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We investigate the time evolution of lead changes within individual games of competitive team sports.
Exploiting ideas from the theory of random walks, the number of lead changes within a single game follows a
Gaussian distribution. We show that the probability that the last lead change and the time of the largest lead size
are governed by the same arcsine law, a bimodal distribution that diverges at the start and at the end of the game.
We also determine the probability that a given lead is “safe” as a function of its size L and game time ¢. Our
predictions generally agree with comprehensive data on more than 1.25 million scoring events in roughly 40 000
games across four professional or semiprofessional team sports, and are more accurate than popular heuristics

currently used in sports analytics.
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I. INTRODUCTION

Competitive team sports, including, for example, American
football, soccer, basketball, and hockey, serve as model
systems for social competition, a connection that continues to
foster intense popular interest. This passion stems, in part, from
the apparently paradoxical nature of these sports. On one hand,
events within each game are unpredictable, suggesting that
chance plays an important role. On the other hand, the athletes
are highly skilled and trained, suggesting that differences in
ability are fundamental. This tension between luck and skill
is part of what makes these games exciting for spectators and
it also contributes to sports being an exemplar for quantitative
modeling, prediction, and human decision-making [1-4], and
for understanding broad aspects of social competition and
cooperation [5-10].

In a competitive team sport, the two teams vie to produce
events (“goals”) that increase their score, and the team with the
higher score at the end of the game is the winner. (This structure
is different from individual sports such as running, swimming,
and golf, or judged sports, such as figure skating, diving, and
dressage.) We denote by X(r) the instantaneous difference
in the team scores. By viewing game scoring dynamics as
a time series, many properties of these competitions may be
quantitatively studied [11,12]. Past work has investigated, for
example, the timing of scoring events [13—19], long-range
correlations in scoring [20], the role of timeouts [21], streaks,
and “momentum” in scoring [17,22-26], and the impact of
spatial positioning and playing field design [27,28].

In this paper, we theoretically and empirically investigate
a simple yet decisive characteristic of individual games: the
times in a game when the lead changes. A lead change
occurs whenever the score difference X (¢) returns to 0. Part
of the reason for focusing on lead changes is that these
are the points in a game that are often the most exciting.
Although we are interested in lead-change dynamics for all
sports, we first develop our mathematical results and compare
them to data drawn from professional basketball, where the
agreement between theory and data is the most compelling.
We then examine data for three other major competitive
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American team sports: college and professional football, and
professional hockey, and we provide some commentary as to
their differences and similarities.

Across these sports, we find that many of their statistical
properties are explained by modeling the evolution of the lead
X as a simple random walk. More strikingly, seemingly unre-
lated properties of lead statistics, specifically, the distribution
of the times ¢: (i) for which one team is leading O(t), (ii) for
the last lead change L(f), and (iii) when the maximal lead
occurs M(t), are all described by the same celebrated arcsine
law [29-31]:

1
VT =0’

for a game that lasts a time 7. These three results are,
respectively, the first, second, and third arcsine laws.

Our analysis is based on a comprehensive data set of
all points scored in league games over multiple consecutive
seasons each in the National Basketball Association (ab-
breviated NBA henceforth), all divisions of NCAA college
football (CFB), the National Football League (NFL), and the
National Hockey League (NHL) [32]. These data cover 40 747
individual games and comprise 1 306 515 individual scoring
events, making it one of the largest sports data sets studied.
Each scoring event is annotated with the game clock time ¢
of the event, its point value, and the team scoring the event.
For simplicity, we ignore events outside of regulation time (i.e.,
overtime). We also combine the point values of events with the
same clock time (such as a successful foul shot immediately
after a regular score in basketball). Table I summarizes these
data and related facts for each sport.

O(t) = L(t) = M) =

T

)

Basketball as a model competitive system

To help understand scoring dynamics in team sports and
to set the stage for our theoretical approach, we outline basic
observations about NBA regular-season games. In an average
game, the two teams combine to score an average of 93.6
baskets (Table I), with an average value of 2.07 points per
basket (the point value greater than 2 arises because of foul
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TABLE I. Summary of the empirical game data for the team sports considered in this study, based on regular-season games and scoring

events within regulation time.

Num.  Num. scoring Duration Mean events Mean pts.  Persistence Mean num. Frac. with no
Sport  Seasons games events T (sec.) per game N  per event s P lead changes N'  lead changes
NBA  2002-2010 11744 1098 747 2880 93.56 2.07 0.360 9.37 0.063
CFB  2000-2009 14 586 123 448 3600 8.46 5.98 0.507 1.23 0.428
NFL  2000-2009 2654 20 561 3600 7.75 5.40 0.457 143 0.348
NHL 2000-2009 11763 63 759 3600 5.42 1.00 — 1.02 0.361

shots and 3-point baskets). The average scores of the winning
and losing teams are 102.1 and 91.7 points, respectively, so
that the total average score is 193.8 points in a 48-min game
(T =2880 sec.). The rms score difference between the winning
and losing teams is 13.15 points. The high scoring rate in
basketball provides a useful laboratory to test our random-walk
description of scoring (Fig. 1).

Scoring in professional basketball has several additional
important features [18,19]:

(1) Nearly constant scoring rate throughout the game,
except for small reductions at the start of the game and
the second half, and a substantial enhancement in the last
2.5 minutes.

(2) Essentially no temporal correlations between successive
scoring events.

(3) Intrinsically different team strengths. This feature may
be modeled by a bias in the underlying random walk that
describes scoring.

(4) Scoring antipersistence. Since the team that scores cedes
ball possession, the probability that this team again scores next
occurs with probability p < 1.

(5) Linear restoring bias. On average, the losing team scores
at a slightly higher rate than the winning team, with the rate
disparity proportional to the score difference.
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FIG. 1. (Color online) Evolution of the score difference in a
typical NBA game: the Denver Nuggets vs the Chicago Bulls on
26 November 2010. Dots indicate the four lead changes in the game.
The Nuggets led for 2601 out of 2880 total seconds and won the game
by a score of 98-97.

A major factor for the scoring rate is the 24-sec. “shot
clock,” in which a team must either attempt a shot that hits the
rim of the basket within 24 sec. of gaining ball possession
or lose its possession. The average time interval between
scoring events is At = 2880/93.6 = 30.8 sec, consistent with
the 24-sec. shot clock. In a random-walk picture of scoring, the
average number of scoring events in a game, N =93.6, together
with s =2.07 points for an average event, would lead to an rms
displacement of x,,s = v/ Ns2. However, this estimate does not
account for the antipersistence of basketball scoring. Because
ateam that scores immediately cedes ball possession, the prob-
ability that this same team scores next occurs with probability
p ~ 0.36. This antipersistence reduces the diffusion coeffi-
cient of a random walk by a factor p/(1 — p) ~ 0.562 [18,33].
Using this, we infer that the rms score difference in an average
basketball game should be AS,s ~ /pNs?/(1 — p) ~ 15.01
points. Given the crudeness of this estimate, the agreement
with the empirical value of 13.15 points is satisfying.

A natural question is whether this final score difference is
determined by random-walk fluctuations or by disparities in
team strengths. As we now show, for a typical game, these two
effects have comparable influence. The relative importance of
fluctuations to systematics in a stochastic process is quantified
by the Péclet number Pe=vL /2D [34], where v is the bias
velocity, L = vT is a characteristic final score difference, and
D is the diffusion coefficient. Let us now estimate the Péclet
number for NBA basketball. Using A S;,s = 13.15 points, we
infer a bias velocity v = 13.15/2880 = 0.00457 points/sec.
under the assumption that this score difference is driven only
by the differing strengths of the two competing teams. We
also estimate the diffusion coefficient of basketball as D =
%(sz/ZAt) ~ 0.0391 (points)?/sec. With these values, the
Péclet number of basketball is

vL
Pe = — ~ 0.77. (2)
2D
Since the Péclet number is of the order of 1, systematic
effects do not predominate, which accords with common
experience—a team with a weak win/loss record on a good
day can beat a team with a strong record on a bad day.
Consequently, our presentation on scoring statistics is mostly
based on the assumption of equal-strength teams. However,
we also discuss the case of unequal team strengths for logical
completeness.

As we will present below, the statistical properties of
lead changes and lead magnitudes, and the probability that
a lead is “safe,” i.e., will not be erased before the game is
over, are well described by an unbiased random-walk model.
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The agreement between the model predictions and data is
closest for basketball. For the other professional sports, some
discrepancies with the random-walk model arise that may help
identify alternative mechanisms for scoring dynamics.

II. NUMBER OF LEAD CHANGES AND FRACTION
OF TIME LEADING

Two simple characterizations of leads are (i) the average
number of lead changes N in a game, and (ii) the fraction of
game time that a randomly selected team holds the lead. We
define a lead change as an event where the score difference
returns to zero (i.e., a tie score), but do not count the initial
score of 0-0 as lead change. We estimate the number of lead
changes by modeling the evolution of the score difference as
an unbiased random walk.

Using N = 93.6 scoring events per game, together with
the well-known probability that an N-step random walk is at
the origin, the random-walk model predicts /2N /m ~ 8§ fora
typical number of lead changes. Because of the antipersistence
of basketball scoring, the above is an underestimate. More
properly, we must account for the reduction of the diffusion co-
efficient of basketball by a factor of p/(1 — p) =~ 0.562 com-
pared to an uncorrelated random walk. This change increases
the number of lead changes by a factor 1/4/0.562 & 1.33,
leading to roughly 10.2 lead changes. This crude estimate is
close to the observed 9.4 lead changes in NBA games (Table I).

For the distribution of the number of lead changes, we make
use of the well-known result that the probability G(m,N)
that a discrete N-step random walk makes m returns to
the origin asymptotically has the Gaussian form G(m,N) ~
e~™/2N [35_37]. However, the antipersistence of basketball
scoring leads to N being replaced by N ]_Tp, so that the
probability of making m returns to the origin is given by

Gom Ny~ |22 gmivipvi-pl (3
7Nl —p)

Thus G(m,N) is broadened compared to the uncorrelated
random-walk prediction because lead changes now occur more
frequently. The comparison between the empirical NBA data
for G(m,N) and a simulation in which scoring events occur by
an antipersistent Poisson process (with average scoring rate of
one event every 30.8 sec.), and Eq. (3) is given in Fig. 2.

For completeness, we now analyze the statistics of lead
changes for unequally matched teams. Clearly, a bias in the
underlying random walk for scoring events decreases the
number of lead changes. We use a suitably adapted continuum
approach to estimate the number of lead changes in a simple
way. We start with the probability that biased diffusion lies in
a small range Ax about x = 0:

Ax o—Vt/4D

4 Dt

Thus the local time that this process spends within Ax about
the origin up to time ¢ is

—v%t/4D

T(t) = Ax /t Le
- 0 ~/4m Dt
= % erf(y/v2t/4D), ())
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FIG. 2. (Color online) Distribution of the average number of lead
changes per game in professional basketball.

where we used w = /v2t/4D to transform the first line into
the standard form for the error function. To convert this local
time to number of events, A/(¢), that the walk remains within
Ax, we divide by the typical time At for a single scoring event.
Using this, as well as the asymptotics of the error function, we
obtain the limiting behaviors:

N@) = 10 \/m, v’t/4D < 1 )
At vo/v, V2t /4D > 1,

with v = Ax/Ar and Ax the average value of a single
score (2.07 points). Notice that v2T /4D = Pe/2, which, from
Eq. (2), is roughly 0.38. Thus, for the NBA, the first line of
Eq. (5) is the realistic case. This accords with what we have
already seen in Fig. 2, where the distribution in the number of
lead changes is accurately accounted for by an unbiased, but
antipersistent random walk.

Another basic characteristic of lead changes is the amount
of game time that one team spends in the lead, O(¢), a quantity
that has been previously studied for basketball [18]. Strikingly,
the probability distribution for this quantity is bimodal, in
which O(r) sharply increases as the time approaches either 0
or T, and has a minimum when the time is close to 7'/2. If the
scoring dynamics is described by an unbiased random walk,
then the probability that one team leads for a time ¢ in a game
of length T is given by the first arcsine law of Eq. (1) [37,38].
Figure 3 compares this theoretical result with basketball data.
Also shown are two types of synthetically generated data.
For the “homogeneous Poisson process,” we use the game-
averaged scoring rate to generate synthetic basketball-game
time series of scoring events. For the “inhomogeneous Poisson
process,” we use the empirical instantaneous scoring rate
for each second of the game to generate the synthetic data
(Fig. 5). As we will justify in the next section, we do not
incorporate the antipersistence of basketball scoring in these
Poisson processes because this additional feature minimally
influences the distributions that follow the arcsine law (O, L,
and M). The empirically observed increased scoring rate at
the end of each quarter [18,19], leads to anomalies in the data

062815-3



A. CLAUSET, M. KOGAN, AND S. REDNER

0.0025 — Inhomogeneous Poisson process
Homogeneous Poisson process
0.0020 — Arcsine law
o : e+« NBA games
g J
35
g 0.0015
=
()]
2
+5 0.0010
o
o
0.0005}
0.0000

0 500 1000 1500 2000 2500
Number of seconds a team is in the lead

FIG. 3. (Color online) The distribution of the time that a given
team holds the lead, O(r). The homogeneous Poisson process
data is virtually indistinguishable from the arcsine law, while the
inhomogeneous Poisson process roughly accounts for the end-of-
quarter enhanced scoring rate.

for L(¢) that are accurately captured by the inhomogeneous
Poisson process.

III. TIME OF THE LAST LEAD CHANGE

We now determine when the last lead change occurs. For
the discrete random walk, the probability that the last lead
occurs after N steps can be solved by exploiting the reflection
principle [38]. Here we solve for the corresponding distribution
in continuum diffusion because this formulation is simpler and
we can readily generalize to unequal-strength teams. While
the distribution of times for the last lead change is well
known [29,30], our derivation is intuitive and elementary.

For the last lead change to occur at time ¢, the score
difference, which started at zero at =0, must again equal zero
at time ¢ (Fig. 4). For equal-strength teams, the probability for
this event is simply the Gaussian probability distribution of
diffusion evaluated at x =0:

PO,1) = (6)

1
Van Dt
To guarantee that it is the last lead change that occurs at time
t, the subsequent evolution of the score difference, cannot
cross the origin between times ¢ and 7' (Fig. 4). To enforce
this constraint, the remaining trajectory between ¢t and T
must therefore be a time-reversed first-passage path from an
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FIG. 4. (Color online) Schematic score evolution in a game of
time 7. The subsequent trajectory after the last lead change must
always be positive (solid) or always negative (dashed).
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arbitrary final point (X,7T) to (0,#). The probability for this
event is the first-passage probability [37]

X
e—XZ/[4D(T—t)]' (7)
VAT D(T —1)

With these two factors, the probability that the last lead
change occurs at time ¢ is given by

F(X,T—1) =

L(t) = Z/OOdX PO,HF(X,T—t)
0

e—Xz/[4D(T—t)]' 8)

/00 dx X
0 /47w Dt \J4n D(T —1)3

The leading factor 2 appears because the subsequent trajectory
after time ¢ can equally likely be always positive or always
negative. The integration is elementary and the result is the
classic second arcsine law [29,30] given in Eq. (1). The salient
feature of this distribution is that the last lead change in a game
between evenly matched teams is most likely to occur either
near the start or the end of a game, while a lead change in the
middle of a game is less likely.

As done previously for the distribution of time O(¢) that one
team is leading, we again generate a synthetic time series that
is based on a homogeneous and an inhomogeneous Poisson
process for individual scoring events without antipersistence.
From these synthetic histories, we extract the time for the last
lead and its distribution. The synthetic inhomogeneous Poisson
process data accounts for the end-of-quarter anomalies in the
empirical data with remarkable accuracy (Fig. 5).

Let us now investigate the role of scoring antipersistence on
the distribution £(¢). While the antipersistence substantially
affects the number of lead changes and its distribution,
antipersistence has a barely perceptible effect on £(z). Figure 6
shows the probability £(f) that the last lead change occurs
when a fraction f of the steps in an N-step antipersistent
random walk have occurred, with N =94, the closest even

2

(]

>

()]

[@)]

£

G

a

= ‘ ‘ ‘ ‘

- 0:0025 — Inhomogeneous Poisson process

50.0020 — Arcsine law

S e+ NBA games

2 0.0015

o

£ 0.0010

= L]

@ .

= 0.0005 2
0.0000,

500 1000 1500 2000 2500

Game clock time, t (seconds)

FIG. 5. (Color online) Upper: Empirical probability that a scor-
ing event occurs at time ¢, with the game-average scoring rate shown
as a horizontal line. The data is aggregated in bins of 10 sec. each;
the same binning is used in Fig. 14. Lower: Distribution of times £(z)
for the last lead change.
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L(f)

6

FIG. 6. (Color online) The distribution of time for the last lead
change, £(f), as a function of the fraction of steps f for a 94-step
random walk with persistence parameter p = 0.36 as in the NBA (o)
and p = 0.25 corresponding to stronger persistence (A). The smooth
curve is the arcsine law for p =0.5 (no antipersistence).

integer to the observed value N =93.56 of NBA basketball. For
the empirical persistence parameter of basketball, p = 0.36,
there is little difference between L(f) as given by the arcsine
law and that of the data, except at the first two and last two steps
of the walk. Similar behavior arises for the more extreme case
of persistence parameter p = 0.25. Thus basketball scoring
antipersistence plays little role in determining the time at which
the last lead change occurs.

We may also determine the role of a constant bias on
L(t), following the same approach as that used for unbiased
diffusion. Now the analogs of Egs. (6) and (7) are [37]

1 2
P0,v,t) = —e—v‘t/4D’

VA Dt o

F(X,0,1) = —— = (X+vt?/4D1,
VarDr?

Similarly, the analog of Eq. (8) is
o0
L) = / dX POO[F(X,v,T—t)+F(X, —v,T—1)].
0
(10)

In Eq. (10) we must separately consider the situations where
the trajectory for times beyond ¢ is strictly positive (stronger
team ultimately wins) or strictly negative (weaker team wins).
In the former case, the time-reversed first-passage path from
(X,T) to (0,¢) is accomplished in the presence of a positive
bias +v, while in the latter case, this time-reversed first passage
occurs in the presence of a negative bias —v.
Explicitly, Eq. (10) is

—v2t/4D  poo
L) = dX
4 Dt Jo 47 D(T —1)?
X{e—(x+a)2/b + e—(X—a)z/b}, (an
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FIG. 7. (Color online) The distribution L£(¢) for nonzero bias
[Eq. (12)]. The diffusion coefficient is the empirical value D =
0.0391, and bias values are v = 0.002, v = 0.004, and v = 0.008
(increasingly asymmetric curves). The central value of v roughly
corresponds to average NBA game-scoring bias if diffusion is
neglected.

with a = v(T —t) and b = 4D(T — t). Straightforward cal-
culation gives

i = o—V21/4D {\/nvz(T—t) f<\/v2(T—t)>
BENGED) ap 4D

4V TD/D } (12)

This form for £(¢) is again bimodal (Fig. 7), as in the arcsine
law, but the last lead change is now more likely to occur near
the beginning of the game. This asymmetry arises because
once a lead is established, which is probable because of the
bias, the weaker team is unlikely to achieve another tie score.

More germane to basketball, we should average L(r)
over the distribution of biases in all NBA games. For this
averaging, we use the observation that many statistical features
of basketball are accurately captured by employing a Gaussian
distribution of team strengths with mean value 1 (since the
absolute strength is immaterial), and standard deviation of
approximately 0.09 [18]. This parameter value was inferred
by using the Bradley-Terry competition model [39], in which
teams of strengths S; and S, have scoring rates S; /(S| + $2)
and S, /(S7 + S»), respectively, to generate synthetic basketball
scoring time series. The standard deviation 0.09 provided the
best match between statistical properties that were computed
from the synthetic time series and the empirical game data [18].
From the distribution of team strengths, we then infer a
distribution of biases for each game and finally average over
this bias distribution to obtain the bias-averaged form of L(z).
The skewness of the resulting distribution is minor and it
closely matches the bias-free form of L£(¢) given in Fig. 5.
Thus, the bias of individual games appears to again play a
negligible role in statistical properties of scoring, such as the
distribution of times for the last lead change.
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FIG. 8. (Color online) The maximal lead (which could be posi-
tive or negative) occurs at time .

IV. TIME OF THE MAXIMAL LEAD

We now ask when the maximal lead occurs in a game [40].
If the score difference evolves by unbiased diffusion, then
the standard deviation of the score difference grows as +/7.
Naively, this behavior might suggest that the maximal lead
occurs near the end of a game. In fact, however, the probability
M(t) that the maximal lead occurs at time ¢ also obeys the
arcsine law, Eq. (1). Moreover, the arcsine laws for the last lead
time and for the maximal lead time are equivalent [29-31], so
that the largest lead in a game between two equally matched
teams is most likely to occur either near the start or near the
end of a game.

For completeness, we sketch a derivation for the distribution
M(t) by following the same approach used to find L(z).
Referring to Fig. 8, suppose that the maximal lead M occurs
at time ¢. For M to be a maximum, the initial trajectory from
(0,0) to (M,t) must be a first-passage path, so that M is never
exceeded prior to time 7. Similarly, the trajectory from (M) to
the final state (X, 7T) must also be a time-reversed first-passage
path from (X,T) to (M,t), but with X < M, so that M is never
exceeded for all times between f and 7.

Based on this picture, we may write M(z) as

e8] M
M(t):A/ dMF(M,t)/ dX F(X—M,T —1t)
0 —00

oo M M? /4Dt
=A/ dM ——=e"
0 4w D13
M
X dxﬂe—w—m%w(m). (13)
47 D(T —t)3

The constant A is determined by the normalization condition
fOT M(t)dt = 1. Performing the above two elementary integra-
tions yields again the arcsine law of Eq. (1). Figure 9 compares
the arcsine law prediction with empirical data from the NBA.

V. PROBABILITY THAT A LEAD IS SAFE

Finally, we turn to the question of how safe is a lead of a
given size at any point in a game (Fig. 10), i.e., the probability
that the team leading at time 7 will ultimately win the game.
The probability that a lead of size L is safe when a time t
remains in the game is, in general,

O(L,t)=1- /TF(L,t)dt, (14)
0

where F(L,t) again is the first-passage probability [Eqgs. (7)
and (9)] for a diffusing particle, which starts at L, to first reach
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FIG. 9. (Color online) Distribution of times M(¢) for the maxi-
mal lead.

the origin at time 7. Thus the right-hand side is the probability
that the lead has not disappeared up to time t.

First consider evenly matched teams, i.e., bias velocity v =
0. We substitute u = L/+/4Dt in Eq. (14) to obtain

2

QL,t)=1 N
Here z = L/+/4Dt is the dimensionless lead size. When
7K 1, either the lead is sufficiently small or sufficient game
time remains that a lead of scaled magnitude z is likely to
be erased before the game ends. The opposite limit of z>> 1
corresponds to either a sufficiently large lead or so little time
remaining that this lead likely persists until the end of the game.
We illustrate Eq. (15) with a simple numerical example from
basketball. From this equation, a lead of scaled size z ~ 1.163
is 90% safe. Thus a lead of 10 points is 90% safe when 7.87
minutes remain in a game, while an 18-point lead at the end
of the first half is also 90% safe [41].

Figure 11 compares the prediction of Eq. (15) and the
empirical basketball data. We also show the prediction of the
heuristic developed by basketball analyst and historian Bill
James [42]. This rule is mathematically given by Q(L,7) =
min{l,%(L —3+68/2)%}, where § = +1 if the leading team
has ball possession and § = —1 otherwise. The figure shows
the predicted probability for § = {—1,0, +1} (solid curve
for central value, dashed otherwise) applied to all of the
empirically observed (L,7) pairs, because ball possession is
not recorded in our data. Compared to the random-walk model,
the heuristic is quite conservative (assigning large safe lead

/OQ e du =erf(z).  (15)
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FIG. 10. (Color online) One team leads by L points when a time
T is left in the game.
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——DBill James' heuristics

Probability that effective lead is safe, Q
O O O O O O o o o

Effective lead, z

FIG. 11. (Color online) Probability that a lead is safe versus the
dimensionless lead size z = L/+/4Dt for NBA games, showing the
prediction from Eq. (15), the empirical data, and the mean prediction
for Bill James’ well-known “safe lead” heuristic.

probabilities only for dimensionless leads z > 2) and has the
wrong qualitative dependence on z. In contrast, the random
walk model gives a maximal overestimate of 6.2% for the
safe lead probability over all z, and has the same qualitative z
dependence as the empirical data.

For completeness, we extend the derivation for the safe lead
probability to unequal-strength teams by including the effect
of a bias velocity v in Eq. (14):
ef(L+vt)2/4Dt dt

oL
Lo=1- [ ——
e =1- | g

— e*L2/4Dt7u2t/4D dl, (16)

1— e*UL/ZD/‘t L

0 ~/4m Dt3
where the integrand in the first line is the first-passage
probability for nonzero bias. Substituting u = L/~/4Dt and
using again the Péclet number Pe = vL /2D, the result is

2 : 2 pel jay?
O(L,T)=1——=¢* | e P/ gy
NEI

! I[ _ope f Pe veorfe( 2+ Pe (17
= — — eric _ eric — .
2l¢ M T

When the stronger team is leading (Pe > 0), essentially any
lead is safe for Pe 2 1, while for Pe < 1, the safety of a lead
depends more sensitively on z [Fig. 12(a)]. Conversely, if the
weaker team happens to be leading (Pe < 0), then the lead has
to be substantial or the time remaining quite short for the lead
to be safe [Fig. 12(b)]. In this regime, the asymptotics of the
error function gives Q(L,t) ~ e P¢/4" for z < |Pe|/2, which
is vanishingly small. For values of z in this range, the lead is
essentially never safe.

VI. LEAD CHANGES IN OTHER SPORTS

We now consider whether our predictions for lead change
statistics in basketball extend to other sports, such as college

PHYSICAL REVIEW E 91, 062815 (2015)
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FIG. 12. (Color online) Probability that a lead is safe versus z =
L/+/ADr for (a) the stronger team is leading for Pe = 1, 1, and 1
(progressively flatter curves), and (b) the weaker team is leading for
Pe = —%, —%, and —g (progressively shifting to the right). The case
Pe = 0 is also shown for comparison.

American football (CFB), professional American football
(NFL), and professional hockey (NHL) [43]. These sports have
the following commonalities with basketball [19]:

(1) Two teams compete for a fixed time 7', in which points
are scored by moving a ball or puck into a special zone in the
field.

(2) Each team accumulates points during the game and the
team with the largest final score is the winner (with sport-
specific tiebreaking rules).

(3) A roughly constant scoring rate throughout the game,
except for small deviations at the start and end of each scoring
period.

(4) Negligible temporal correlations between successive
scoring events.

(5) Intrinsically different team strengths.

(6) Scoring antipersistence, except for hockey.

These similarities suggest that a random-walk model should
also apply to lead change dynamics in these sports (Fig. 13).

However, there are also points of departure, the most
important of which is that the scoring rate in these sports is
between 10 and 25 times smaller than in basketball. Because
of this much lower overall scoring rate, the diminished rate at
the start of games is much more apparent than in basketball
(Fig. 14). This longer low-activity initial period and other
non-random-walk mechanisms cause the distributions £(¢) and
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FIG. 13. (Color online) Distribution of the average number of lead changes per game, for CFB, NFL, and NHL, showing the prediction of
Eq. (3), the empirical data, and the results of a simulation in which scoring events occur by a Poisson process with the game-specific scoring

rate.

M(t) to visibly deviate from the arcsine laws (Figs. 14 and 15).
A particularly striking feature is that £(z) and M(¢) approach
zero for + — 0. In contrast, because the initial reduced scoring
rate occurs only for the first 30 sec. in NBA games, there is a
real, but only barely discernible deviation of the data for £(t)
from the arcsine law (Fig. 5).

Finally, the safe lead probability given in Eq. (15) qual-
itatively matches the empirical data for football and hockey
(Fig. 16), with the hockey data being closest to the theory [44].
For both basketball and hockey, the expression for the safe
lead probability given in Eq. (15) is quantitatively accurate.
For football, a prominent feature is that small leads are much
more safe that what is predicted by our theory. This trend is
particularly noticeable in the CFB. One possible explanation
of this behavior is that in college football, there is a relatively
wide disparity in team strengths, even in the most competitive
college leagues. Thus a small lead size can be quite safe if the
two teams happen to be significantly mismatched.

For American football and hockey, it would be useful to
understand how the particular structure of these sports would
modify a random-walk model. For instance, in American
football, the two most common point values for scoring
plays are 7 (touchdown plus extra point) and 3 (field goal).
The random-walk model averages these events, which will
underestimate the likelihood that a few high-value events could
eliminate what otherwise seems like a safe lead. Moreover,
in football the ball is moved incrementally down the field
through a series of plays. The team with ball possession has
four attempts to move the ball a specific minimum distance
(10 yards) or else lose possession; if it succeeds, that team

retains possession and repeats this effort to further move
the ball. As a result, the spatial location of the ball on
the field likely plays an important role in determining both
the probability of scoring and the value of this event (field
goal versus touchdown). In hockey, players are frequently
rotated on and off the ice so that a high intensity of play
is maintained throughout the game. Thus the pattern of
these substitutions—between potential all-star players and less
skilled “grinders”—can change the relative strength of the two
teams every few minutes.

VII. CONCLUSIONS

A model based on random walks provides a remarkably
good description for the dynamics of scoring in competitive
team sports. From this starting point, we found that the cele-
brated arcsine law of Eq. (1) closely describes the distribution
of times for (i) one team is leading O(¢) (first arcsine law),
(ii) the last lead change in a game L£(¢) (second arcsine law),
and (iii) when the maximal lead in the game occurs M(¢)
(third arcsine law). Strikingly, these arcsine distributions are
bimodal, with peaks for extremal values of the underlying
variable. Thus both the time of the last lead and the time of
the maximal lead are most likely to occur at the start or the
end of a game.

These predictions are in accord with the empirically
observed scoring patterns within more than 40 000 games
of professional basketball, American football (college or
professional), and professional hockey. For basketball, in
particular, the agreement between the data and the theory
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2 0.020] 2 0.020] 2 0.004
g 0.015 E’ 0.015 E’ 0.003
§ 0010 § 0010 § 0002 by
& 0.005 | | & 0.005 I j,f ], i 2 ooon L T
% M - a v a
v 0.0025 Inhomogeneous Poisson process I 0.0025 Inhomogeneous Poisson process a 0.0025 Inhomogeneous Poisson process
50.0020 — Arcsine law 50.0020 — Arcsine law %0'0020 — Arcsine law
5 *+e CFBgames 5 « NFL games 5 + NHL games
- 0.0015| - 0.0015 - 0.0015
e 4 o 3
— 0.0010} ,, — 0.0010f . + 0.0010
7] A, t ¢ ] . 4]
< 0.00051F &, Py < 0.0005 \i™, < 0.0005
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FIG. 14. (Color online) Upper: Empirical probability that a scoring event occurs at time ¢, with the game-average scoring rate shown as a
horizontal line, for games of CFB, NFL, and NHL. Lower: Distribution of times £(¢) for the last lead change.
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FIG. 15. (Color online) Distribution of times M(¢) for the maximal lead, for games of CFB, NFL, and NHL.

is quite close. All the sports also exhibit scoring anomalies
at the end of each scoring period, which arise from a much
higher scoring rate around these times (Figs. 5 and 14). For
football and hockey, there is also a substantial initial time
range of reduced scoring that is reflected in £(r) and M(t)
both approaching zero as t — 0. Football and hockey also
exhibit other small but systematic deviations from the second
and third arcsine laws that remain unexplained.

The implication for basketball, in particular, is that a typical
game can be effectively viewed as repeated coin tossings,
with each toss subject to the features of antipersistence, an
overall bias, and an effective restoring force that tends to shrink
leads over time (which reduces the likelihood of a blowout).
These features represent inconsequential departures from a
pure random-walk model. Cynically, our results suggest that
one should watch only the first few and last few minutes of
a professional basketball game; the rest of the game is as
predictable as watching repeated coin tossings. On the other
hand, the high degree of unpredictability of events in the
middle of a game may be precisely what makes these games
so exciting for sports fans.

The random-walk model also quantitatively predicts the
probability that a specified lead of size L with ¢ seconds left in
a game is “safe,” i.e., will not be reversed before the game ends.
Our predictions are quantitatively accurate for basketball and
hockey. For basketball, our approach significantly outperforms
a popular heuristic for determining when a lead is safe. For
football, our prediction is marginally less accurate, and we
postulated a possible explanation for why this inaccuracy could
arise in college football, where the discrepancy between the
random-walk model and the data is the largest.

Traditional analyses of sports have primarily focused on
the composition of teams and the individual skill levels of
the players. Scoring events and game outcomes are generally
interpreted as evidence of skill differences between opposing
teams. The random-walk view that we formalize and test here
is not at odds with the more traditional skill-based view. Our
perspective is that team competitions involve highly skilled and
motivated players who employ well-conceived strategies. The
overarching result of such keen competition is to largely negate
systematic advantages so that all that remains is the residual
stochastic element of the game. The appearance of the arcsine
law, a celebrated result from the theory of random walks, in
the time that one team leads, the time of the last lead change,
and the time at which the maximal lead occurs, illustrates the
power of the random-walk view of competition. Moreover, the
random-walk model makes surprisingly accurate predictions
of whether a current lead is effectively safe, i.e., will not
be overturned before the game ends, a result that may be of
practical interest to sports enthusiasts.

The general agreement between the random-walk model
for lead-change dynamics across four different competitive
team sports suggests that this paradigm has much to offer
for the general issue of understanding human competitive
dynamics. Moreover, the discrepancies between the empirical
data and our predictions in sports other than basketball may
help identify alternative mechanisms for scoring dynamics that
do not involve random walks. Although our treatment focused
on team-level statistics, another interesting direction for future
work would be to focus on understanding how individual
behaviors within such social competitions aggregate up to
produce a system that behaves effectively like a simple random

1 . : 1 . 1 .
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FIG. 16. (Color online) Probability that a lead is safe, for CFB, NFL, and NHL, versus the dimensionless lead z = L/+/4Dt. Each figure
shows the prediction from Eq. (15) and the corresponding empirical pattern.
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walk. Exploring these and other hypotheses, and developing
more accurate models for scoring dynamics, are potential
fruitful directions for further work.

Note added in proof: Recently, we learned of the papers
by S. N. Majumdar and J.-P. Bouchaud [45], in which
they derive results essentially identical our Eq. (12) for
the distribution of M(#), and by Stern [46], in which the
evolution of sports scoring is also modeled as a random
walk; some of the results of this latter article overlap with
ours.
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