= 0. (A13)

Thus the bilinear Eq. (A3b) is established and so the theorem is proven. �
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