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Spontaneous formation and nonequilibrium dynamics of a soliton-shaped
Bose-Einstein condensate in a trap
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The Bose-stimulated self-organization of a quasi-two-dimensional nonequilibrium Bose-Einstein condensate
in an in-plane potential is proposed. We obtained the solution of the nonlinear, driven-dissipative Gross-Pitaevskii
equation for a Bose-Einstein condensate trapped in an external asymmetric parabolic potential within the
method of the spectral expansion. We found that, in sharp contrast to previous observations, the condensate
can spontaneously acquire a solitonlike shape for spatially homogeneous pumping. This condensate soliton
performs oscillatory motion in a parabolic trap and, also, can spontaneously rotate. Stability of the condensate
soliton in the spatially asymmetric trap is analyzed. In addition to the nonlinear dynamics of nonequilibrium
Bose-Einstein condensates of ultracold atoms, our findings can be applied to the condensates of quantum well
excitons and cavity polaritons in semiconductor heterostructure, and to the condensates of photons.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) and superfluidity are
hallmarks of quantum degenerate systems composed of in-
teracting bosons. In the BEC state, a substantial fraction
of particles at low temperatures spontaneously occupies the
single lowest-energy quantum state thus, forming a condensate
in the energy space. One of famous examples of BECs is a
condensation of ultracold alkali-metal atoms at the nK range
of temperatures [1,2]. The advances ultralow-temperature
techniques have already led to the development of various
technologies including international atomic time keeping, the
base of the Global Positioning System, which is familiar to
everyone.

Recently, significant progress in solid-state physics and
nanofabrication has enabled the experimental creation of a
class of condensed systems in semiconductor heterostructures
that demonstrate BEC [3–5]. In this case, the Bose particles
are excitons, i.e., electron-hole pairs coupled due to Coulomb
attraction in quasi-two-dimensional quantum wells (QWs), or
polaritons, quantum superpositions of excitons, and cavity
photons (see [6] for extensive review). The effective mass
of these particles is much smaller than for their atomic
counterpart and it varies from the free electron mass me order to
∼10−4me depending on the physical realization. As a result,
the solid-state systems undergo the BEC transition at much
higher temperatures Tc than the atomic BEC: Tc ranges from
∼a few K to ∼40 K [4,6,7]. Physics of exciton and polariton
BECs has already revealed exciting phenomena including
superfluidity [5], quantized vorticity [8], quantum solitons
[9,10], and a condensed-matter analog of Dirac monopole [11].
Solid-state BECs is a highly developing research field due
to potential applications in quantum and optical computing
[12,13], nonlinear interferometry [14], novel light sources
[15], and atomtronics [16]. Room temperature BECs have also
recently been observed for photons [17,18]. In the latter case,
the nonlinear interactions between the light quanta, which are
otherwise linear, are provided by the dye molecules introduced
into the microcavity.

In this paper, we study the dynamics of a trapped quasi-
two-dimensional BEC in the presence of an external source

and damping that provides general conditions for the Bose-
Einstein condensation of particles with finite lifetime. The
reduced dimensionality naturally appears in the solid-state
BEC realizations in planar cavities [4,5,7]. In trapped atomic
BECs this corresponds to the limit case where a characteristic
frequency of the trap along one direction is much higher than
those in two other directions [19]. To capture the experimental
conditions with spatially asymmetric traps, the condensate
dynamics was considered for elliptic traps where the trapping
potential strengths in two orthogonal directions are not the
same. In our studies, we perform the simulations taking an
exciton condensate as a relevant example.

We report that, in sharp contrast to previous observations,
under certain conditions the condensate spontaneously self-
localizes in a form of a solitary wave with a size smaller than
a typical condensate cloud size and smaller than the excitation
spot size. We found that a few types of the solitonlike waves
can form, including condensate humps and rotating doughnut
condensates (rings). Earlier, the solitons propagating on the
background of a uniform condensate has been observed in
quasi-two-dimensional solid-state systems [9,10]. In those
studies the solitons were the condensate perturbations, which
have been created artificially by perturbing the condensate
density by an additional “writing” laser beam. In our work, the
condensate itself self-organizes into a strongly nonuniform
soliton-shaped state that behaves as a “particle.” This particle
travels in a trap much like a classical particle that oscillates
in an external parabolic potential. Self-organization of the
condensate into a soliton is caused by the interplay of the Bose-
stimulated condensate formation and the nonlinear interactions
between the Bose particles, that is, by the universal factors,
which are present in any physical realization of a BEC. It
was also found that if the eccentricity of the elliptic parabolic
trap is high, the solitary wave does not form. In the latter
case, a conventional fluctuating condensate, which fills all the
energetically accessible area in the trap, was formed [20–22].

The paper is organized as follows. In Sec. II we describe
the model used in the simulations and present the method of
solution of the nonlinear, driven-dissipative Gross-Pitaevskii
equation for a BEC trapped in an external asymmetric
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parabolic potential. In Sec. III we discuss our main findings.
Our conclusions follow in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section we describe our research methodology and
present the system parameters, for which the simulations
have been done. To describe the dynamics of the dipolar
exciton condensate, we utilize the driven-dissipative Gross-
Pitaevskii equation for the condensate wave function. In this
work, we take excitons in coupled semiconductor quantum
wells, i.e., dipolar excitons, as a physical realization of
nonequilibrium Bose-Einstein condensate where nonlinearity
plays an important role [3,7,23–26].

The Gross-Pitaevskii equation also captures the dynamics
of Bose-Einstein condensates of cavity polaritons [6] and of
ultracold atoms [27]. In the latter case, the complex terms
in the right-hand side of driven-dissipative Gross-Pitaevskii
equation, Eq. (1) below, correspond to the slow condensate
depletion due to the cloud evaporation and to the initial injec-
tion of relatively hot atoms. The effective interaction strength
in quasi-two-dimensional atomic condensates depends on the
condensate density [27] in analogy with the case of dipolar
exciton condensates detailed in this section below.

The model formulated below captures the realistic details
of pumping in the Bose-Einstein condensed systems. Specif-
ically, the particles are injected into the system at elevated
energies (frequencies) and then relax to the low-energy states
due to the nonlinear interaction with each other. The relevant
examples of such systems are mentioned in the Introduction.
For example, for the dipolar exciton condensates, the excitons
are created at relatively high energies due to coupling of hot
electrons and holes generated by the external laser radiation
[28]. For polaritonic condensates, the scattering into the
condensate from a thermal bath of noncondensed polaritons
occurs at the bottleneck energy scale, which significantly
exceeds the characteristic energies of the particles in the
ground state [6]. In trapped atomic condensates, relatively hot
atoms with the energies exceeding the ground-state energy in
the trapping potential are initially injected into the system.
It has already been demonstrated that in the case of the
dipolar exciton condensates, the account for these details
results in formation of condensate turbulence under certain
conditions [21,22]. In this paper we show that this model
also predicts formation of long-living, solitonlike coherent
structures in the condensate. In contrast, in the conventional
approach (see, e.g., Ref. [6] for review), the pump rate does
not depend on the particle energy, thus the important details of
the nonequilibrium dynamics of the condensates are omitted.

A. Driven-dissipative Gross-Pitaevskii equation for
two-dimensional condensates

At temperatures below the BEC transition temperature, the
dipolar exciton condensate is described by the mean-field wave
function � = �(r,t), which depends on the two-dimensional
radius vector in the QW plane r = (x,y) and time t . The time
evolution of the condensate wave functions in an external trap

is captured by the Gross-Pitaevskii equation

i�
∂�

∂t
= − �

2

2mex

�� + U (r)� + g�|�|2 + i�

(
R̂ − 1

2τ

)
�.

(1)

In Eq. (1), mex is the exciton mass, � is the two-dimensional
Laplacian operator in the QW plane. The parabolic trapping
potential for the dipolar excitons is U (r) = 1

2 (γxx
2 + γyy

2),
where γx and γy are the potential strengths in x and y

directions, respectively. The last term in Eq. (1) describes
creation of the excitons due to the interaction with the laser
radiation and exciton decay, and τ is the exciton lifetime. The
source term ∝R̂�(r,t) reflects the fact that the condensate
particle creation rate ∼∂|�(r,t)|2/∂t due to Bose-stimulated
scattering into the condensate is proportional to the condensate
density |�(r,t)|2. The effective interaction strength g in Eq. (1)
for the dipolar exciton condensate depends on the chemical
potential μ in the system [21,22]. In the case where the exciton
cloud size is much greater than the mean exciton separation,
the interaction strength is g = 2π (e4D4μ/ε2)1/3, where e is
the electron charge, D is the interwell distance, and ε is the
dielectric constant of the material in the gap between two
quantum wells [21,22].

To study the exciton condensate dynamics, we numerically
integrate Eq. (1). There are a number of approaches for the
numerical integration of Gross-Pitaevskii-type equations. One
of the approaches is in solving Eq. (1) in r space by discretizing
it using a Crank-Nicholson finite difference scheme [29–31].
In Refs. [32] and [33] the ground-state wave function of
a trapped BEC was found by the direct minimization of
the energy functional for the Gross-Pitaevskii equation. The
convergence of various methods has been studied in Refs. [34]
and [35]. The stability and time evolution of solutions of the
driven-dissipative multidimensional Gross-Pitaevskii equation
has recently been analyzed numerically in Ref. [36]. The
spectral representation of the Gross-Pitaevskii equation has
been considered for atomic BEC condensates without a trap
[37]. In that case, the condensate wave function was expanded
using the plane-wave basis. Comprehensive reviews for these
methods are given in Refs. [38] and [39].

In our approach, we use the spectral representation for
the condensate wave function �(r,t) by expanding it in
terms of basis functions of the exactly solvable stationary
eigenvalue problem and for the time-dependent coefficients of
the expansion obtain the system of the first-order differential
equations that we solve numerically.

To utilize our approach let us consider the linear Hermitian
part of the Hamiltonian of Eq. (1),

Ĥ0 = − �
2

2mex

(
∂2

∂x2
+ ∂2

∂y2

)
+ 1

2
(γxx

2 + γyy
2), (2)

which is the Hamiltonian of a two-dimensional asymmetric
harmonic oscillator. This Hamiltonian enables the variable
separation and factorization of the wave functions [40],

Ĥ0ψnx
(x)ψny

(y) = Enxny
ψnx

(x)ψny
(y), (3)

where Enxny
= Eλx

nx
+ E

λy

ny
, Eλx

nx
= �ωλx

nx
, and E

λy

ny
= �ω

λy

ny
de-

termine the oscillator eigenfrequencies ωλx
nx

and ω
λy

ny
in the x

062901-2



SPONTANEOUS FORMATION AND NONEQUILIBRIUM . . . PHYSICAL REVIEW E 91, 062901 (2015)

and y direction, respectively. The functions ψλx
nx

(x) and ψ
λy

ny
(y)

are the eigenfunctions of a classical one-dimensional harmonic
oscillator problem that obey the time-independent Schrödinger
equation

− �
2

2mex

d2ψnξ
(ξ )

dξ 2
+ 1

2
γξ ξ

2ψnξ
(ξ ) = �ωnξ

ψnξ
(ξ ), (4)

where ξ labels the x and y variables. The solution of Eq. (4)
is [40]

ψλx

nx
(x) = 1√

λx

1√
π1/22nx nx!

e−(1/2)(x/λx )2
Hnx

(
x

λx

)
, (5)

ψ
λy

ny
(y) = 1√

λy

1√
π1/22ny ny!

e−(1/2)(y/λy)2

Hny

(
y

λy

)
, (6)

where ωλx
nx

= (γx/mex)1/2(nx +1/2), ω
λy

ny
= (γy/mex)1/2(ny +

1/2), nx = 0,1,2, . . . , ny = 0,1,2, . . . , Hn are the Hermite
polynomials, and λx and λy characterize the oscillator length
scales in the x and y directions, respectively.

To capture the presence of the trap now let us expand the
condensate wave function �(r,t) in terms of the eigenfunc-
tions ψn(r) = ψλx

nx
(x)ψ

λy

ny
(y),

�(r,t) =
∑

n

An(t)ψn(r), (7)

where An(t) are the time-dependent coefficients of the expan-
sion, and n = (nx,ny) is a two-dimensional integer index.

After the substitution of the expansion (7) into Eq. (1)
one obtains the following system of the first-order differential
equations for the coefficients An(t):

i�
∂An(t)

∂t
= �ωnAn(t) + i�

∑
m

RnmAm(t) − i
�

2τ
An(t)

+ g
∑

m, p,q

Wnm pqAm(t)A p(t)A∗
q(t), (8)

where

Wnm pq = λ2
0wnxmxpxqx

wnymypyqy
,

wnmpq =
∫ ∞

−∞
dξ fn(ξ )fm(ξ )fp(ξ )fq(ξ ),

and

fn(ξ ) = 1√
π1/22nn!

e−ξ 2/2Hn(ξ ).

The matrix elements of the source operator R̂ in Eq. (11)
are

Rnm =
∫

d r ψ∗
n (r)R̂ψm(r). (9)

We consider the case where the excitons are created by an
external homogeneous source in a given range of energies
(�ω1,�ω2), where ω1 and ω2 are the boundary frequencies of
the excitation frequency range. Thus, we assume the following
form for the matrix elements (9):

Rnm = δnm�(ωn), (10)

where �(ωn) = R0 if ω1 � ωn � ω2 and �(ωn) = 0 other-
wise. The R0 constant characterizes the intensity of the exciton
source. In most simulations, it was set equal R0 = 0.15ω0

where ω0 = (γ0/mex)1/2 is the oscillatory unit of frequency.
Additionally, the simulations have been performed for R0 =
0.25ω0 to demonstrate the transition to turbulence at elevated
pump rates. In the simulations, we set ω1 = 5ω0 and ω2 = 7ω0.

We consider Eqs. (1) and (8) in the interaction represen-
tation by separating the time dependence for the linearized
equation, An(t) = an(t)e−iωnt , where ωn is the eigenfrequency
of the mode n. In this representation, Eq. (8) reads

i�
∂an(t)

∂t
= i�

(
Rnn − 1

2τ

)
an(t)

+ g
∑

m, p,q

Wnm pq am(t)a p(t)a∗
q(t)ei�ωt , (11)

where Wnm pq are the matrix elements of the dipolar exciton
interaction, �ω = ωq + ωn − ωm − ω p is the frequency de-
tuning, and a star stands for the complex conjugate.

The characteristic length scales of the linearized problem
are

λx =
(

�
2

mγx

)1/4

, λy =
(

�
2

mγy

)1/4

. (12)

We assume that the trap is elongated in the x direction, thus
λx � λy . The characteristic trapping potential length scale is
λ0 = √

λxλy and the mean trapping potential strength is γ0 =√
γxγy . To characterize the spatial asymmetry of the trapping

potential U (r) we introduce its eccentricity as follows:

ε =
√

λ2
x − λ2

y

λ2
x

. (13)

While the dependence of the condensate dynamics is studied
for different eccentricities ε, the total area accessible for the
exciton cloud S = πλ2

0 in the trap U (r) is fixed to keep the
average condensate density constant at a given particle creation
rate.

The trap parameters γx and γy , which represent the
confinement strength, are expressed through the eccentricity
(13) as

γx = γ0(1 − ε2), γy = γ0

1 − ε2
. (14)

The characteristic length scales in the x and y directions are

λx = λ0

(1 − ε2)1/4
, λy = λ0(1 − ε2)1/4. (15)

The eigenfrequency of the oscillatory mode n = (nx,ny) in a
trap with the eccentricity ε is

ωn =
(

γ0

mex

)1/2 [√
1 − ε2(nx + 1/2)

+ 1√
1 − ε2

(ny + 1/2)

]
. (16)

062901-3



BERMAN, KEZERASHVILI, KOLMAKOV, AND POMIRCHI PHYSICAL REVIEW E 91, 062901 (2015)

The initial conditions at t = 0 were set as a Rayleigh-Jeans-
like thermal distribution

an(0) =
(

kBT

μ0 + �ωn

)1/2

eiφn (17)

with the chemical potential μ0 = �ω0, random phases φn, and
the temperature T = 0.1�ω0/kB , where kB is the Boltzmann
constant.

B. Simulation parameters and the integration method

As we stated above, we consider dipolar excitons with
spatially separated electrons and holes as the main example
of nonequilibrium Bose-Einstein condensation [3,7,23–26].
Taking GaAs heterostructures as a relevant example of such a
system, we set the dielectric constant equal ε = 13. The simu-
lations have been done for γ0 = 50 eV/cm2, the exciton mass
mex = 0.22me where me is the free electron mass, the interwell
distance D = 4.2 nm, and the exciton lifetime τ = 100 ns,
which are the representative parameters for the experiments
with the dipolar excitons in GaAs coupled QWs [20,25,26]. In
the simulations, we express the spatial coordinates and time
in the oscillatory units of length �x ≡ λ0 = 0.9 μm and of
time �t = (mex/γ0)1/2 = 1.6 ns. The unit of frequency in the
simulations is ω0 = �t−1 = 6.3 × 108 s−1.

As detailed above, we consider the dipolar exciton
condensates under the conditions of the experiments in
Refs. [3,7,23–26] where a rarefied exciton gas with the density
of n2D ∼ 109–1010 cm−2 is formed in coupled QWs with the
interwell separation D > 0.3aB , where aB = ε�

2/2mre
2 ≈

7 nm is the two-dimensional exciton Bohr radius and mr is
the exciton reduced mass. Such a dilute electron-hole system
(aBn

−1/2
2D 	 1) can be described as a weakly nonideal Bose-gas

of excitons [41,42]. As it was shown in Refs. [43] and [44],
in this regime a gas of interacting dipolar excitons can be
considered as a quantum fluid and the probability of biexciton
formation is negligibly small.

We numerically integrated Eq. (11) with the fourth order
Runge-Kutta scheme with a time step of 10−2�t . To obtain
the relative accuracy better than 10−3 for the condensate wave
function and the relative accuracy of 4 × 10−5 for the total
number of excitons in the condensate, we use Nx × Ny = 256
basis functions in the expansion (7) where 0 � nx < Nx , 0 �
ny < Ny , and Nx = Ny = 16 [45].

In the present work, we utilized graphics processing
unit (GPU) NVIDIA Tesla K20m [46] to solve numerically
Eqs. (11). The use of GPUs enabled us to perform the
simulations within a practically reasonable amount of time and
to achieve the required accuracy. In the GPU implementation,
we separated the real and imaginary parts in Eqs. (11) and thus
obtained a set of real equations. The interaction amplitudes
Wnm pq and the coefficients an(0) were initialized on the
host (processor) and then were transferred from the host
memory to the device (GPU) memory prior to the start of
the integration. In the GPU implementation of the code, we
used a two-dimensional (2D) computational grid consisting
of 2D blocks, which in turn consisted of a set of threads that
worked in parallel. We divided the problem size, Nx × Ny ,
in such a way that each thread on the GPU operated on one

element of the resultant grid that is, updated the variables at
given (nx,ny) at the current time step.

It follows from Eqs. (11) that for each n, the nonlinear in-
teraction term involves a summation over six one-dimensional
indices. Given the 2D computational grid, if each thread in a
block would access the GPU memory to read the data, the
performance of the kernel would suffer from the memory
bandwidth bottleneck in addition to the read latency. To
effectively utilize the memory bandwidth and avoid redundant
read accesses, we performed the following optimizations.
The GPU kernel has been divided into three subkernels,
which performed partial summations in the nonlinear term of
Eqs. (11). The first subkernel produced the summation over the
two-dimensional index q. The output of this kernel has been
stored in the global memory on the device and then has been
used by the second partial summation subkernel to produce the
partial sum over the index p. The latter partial sum was used
by the third subkernel to produce the final sum in the nonlinear
term in Eqs. (11). It was found that splitting the summation
kernel into three subkernels results in lower execution time
than performing the complete summation in a single kernel.

We used a serial code for the same parameter set to
benchmark the GPU code. In the serial code, the explicit
complex representation of Eqs. (11) has been utilized. We
found that the simulation for a single run required ∼88 h on
a GPU and showed ∼10× acceleration compared to the serial
version of the code.

III. RESULTS AND DISCUSSION

In this section we present the results of our studies. First,
we consider spontaneous formation of the dipolar exciton
condensate patterns and their dynamics in a trapping potential.
Then, we analyze the details of the pattern rotation. Finally, we
consider the effect of the asymmetry of the trapping potential
and compare our findings with the existing results.

A. Formation of a solitonlike condensate

To study the dynamics of the dipolar exciton condensate,
we determined the condensate density distribution at different
moments of time by integrating Eq. (1) with the source term
(10) and initial conditions (17). In our studies, we performed
six independent runs for the trap eccentricity ε = 0.2 and three
independent runs for all other values of the eccentricity in the
range 0 � ε � 0.8. Figure 1 demonstrates the dependence of
the total number of dipolar excitons in the condensate as a
function of time,

N (t) =
∫

d2r|�(r,t)|2, (18)

obtained in the simulations for the trap eccentricity ε = 0.2. It
is seen that initially the number of excitons grows with time
and then saturates at t > ts ≡ 70�t ≈ 1.1 × 10−7 s. At t ∼ ts
the system comes to a steady state where the total number of
dipolar excitons only slowly varies with time.

To characterize the dipolar exciton condensate dynamics
in the steady state at t > ts , we studied the time evolution
of the condensate density in the trap. Figure 2 shows the
graphical output from the simulations made for the eccentricity
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FIG. 1. Dependence of the total number of dipolar excitons in
the condensate on time in a trap with γ0 = 50 eV/cm2 for the trap
eccentricity ε = 0.2. The numerical unit of time �t is specified in
the text.

ε = 0.2 (upper row) and ε = 0 (lower row). The results in
Figs. 2(a)–2(c) are shown for the same data with ε = 0.2 as
in Fig. 1 above. It is seen in Fig. 2 that in both cases ε 
= 0
and ε = 0, a spatially localized condensate pattern is formed.
Below we refer to such structures as condensate solitary waves,
or condensate solitons.

It is also seen in Fig. 2 that the pattern travels in the trapping
potential. To characterize the condensate pattern motion, we
show in Figs. 3(a) and 3(b) the dependence on time of the
x and y coordinates of the center of mass of the dipolar
exciton condensate for the data presented in Figs. 2(a)–2(c).
The center-of-mass coordinate rcm(t) = (xcm(t),ycm(t)) was
calculated from the condensate wave function as follows:

rcm(t) =
∫

d2r|�(r,t)|2r∫
d2r|�(r,t)|2 . (19)

It is seen from Figs. 3(a) and 3(b) that the position of the center
of mass of the pattern oscillates with time. At the moment

t ∼ 130�t , the oscillations reach a steady state, in which
their amplitude and period only slowly vary with time. As
follows from Figs. 3(a) and 3(b), the period of the oscillation
of the pattern in the trap is ∼6.3�t ≈ 1.0 × 10−8 s. The
trajectory of the pattern can also be viewed as a Lissajous
figure for the condensate center of mass in a parametric plot
in the (xcm(t),ycm(t)) plane, as it is presented in Fig. 3(c). The
distance between two farthest points of the trajectory for the
condensate center of mass estimated from Figs. 3(a)–3(c) is
∼4.8�x ≈ 4.3 μm.

To characterize the internal structure of the solitonlike
pattern, we calculated the time- and angle-averaged radial
density distribution function for the condensate in the center-
of-mass frame,

D(ρ) = 1

t2 − t1

∫ t2

t1

dt

(
1

2π

∫ 2π

0
dϕρ |�[rcm(t) + ρ,t]|2

)
.

(20)

In Eq. (20), (t2 − t1) is the time-averaging interval, the integral
in the round brackets is taken over the direction ϕρ of the
relative radius vector ρ = r − rcm(t), and we denoted ρ =
|ρ|. The time-averaging interval was bound by the moments
t1 = 140�t and t2 = 200�t . The results of the calculations
for three independent runs for ε = 0 and ε = 0.2 are shown
Fig. 4. It is seen that the characteristic radius ρ0 of the pattern
defined as a width at the half height for D(ρ) varies from ∼2�x

to 2.5�x. This conclusion was validated for all independent
runs performed under the same conditions. The comparison
of Figs. 3(a)–3(c) and Fig. 4 shows that the traveled distance
for the solitonlike pattern during its oscillation in the trap is
of the order of or greater than twice the radius of the pattern.
In other words, a solitonlike pattern performs large-amplitude
oscillatory motion in a parabolic trap.

It is also seen in Fig. 4 that two types of patterns are
formed. In the pattern of the first kind, the maximum of
the exciton condensate density is positioned at its center rcm

FIG. 2. (Color online) Formation of a traveling solitonlike dipolar-exciton pattern in a trap with the eccentricity ε = 0.2 (upper row)
and ε = 0 (lower row). The figures show the exciton condensate density n(r,t) = |�(r,t)|2 in three subsequent moments. Upper row: (a)
t = 139.5�t , (b) t = 142.5�t , and (c) t = 145.5�t after the external drive was turned on. Lower row: (d) t = 143.0�t , (e) t = 146.5�t , and
(f) t = 149.5�t . The vertical bars show the exciton condensate density. The numerical unit of length �x is specified in the text.
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FIG. 3. Motion of (a) x and (b) y coordinates of the center of
mass of the condensate pattern. Panel (c) shows motion of the center
of mass of the condensate in the (x,y) plane for t � 150�t , where
the pattern exhibits stable periodic oscillations in the parabolic trap.
The eccentricity of the trapping potential is ε = 0.2. The curves in
(a)–(c) are shown for the data in Figs. 2(a)–2(c).

(see open circles in Fig. 4). This corresponds to a humplike
soliton structure. In the pattern of the second kind, the
condensate density has a minimum at the center of the pattern
(open triangles and filled triangles in Fig. 4) and therefore
it corresponds to a ringlike structure. We also found that the
structures of both kinds can be formed for the same eccentricity
(cf. open circles and open triangles for ε = 0 in Fig. 4). It is
worth noting that the runs are independent since each run was
set based on random phases in the initial conditions for the
condensate wave function at t = 0 as described in Sec. II A.
The motion of a ring structure is shown in the first row of
Fig. 2, for which the minimum of the condensate density is
seen as a bright spot at the center of the pattern, whereas a
humplike structure is shown in the second row of the same
figure.

We infer that the solitary-wave condensate formation is
caused by the interplay of the two factors: (i) Bose-stimulated

 0

 20

 40
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 80

 0  1  2  3  4  5

D
(ρ

)

ρ/Δx

ε=0
ε=0

ε=0.2

FIG. 4. Time-averaged radial density distribution (20) of the
dipolar exciton condensate soliton as a function of the radial distance
ρ in the center-of-mass frame for three independent runs with the
eccentricity ε = 0 (open circles and open triangles) and for ε = 0.2
(filled triangles). The averaging is made for the time period between
the moments t1 = 100�t and t2 = 200�t . Data for ε = 0 (open
circles) and ε = 0.2 (filled triangles) are calculated for the data shown
in Fig. 2 in the upper and lower rows, respectively. Points show the
result of the calculation, curves are shown to guide the eye.

scattering of excitons into the condensate and (ii) the exciton-
exciton repulsion in the condensate. The first factor results in
the increased probability ∝ ni of the condensate growth in the
state i in the region already occupied by ni particles [47]. This
effect is captured by the source term in Eq. (1) as explained
in Sec. II A. It leads to the exponential-like increase of the
particle occupation numbers in the occupied states. However,
if the spatial density of the condensate is increased, the mutual
repulsion of the condensate particles tends to decrease the
density and results in “spreading” of the particles over the
system. The nonlinear term in Eq. (1) is responsible for this
effect. In the presence of the continuous source of the particles
(i.e., external laser radiation), this is the finite lifetime of
dipolar excitons that limits the growth of the total number
of the particles in the condensate. The approach where the
particles are injected into the system at a given energy scale has
earlier been used to describe the dynamics of the Bose-Einstein
condensation of ultracold gases [37,48,49] (see Ref. [39]
for review). Specifically, in that scenario, the injected hot
atoms relaxed due to multiple collisions toward the condensate
state. The condensate depletion due to atom evaporation was
captured by introducing the effective condensate decay rate. In
contrast, for the case of dipolar exciton condensate considered
in this paper, the depletion rate is set the same for all states to
capture the fact that the dipolar exciton lifetime only weakly
depends on the exciton energy.

B. Ring condensate rotation

We assume that formation of the ring structures is caused
by spontaneous rotation of the nonequilibrium condensate.
It is known that for the Bose-condensed, superfluid systems
two types of rotation are possible: (i) vortex rotation and (ii)
solid-body-like rotation [50]. The vortex rotation is realized
as quantized vortices in the condensate. The latter have a
velocity singularity and zero condensate density at the vortex
core [51]. In addition to classical experiments with superfluid
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He-II (see, e.g., a review in Ref. [52]), quantized vortices
have recently been observed in Bose-Einstein condensates of
ultracold atoms [53] and in condensates of exciton polaritons
[8,54,55]. For the solid-body rotation, the condensate density
does not mandatorily turn to zero at the rotation center [50].
Below we demonstrate that the solid-body rotation is realized
for the solitonlike patterns described above.

To analyze the rotation of the pattern we first calculate
the angular momentum of the dipolar exciton condensate as a
function of time,

M(t) =
∫

d2r�∗(r,t)M̂z�(r,t), (21)

where

M̂ = [ρ × p̂]

is the angular momentum operator for the condensate in
the center-of-mass frame, p̂ = −i�∇ρ ≡ −i� ∂

∂ρ
is the linear

momentum operator, and z marks the direction perpendic-
ular to the QW plane. Figure 5(a) demonstrates the time
dependence of the angular momentum of the ring pattern
shown in Figs. 2(a)–2(c). We see in Fig. 5(a) that the angular
momentum of the ring pattern fluctuates with time. We note
that the angular momentum fluctuations are natural for the
dipolar exciton condensate since the system is driven by
an external pump: according to Eq. (1) both the source
and damping of the excitons are present. Additionally, the
ring condensate is formed in the parabolic trap that breaks
the rotational symmetry in the moving, off-center frame of
reference. Therefore, the angular momentum of the system
is not conserved. However, it is seen in Fig. 5(a) that at the
moment of time t ≈ 140�t the angular momentum relaxes to
a steady state and it further fluctuates about the mean value
M ≈ 0.8.

To more fully characterize the pattern rotation, we cal-
culated the time dependence of the probabilities |cm(t)|2 of
having the specific angular momentum m. Here, cm(t) are
the normalized components the expansion of the exciton
condensate wave function over the basis functions with a fixed
momentum m in the center-of-mass frame,

cm(t) =
∫

dϕρdρ ρ�(r,t)�∗
m(ϕρ)( ∫

dϕρdρ ρ|�(r,t)|2)1/2 , (22)

where in Eq. (22) one has r = rcm + ρ, rcm is defined in
Eq. (19), �m(ϕρ) = 1√

2π
eimϕρ is the eigenfunction of a system

with a given angular momentum m. The components (22)
are normalized so that M(t) = ∑

m |cm(t)|2m. Figure 5(b)
shows the results of the calculations for |cm(t)|2 for the
pattern in Figs. 2(a)–2(c). Specifically, the components with
the angular momenta m = 1, 5, and 9 are plotted. It is seen that
the probabilities |cm(t)|2 strongly fluctuate with time. These
fluctuations lead to the fluctuations of the angular momentum
M(t) of the pattern seen in Fig. 5(a). The fluctuations are
caused by the energy redistribution between the components
with different m due to the nonlinear interactions in the
condensate as well as due to the external pump.
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FIG. 5. (a) Dependence of the angular momentum of the ring
structure in Figs. 2(a)–2(c) on time. Points show the results of the
calculation, the line segments between the points are shown to guide
the eye. The momentum is expressed in the units of �. (b) The time
dependence of the probabilities |cm(t)|2 of having the momentum m.
(c) Time-averaged probabilities, 〈|cm(t)|2〉, for various momenta m.
The graphs in (a)–(c) are plotted for the data shown in Figs. 2(a)–2(c).

Figure 5(c) shows the time-averaged probabilities

〈|cm|2〉 = 1

t2 − t1

∫ t2

t1

dt |cm(t)|2 (23)

for the components with −20 � m � 20. The probabilities
in Eq. (23) are averaged over the time interval between
t1 = 140�t and t2 = 200�t . It is seen in Fig. 5(c) that despite
the averaged angular momentum of the system oscillating
around the mean value M ≈ 0.8, the rotational motion of the
pattern is more complex and includes the components with
the momenta reaching |m| ∼ 10. Moreover, both positive and
negative m contribute to the total angular momentum therefore,
rotations in both directions are present in the ring pattern at
the same time. If a vortexlike rotation were realized in the
system, the condensate density inevitably would turn to zero
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FIG. 6. (Color online) Exciton density distribution in a trap with
the eccentricity ε = 0.8 for the moments (a) t = 139.5�t , (b) t =
142.5�t , and (c) t = 145.5�t . The vertical bars show the exciton
condensate density n(x,y). It is seen that a traveling exciton pattern
does not emerge for a large eccentricity ε, and a turbulent condensate
[21,22] is formed instead.

at the center of the vortex, as is described above. Additionally,
the vortices with |m| > 1 are dynamically unstable and tend
to decay to elementary vortices with m = 1 [50]. However,
in our case, the condensate density does not turn to zero at
any point inside the pattern for both hill-like and ringlike
structures (see Fig. 4) and its spontaneous rotation includes
the components with |m| > 1 as is demonstrated in Fig. 5(c).
Therefore, the solid-body-like rotation is realized in the case
of the dipolar exciton condensate patterns. We emphasize that
this average solid-body-like rotation is a superposition of a
few interacting rotating flows of the condensate in the pattern,
whose interference results in the fluctuations of the condensate
density of the pattern, as is clearly seen in Fig. 2 above.

C. Effects of the eccentricity and pumping rate

We also studied the effects of the eccentricity ε of the
trapping potential on the condensate dynamics. It was found
that for symmetric or slightly asymmetric traps with the
eccentricity ε < 0.5 the oscillating soliton patterns were
formed similarly to those described in the previous sections.
However, for relatively large eccentricities ε � 0.5 formation
of the oscillating patterns was not observed. The result of the
simulations for ε = 0.8 is shown in Fig. 6. The absence of the
oscillating patterns for large ε can be understood as follows.
For a large eccentricity, the width of the spatial domain in the
y direction energetically accessible for the condensate in the
trapping potential becomes comparable with or smaller than
the radius of the pattern ρ0 and the pattern is squeezed in the y

direction by the trap. Due to that, the pattern becomes unstable
and the exciton cloud filling all energetically accessible spatial
domain in the trap is formed, as is seen in Fig. 6. In this case,
the observed condensate dynamics are similar to a turbulent
exciton condensate described in Refs. [21] and [22], where
nonlinear fluctuations of the cloud density are observed rather
than the formation of a traveling, spatially localized solitonlike
condensate structure.

It was also found that the solitonlike condensate is not
formed even for ε 	 1 if the particle creation rate R0 is
higher than a certain value. In the latter case, a turbulent
condensate was observed in the simulations, in agreement with
the previous works [21,22]. In this turbulent state, a relatively
large fluctuating cloud is formed at the center of the trap. The
transition from a soliton-shaped to turbulent condensate with
the increase of the particle creation rate R0 is shown in Fig. 7.

D. Comparison of our findings with the existing results

The main object to which our findings can be applied is
a nonequilibrium solid-state condensate, e.g., a condensate
of excitons, bound electron-hole pairs, in semiconductor
heterostructure. Since the lifetime of excitons in a single
semiconductor QW is relatively short (∼ a few ns) [56], the
experiments with exciton condensates are mostly focused on
so-called dipolar (or, indirect) excitons in coupled QWs, where
the positively charged holes and negatively charged electrons
are located in different QWs, which are separated by a
nanometer-wide semiconductor or dielectric barrier [7,25,57].
The dipolar excitons formed by spatially separated charges in
coupled QWs are characterized by the relatively long exciton
lifetime compared to excitons in a single QW due to small
electron-hole recombination rates suppressed by the barrier
between QWs. It is worth noting that various experiments
have revealed rich collective dynamics of dipolar excitons in
coupled QWs and have demonstrated the existence of different
phases in an electron-hole bilayer system. The experimental
works on excitonic phases in coupled QWs were reviewed
in Ref. [58]. The experimental progress toward probing the
ground state of an electron-hole bilayer by low-temperature
transport was reviewed in Ref. [59]. The recent progress in the
theoretical and experimental developments in the studies of a
dipolar exciton condensate in coupled QWs was reviewed in
Ref. [60].

Owing to nonzero average electric dipole moment of dipolar
excitons, their interactions are long-ranged and decrease
with the distance as ∝ r−3. The presence of the long-range
interactions can significantly modify the condensate dynamics
under certain regimes [61]. In particular, in spatially homoge-
nous two-dimensional systems the logarithmic corrections
to the chemical potential of the system become essential
[61]. However, it was demonstrated [21,22] that under usual
experiment conditions for the dipolar exciton condensation
in coupled QWs, the most significant contribution to the
exciton-exciton dynamics arises from short-range scattering.
In effect, the dynamics of the dipolar exciton condensate can
effectively be described as the local one, where, however,
the effective interaction strength for the condensate particles
pairwise interactions is a function of the chemical potential in
the system. This quasilocal model has recently been applied
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FIG. 7. (Color online) Evolution of the condensate dynamics
from a traveling soliton (a),(b) to a turbulent condensate (c),(d)
with the increase of the particle creation rate from R0 = 0.15ω0 to
R0 = 0.25ω0. The eccentricity of the trap is ε = 0, and time t is
shown on the plot.

to the study of the nonlinear evolution of dipolar exciton
condensates in a radially symmetric trap [21,22].

The observed self-organization of the dipolar exciton
condensates may be similar to the dissipative soliton for-
mation known for open nonlinear optical systems, lasers,
and chemical systems [62]. Solitons dynamics described by
the one-dimensional conservative Gross-Pitaevskii equation
without the source and decay terms (also known as nonlinear
Schrödinger equation) was studied in detail for the case
where the trapping potential is absent (see Refs. [63] and
[64] for review). However, in our case, the system is two
dimensional that makes inapplicable the general analytical

approaches developed for the integrable one-dimensional
nonlinear systems [64]. An extended dimensionality of the
systems compared to Refs. [63,64] results in the presence of
additional degrees of freedom, in particular, in the possibility
for the soliton to rotate.

It is also worth noting that the soliton propagation has
recently been observed in Refs. [9,10,65] for a condensate
of polaritons, which are a quantum superposition of the QW
excitons and cavity photons [6]. In Ref. [9] the solitons
propagate as a perturbation of the steady-state condensate
density. In Refs. [10] and [65] the solitons were created
by a tightly focused “writing” laser beam and then, freely
expanded or traveled in the microcavity. In our case, the
exciton condensate spontaneously forms a traveling soliton
under spatially homogenous pumping that is, inside the pump-
ing spot. Formation of inhomogeneous polariton condensate
patterns have also been considered in Refs. [66] and [67]. In
those works, the inhomogeneities in the condensate density
were caused by the interactions of polaritons with a cloud
of noncondensed excitons and with structural defects in the
cavity. The ring pattern formation was earlier demonstrated
for the dipolar excitons in coupled QWs and multiple QWs in
previous experimental and theoretical works [3,24,58,68,69].
In spatially resolved measurements, the photoluminescence
of the dipolar exciton pattern was seen as a central laser
excitation spot surrounded by a sharp ring-shaped region with a
diameter much larger than that for the spot and with large dark
regions separating the two. In the coupled QWs experiments
the voltage was applied perpendicular to the wells, causing
the bands to tilt and the electrons and holes to separate.
Both the lifetime and the energy of dipolar excitons with
spatially separated electrons and holes in different QWs can
be tuned by the electric field. The lifetime of quasiparticles
in those systems was increased up to microseconds due to
the charge separation in different QWs [70]. In the cases
mentioned above the formation of the external rings was
caused by the recombination of in-plane spatially separated
electrons and holes. The electrically injected carriers created
by the external gate voltage recombine with optically injected
carriers of the opposite sign [68,71,72]. In the framework of
the microscopic approach formulated in terms of coupled
nonlinear equations for the diffusion, thermalization, and
optical decay of the particles, the formation of the inner ring
was explained by the fact that in the optically pumped area the
exciton temperature is much larger than the lattice temperature.
As a result, the recombination decay of excitons is suppressed,
but while these excitons diffuse out of the optically pumped
area, they cool down and eventually recombine resulting in
a local increase of the photoluminescence signal [73]. In
other words, those experiments did not involve Bose-Einstein
condensation of excitons. Formation of the stationary exciton
condensate cloud with the size comparable with the size of
the laser pumping spot was treated in the framework of the
Thomas-Fermi approximation in Refs. [20] and [74]. Ring
polariton patterns were also excited by an elliptic ring laser spot
in experiments Ref. [54]. In contrast to all mentioned cases, the
traveling solitonlike condensates reported in this paper have a
characteristic size smaller than the excitation spot and are not
caused by the kinetics of the free carriers or by the interactions
with the structural inhomogeneities. We infer that the soliton
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formation is caused by the interplay of the Bose-stimulated
growth of the condensate that tends to increase the condensate
particle density and the exciton-exciton repulsion that leads to
the particle spreading in the system.

It is known that the condensation in infinite two-
dimensional systems is impossible due to the phase fluctu-
ations that destroy the long-range order in the system [75]. To
achieve the exciton condensation in quasi-two-dimensional
QW structures and to reach high enough exciton densities,
at which the system undergoes the BEC transition, most
of the experiments were conducted with excitons localized
in an external trapping potential. A few techniques were
utilized to create the exciton traps, including the application
of nonuninform mechanical stress to a semiconductor sample
[25] or electrostatic traps [26,76]. In these cases, the shape
of the exciton trap varied from a radially symmetric one to a
lozenge-shaped, elongated trap [25,76].

IV. CONCLUSIONS

To summarize, a trapped nonequilibrium condensate can
exhibit Bose-stimulated self-organization under the conditions
where it is driven by homogeneous external sources in a range
of frequencies. This self-organization results in formation
of spatially localized structures such as solitary condensate
waves—humps or rings. These solitons oscillate in a trap
in a manner similar to a classical particle and also can
spontaneously rotate. If the asymmetry of the trap exceeds
ε � 0.5 a conventional fluctuating elongated dipolar exciton
cloud is formed instead of a solitary wave. The dynamics of the
condensate also depends on the pumping rate. It was found that
at increased particle creation rates, the solitonlike condensate

dynamics is changed to a turbulent regime. The transition to
turbulence at high rates can be attributed to the excitation of
multiple interacting degrees of freedom in the system due to
nonlinearity. Turbulent exciton condensates have earlier been
considered in Refs. [21,22].

The spontaneous rotation of the soliton condensate ob-
served in our simulations can be detected in experiments
via polarization of the emitted light due to the electron-hole
recombination photoluminescence [8,54]. Recently, polarized
light has been applied to the multiplexing information transfer
through an optical waveguide [77,78]. The future work on the
self-organized dipolar exciton condensate might elucidate the
ways to control the soliton rotation, to be utilized as a source
of coherent polarized light with a given angular momentum
m. It is of interest for prospective applications in the above-
mentioned information technology to investigate how the
self-organized condensate reacts on the pulsed or modulated
pumping, to create a controllable source of coherent polarized
light signals. Self-organized soliton condensate patterns can
also potentially be applicable for the information transfer in
exciton-based integrated circuits [79].
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