
PHYSICAL REVIEW E 91, 062814 (2015)

Hierarchical link clustering algorithm in networks

Jernej Bodlaj*

University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, 1000 Ljubljana, Slovenia

Vladimir Batagelj†

University of Ljubljana, Faculty of Mathematics and Physics, Jadranska ulica 19, 1000 Ljubljana, Slovenia
(Received 3 November 2014; published 24 June 2015)

Hierarchical network clustering is an approach to find tightly and internally connected clusters (groups or
communities) of nodes in a network based on its structure. Instead of nodes, it is possible to cluster links of the
network. The sets of nodes belonging to clusters of links can overlap. While overlapping clusters of nodes are
not always expected, they are natural in many applications. Using appropriate dissimilarity measures, we can
complement the clustering strategy to consider, for example, the semantic meaning of links or nodes based on their
properties. We propose a new hierarchical link clustering algorithm which in comparison to existing algorithms
considers node and/or link properties (descriptions, attributes) of the input network alongside its structure using
monotonic dissimilarity measures. The algorithm determines communities that form connected subnetworks
(relational constraint) containing locally similar nodes with respect to their description. It is only implicitly
based on the corresponding line graph of the input network, thus reducing its space and time complexities. We
investigate both complexities analytically and statistically. Using provided dissimilarity measures, our algorithm
can, in addition to the general overlapping community structure of input networks, uncover also related subregions
inside these communities in a form of hierarchy. We demonstrate this ability on real-world and artificial network
examples.

DOI: 10.1103/PhysRevE.91.062814 PACS number(s): 89.75.Hc

I. INTRODUCTION

While no common definition has been agreed upon re-
garding communities (clusters, groups) [1] in a network, we
perceive them as structures of related network elements in
terms of their properties (descriptions, attributes). In a given
network they span connected subnetworks. In continuation
we mostly use the term cluster, yet because of the nature
of described algorithms they almost universally represent a
community. Communities are also supposed to have a stronger
internal than external cohesion. However, highly overlapping
node clusters can have more external than internal links.
To detect these kinds of communities a new approach has
been proposed by Lehmann et al. [2], using the clustering of
links instead of nodes. The algorithm constructs a hierarchy
of links on the input network. Another method based on
similar idea is Lambiotte’s [3] approach through a line graph.
The Lambiotte’s method can utilize any conventional node
clustering algorithm on the constructed line graph of the input
network. In line graph, links of the network’s source graph are
represented by the line graph nodes; a pair of line graph nodes
is linked if and only if the corresponding links share a common
end node in the source graph. A cluster of nodes in the line
graph determines a cluster of links in the source graph. In
both methods the disjoint link clusters determine overlapping
node communities (end nodes of links) in the source network.
In this paper we shall use the term cluster for an arbitrary
nonempty subset of nodes or links in a given network and
the term community for a cluster that, in the given network,
induces a connected subnetwork.

*bodlaytm@gmail.com
†vladimir.batagelj@fmf.uni-lj.si

We first present a basic algorithm which clusters nodes only
and then we propose a new adapted algorithm, which clusters
both nodes and links. They construct a hierarchy of nodes or
links, respectively, on the input undirected network. Instead
of considering only the structural information of the source
network they use also data describing nodes or links. In this
way we elucidate the notion of a community. There are many
structural definitions of a community [1]; generally, they are
thought of as being cohesive, compact, and internally well
connected regions in a network while potentially also being
well separated from the rest of the network if they do not
overlap.

Both algorithms are based on the agglomerative clustering
of nodes or links, respectively, and work under the connect-
edness constraint; they join only adjacent clusters of nodes or
links and therefore produce connected clusters (subnetworks).
The basic algorithm joins linked clusters of nodes and the
adapted algorithm joins clusters of links which share a
common node. Both algorithms can use either recursively or
directly computed dissimilarity measures, which consider also
properties of nodes and links. Recursively computed dissimi-
larity measures consider dissimilarities between initial clusters
consisting of individual nodes or links only. Dissimilarities for
joint clusters are recursively computed from dissimilarities
of clusters before joining. Directly computed dissimilarity
measures consider the properties of nodes and links belonging
to joint clusters only and compute their value “from scratch.”
Additionally, they can consider the properties of clusters as
a whole. Both algorithms return hierarchies of clusters. The
basic algorithm returns a hierarchy of nodes and the adapted
algorithm a hierarchy of links. For a selected level in the
hierarchy of nodes we can extract the corresponding partition
of nonoverlapping clusters of nodes. In case of the hierarchy
of links, we can extract a partition of nonoverlapping clusters

1539-3755/2015/91(6)/062814(17) 062814-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.062814

JERNEJ BODLAJ AND VLADIMIR BATAGELJ PHYSICAL REVIEW E 91, 062814 (2015)

of links, which can be viewed as a covering consisting of
overlapping clusters of their end nodes. Either overlapping or
nonoverlapping clusters of nodes represent the communities,
attributed with common values of their node and in case
of adapted algorithm also link properties. Although both
algorithms can be used with dissimilarities based on properties
measured in any measurement scale we focus on descriptions
based on sets of nominal values (keywords or tags).

An example of a network on which to use the algorithms
is the collaboration network of authors. Collecting also the
keywords used by each author in their works, we can more
precisely identify the underlying collaboration network struc-
ture. Besides being able to identify groups of collaborating
authors, we can identify the topics they are working on and
we can further uncover subgroups of authors who work on the
most similar topics. Another example is a network of products
sold by an online store. Links in this network represent the
“other customers bought or viewed” relation. Considering the
descriptions of products, we can identify the most related and
also compatible clusters of products. A customer might view
related but incompatible products. He or she checked, for
example, a camera with an SD memory card slot and another
camera with a CF memory card slot. A customer also checked
for both memory cards. When considering only interlinks
between these four products, we would detect only one
cluster of related products, but when additionally considering
descriptions of those products, we can further identify two
subclusters.

Similar networks were used in Yang et al. [4], but they do
not contain descriptions. While we use one network from their
data set for a performance evaluation of the adapted algorithm,
we collected other test networks on our own. Both algorithms
can also be used on networks where no additional attributes
are known by assigning to each node its own unique descriptor
(identifier, label). In this case, algorithms favor joining clusters
of nodes or links in a way that the number of nodes in a joint
cluster increases the least tightly connected clusters.

In the next section we give a short review of some related
works. In Sec. III we overview the agglomerative approach
to hierarchical clustering on nodes and extend it to links in
Sec. IV. In Sec. V we discuss suitable dissimilarity measures
for both algorithms and their monotonicity. The proofs of
the monotonicity of the selected dissimilarity measures can
be found in the Appendix A. We then present two aspects
of the algorithm evaluation. We examine the time and space
complexity of algorithms in Sec. VI. We apply algorithms
on example networks and evaluate results in Sec. VII. In
Appendix B we give some details on the implementation of
algorithms.

II. RELATED WORK

In Fortunato’s review article [5] a exhaustive overview of
network clustering approaches is given. He discusses topics
from the definition of the main elements of the clustering
problem to the presentation of most methods developed. He
puts the focus on techniques designed by physicists, from the
discussion of crucial issues like the significance of clustering
and how methods should be tested and compared against each
other to the description of applications on real networks.

Currently, the best techniques in overlapping community
detection are described in the work of J. Xie et al. [6]. Quality
measures and benchmarks are provided in a comparison of
14 different algorithms. They were grouped into different
approach techniques such as clique percolation proposed by
Palla et al. [7], local expansion and optimization [8,9], fuzzy
detection [10], agent-based and dynamical algorithms [11],
line graph and link partitioning algorithms which are the basis
for our approach, and others. A recent article of Yang et al.
[4] addresses the problem of community evaluation. They
compare various community detection methods in terms of
similarity of identified communities with the real underlying
communities based on the ground-truth knowledge about input
networks.

Community detection methods, which inspired the de-
velopment of this work, include the Louvain method [12],
the Ferligoj and Batagelj approach [13], and the method of
Kim et al. [14]. The first is a simple, efficient, and easy-
to-implement method for identifying communities in large
networks. It is based on the idea of greedy optimization of
modularity of a partition of the network [15]. The approach
of Ferligoj and Batagelj is an adaptation of the standard
agglomerative clustering method for a clustering with a
relational constraint. In their second paper [16] it is extended
to nonsymmetric relations. To obtain a fast algorithm also
for large networks, the computation of dissimilarities is
bounded to the pairs of end nodes of existing links [17].
The method of Kim et al. attempts to detect communities
of related Web sites using a semantic information while
performing a link-based clustering. In their paper they describe
a procedure to intelligently determine and look over a limited
and semantically related set of Web pages. Another key work
is the book written by F. Murtagh [18]. In his book he
explains many principles and algorithms of multidimensional
hierarchical clustering, and one of those algorithms represents
the basis for our adapted algorithm. We will refer to it as
Murtagh’s algorithm although it is essentially based on ideas
presented by C. de Rham in [19].

III. A BASIC AGGLOMERATIVE APPROACH
TO NETWORK CLUSTERING

At its core, the algorithm is identical to a classical
agglomerative clustering algorithm. It, however, considers,
in addition to the dissimilarity, a relational constraint: Nodes
inside clusters must be connected [13]. The resulting hierarchy
of nodes can be, for example, interpreted as a multilevel
abstraction of similar connected parts in the network. It can be
used to find shortcuts between similar connected parts and to
optimize searching algorithms in the network [20].

A. The algorithm

We denote the input network for the algorithm with N .
We assume that it is connected, undirected, and without loops
(links with both end nodes the same). It is composed from three
sets: N = (V,E,P), the set of nodes V , the set of undirected
links or edges E, and the set of node properties P . The
cardinality of the set of nodes will be denoted by n = |V | and
the cardinality of the set of edges by m = |E|. A nonempty

062814-2

HIERARCHICAL LINK CLUSTERING ALGORITHM IN . . . PHYSICAL REVIEW E 91, 062814 (2015)

subset C of the set V , ∅ ⊂ C ⊆ V , is called a cluster of nodes.
A clustering, i.e., the set of clusters, will be denoted by C; C =
{C1,C2, . . . ,Ck}. A clustering C is called a partition if and only
if for all Cs,Ct ∈ C,s �= t ⇒ Cs ∩ Ct = ∅, and

⋃
C∈C C = V .

With D(Cs,Ct) we will denote a dissimilarity measure between
two clusters Cs and Ct and with D a set (list, dictionary, or
sparse matrix) of dissimilarities between available clusters in
the process of the algorithm. The dissimilarity D is usually
expressed in terms of a selected dissimilarity d between nodes.

The inputs for the algorithm are a network N and a
dissimilarity measure D. We denote a relational constraint
with ψ(Cs,Ct) ≡ ∃u ∈ Cs,v ∈ Ct : (u,v) ∈ E. It is satisfied
(true) if and only if there exists an edge linking the clusters Cs

and Ct in the network N :

k ← 1; C1 ← {{v} : v ∈ V };
for all C ∈ C1 do h(C) ← 0;

for all (u : v) ∈ E do D[{u},{v}] ← d(u,v);

while ∃Ci,Cj ∈ Ck : (i �= j) do

(Cp,Cq) ← argmin{D[Ci,Cj] : i �= j ∧ ψ(Ci,Cj)};
C ← Cp ∪ Cq ; k ← k + 1;

h(C) ← D[Cp,Cq];

Ck ← Ck−1\{Cp,Cq} ∪ {C};
for all Cs ∈ Ck\{C} : ψ(C,Cs) do

D[C,Cs] ← D(C,Cs)

remove entries containing Cp or Cq from D;

shrink N by combining neighborhoods n[Cp] and
n[Cq] into n[C] ← n[Cp] ∪ n[Cq];

end while

The algorithm determines a series of partitions C1, C2, . . . ,

Cn. Their union H = ∪iCi is a tree hierarchy. It has the
property ∀Cs,Ct ∈ H : Cs ∩ Ct ∈ {∅,Cs,Ct }. The returned
function h(C) is a level function on the hierarchy H and
together they form a clustering tree or a dendrogram (H,h).

IV. AN AGGLOMERATIVE APPROACH
FOR CLUSTERING LINKS

The adapted algorithm for clustering links works on a
similar principle as the basic algorithm from Sec. III but
instead of nodes it clusters links of the source network
into the hierarchy. The dissimilarity measure for the adapted
algorithm is based on properties of links and/or nodes and the
network structure. To preserve the connectivity of clusters, the
algorithm joins only clusters of links which share a common
node.

A. The adapted algorithm

Instead of node clusters and node clusterings we operate
with link clusters and link clusterings in the adapted algorithm.
A link cluster denoted by L is a nonempty subset of the set
E; ∅ ⊂ L ⊆ E. A link clustering is a set of link clusters and
a link partition is a link clustering containing disjoint link
clusters which cover the entire set E. We denote it with L;
L = {L1,L2, . . . ,Lp}, s �= t ⇒ Ls ∩ Lt = ∅, and

⋃
L∈L L =

E. The function ext(e) = {u,v} is used to get the set of end
nodes of the link e = (u : v) ∈ E. Additional two sets we use
are a set of link cluster nodes Ct = ext(Lt) = ⋃

e∈Lt
ext(e),

denoted by Ct as it represents the cluster of nodes as in the
basic algorithm in Sec. III A, and a set of active nodes At ,
At ⊆ Ct , which is used to identify adjacent link clusters; At =
{v ∈ Ct ; ∃s �= t : v ∈ Cs}.

As the basic algorithm, the adapted algorithm is given the
same two inputs: a network N and a dissimilarity measure
D. However, D must be monotonic. Monotonic dissimilarity
measures are discussed in Sec. V. Instead of the hierarchy of
nodes, the algorithm returns the hierarchy of links based on the
network N . The relational constraint of the adapted algorithm
is given by ψa(Ls,Lt) ≡ As ∩ At �= ∅ and is equivalent to
Cs ∩ Ct �= ∅. ψa(Ls,Lt) is satisfied if and only if node clusters
Cs and Ct belonging to their link clusters Ls and Lt share a
common (active) node in the network N . The content of the
main loop of the adapted algorithm is similar to the content
of the main loop of the basic algorithm. The principle of
operation, however, differs. The adapted algorithm is based
on Murtagh’s algorithm [18], which is used to cluster nodes in
a network. We use it on the implicitly constructed line graph,
respectively, the line subgraph of the input network. Using
this approach we can take advantage of its time efficiency
and additionally lower the space complexity, which would
greatly increase if we used the naive approach using the whole
line graph. Complexities of both algorithms are discussed
in Sec. VI. An implementation of the adapted Murtagh’s
algorithm for clustering nodes is available in Pajek [17].

The idea of Murtagh’s algorithm is in local clustering of the
input network. The local clustering takes place at the end of a
chain (path of consecutive adjacent node clusters in the input
network), built iteratively by the algorithm and starting from a
randomly selected cluster of nodes. In our algorithm the chain
is denoted by chain. We define the following operations on
it. Push is used to add an element to the end of the chain.
Pop is used to retrieve and remove the last element from the
chain. The operation Last retrieves only the last element of
the chain. To implement the chain a stack is used. Murtagh’s
algorithm builds a chain by following the direction of the
most decreasing value of dissimilarity between consecutive
adjacent clusters of nodes, i.e., clusters of nodes which by
pairs respect the relational constraint. In case it is not possible
to elongate the chain in any direction from the cluster of
nodes at its end, i.e., a cluster of nodes with a strictly smaller
dissimilarity to the last cluster in the chain does not exists,
the algorithm reached two consecutive cluster of nodes, which
are reciprocally the least dissimilar. We call such pair the
reciprocal nearest neighbors (RNNs). Due to the monotonicity
of a chosen dissimilarity measure, which is a must for the
correct working of the Murtagh’s algorithm, it is possible to
show [18] that when a joining of RNN clusters takes place,
the dissimilarities between a new joint cluster of nodes and
other clusters of nodes, i.e., neighbors of the previous pair
of RNN clusters, at most increase. The remaining part of the
already-built chain remains valid. With reference to this we
discuss the Bruynooghe’s reducibility property in Sec. V. The
algorithm then removes both RNN clusters from the chain and
joins them into a new cluster. If the chain still contains any
clusters, the algorithm continues building it. In the opposite

062814-3

JERNEJ BODLAJ AND VLADIMIR BATAGELJ PHYSICAL REVIEW E 91, 062814 (2015)

case it randomly selects a new unvisited cluster of nodes and
starts building a new chain with it, and so on. The algorithm
stops when the last two clusters of nodes are joined. The
method is a more efficient version of the basic algorithm
from Sec. III A. It, however, works correctly if a monotonic
dissimilarity measure is used only. In theory, we can design
an input network which will lead the Murtagh’s algorithm to
build only one long chain across all the clusters of nodes,
forcing it to run by its worst complexity, which is the same
as the complexity of the basic algorithm in this case, but this
happens extremely rarely in practice.

In our link clustering algorithm we use the same principles
as in the Murtagh’s algorithm, i.e., the local clustering at the
end of a chain of clusters of links from the input network.
During the process of our algorithm, the line graph is being
incrementally built in the neighborhood of the chain of clusters
of links. We will therefore refer to it as an incremental line
subgraph. The nodes of the line graph represent the clusters
of links from the input network, the links in the line graph
represent the adjacency in terms of the relational constraint
ψa , and their weight represents the dissimilarity between the
clusters of links in the input network. In case the algorithm
empties a given chain in full, it frees the memory occupied by
the related incremental line subgraph along with the calculated
dissimilarities. We could design the algorithm to do so also if,
for example, the current incremental line subgraph consumes
too much memory. However, in this case the algorithm would
have to reconstruct the previously constructed part of the line
subgraph. Some parts of the line graph have to be reconstructed
also in the first case. Using the appropriate optimization, for
example, by keeping as much of the line subgraph in the
memory as possible, by beginning to build new chains in the
region of already available line subgraphs, and by using some
form of active avoidance of the clusters of links containing
links with high-degree end nodes in the input network, which
form complete subgraphs in the line graph, it would be
possible to minimize the size of the incremental line subgraphs
and, consequentially, reduce the memory consumption of the
algorithm. In our case the incremental line subgraph will be
denoted by ils. We define some operations on it. If the link or
the dissimilarity between clusters of links of the input network
Ls and Lt , respectively, is present in the ils, the operation
GetCalculateD(Ls,Lt) will return it from the memory.
Otherwise, it is calculated using D(Ls,Lt) and stored into ils

and its value is returned. The operation SetD(Ls,Lt) calculates
the dissimilarity between clusters of links D(Ls,Lt) and stores
it or updates it in the memory. Operation ClearD(Ls) removes
all links or respective dissimilarities which have the cluster Ls

in a pair from the memory. Operation Clear frees the entire
incremental line subgraph from the memory. For the efficient
implementation of the incremental line subgraph we use a pair
of structures: the dictionary of dissimilarities between pairs of
clusters of links from the input network, i.e., the dictionary of
links from the line subgraph, which represent pairs of adjacent
clusters of links and dissimilarities between them in the input
network. The second structure used is the dictionary of sets
of adjacent clusters of links in the input network. It serves
for the efficient access of clusters of links adjacent to a given
cluster of links in the line subgraph. To aid the algorithm we
keep also for each node of the input network a set of clusters

of links which in a given node intersect, i.e., ψa is true for
any chosen pair of clusters of links from a given node’s set.
If the node’s set has at least two clusters, then the node is
active. By U we denote a set of unvisited clusters of links and
by P ickF rom(U) the procedure which removes a random
element from U and returns it:

k ← 1; L1 ← {{e}; e ∈ E};
for all L ∈ L1 do g(L) ← 0;

U ← L1;

chain ← [];

while k < m do

if chain = [] then

ils.Clear;

Lx ← P ickF rom(U);

else

Lx ← chain.Pop;

end if

chain.Push(Lx);

while chain does not end with RNNs do

use the cluster L′ in accordance with the
relational constraint ψa(chain.Last,L′) to
elongate the chain in the direction of
the most strictly decreasing dissimilarity
ils.GetCalculateD(chain.Last,L′);

end while

Lp ← chain.Pop; Lq ← chain.Pop;

L ← Lp ∪ Lq ; k ← k + 1;

g(L) ← ils.GetCalculateD(Lp,Lq);

Lk ← Lk−1\{Lp,Lq} ∪ {L};
U ← U\{Lp,Lq} ∪ {L};
for all L′ ∈ Lk\{L} : ψa(L′,L) do ils.SetD(L′,L);

ils.ClearD(Lp); ils.ClearD(Lq);

shrink N by combining neighborhoods n[Lp] and
n[Lq] into n[L] ← n[Lp] ∪ n[Lq];

end while

The adapted algorithm determines a series of link partitions
L1, L2, . . . , Lm. Their union G = ∪iLi is called a link
hierarchy. The returned function g(L) is a level function on the
hierarchy G and together they form a link dendrogram (G,g).
In the implementation of the adapted algorithm the hierarchy
of clusters can be represented by the list of pointers to parents
and dissimilarities between clusters using a list of their values.
Details on our implementation of the algorithm can be found
in the Appendix B.

Please note that using the basic algorithm it is possible to
get exactly the same results as with the adapted algorithm,
as long a monotonic dissimilarity measure was used. This
should be the case anyway. The basic algorithm should be
executed on the whole line graph of the original network and

062814-4

HIERARCHICAL LINK CLUSTERING ALGORITHM IN . . . PHYSICAL REVIEW E 91, 062814 (2015)

use the dissimilarity measure between clusters of nodes in the
line graph, identical to the dissimilarity measure between the
corresponding links (clusters of links) in the original network.
In this case the basic algorithm determines the hierarchy of
node clusters in the line graph, which is equivalent to the
hierarchy of link clusters in the original network, otherwise
obtained using the adapted algorithm. However, conversion of
the whole original network into the line graph may require
much more space. Every node with a degree k in the original
network is converted into an embedded complete subgraph
of size k in the line graph. The adapted algorithm in most
cases avoids a complete conversion of the input network,
especially on real-world networks and, consequentially, uses
much less space. In Sec. VI we show this on some examples.
On specifically designed networks, however, it can be forced
to construct a whole corresponding line graph.

V. DISSIMILARITY MEASURES

The execution flow and the results of clustering algorithms
strongly depend on the choice of dissimilarity measures. In
every iteration of the algorithm, two closest clusters of either
nodes or links are joined, based on the selected dissimilarity
measure. We divide dissimilarity measures into two groups:

(i) dissimilarity measures which are directly computed
from the cluster descriptions (Sec. V A) and

(ii) dissimilarity measures recursively computed from data
about the clusters and dissimilarities between them (Sec. V B).

A common problem with dissimilarity measures is related
to monotonicity. Using an arbitrary dissimilarity measure,
some clusters joined closer to the root in the hierarchy later
in the course of the agglomerative clustering algorithm may
be more similar than at least one pair of subclusters joined
earlier, or deeper, in the hierarchy. If this is the case, then
we get an inversion in the resulting hierarchy. This property
is unwanted as it introduces ambiguity; at the same level of
hierarchy multiple distinct splits into clusters are possible (See
Fig. 1). In addition to these issues, some algorithms, like our
adapted algorithm, should not be used with nonmonotonic
dissimilarity measures.

If for all iterations of the algorithm, for every joining
of clusters Cp and Cq into a cluster C, the dissimilarity
measure guarantees a hierarchy with a level function for
which it holds max[h(Cp),h(Cq)] � h(C), the dissimilarity
is monotonic. From the clustering theory we know the
Bruynooghe’s reducibility property [21], which is a sufficient
condition for a dissimilarity measure D to be monotonic. It is
given by the condition:

D(Cp,Cq) � D(Cp,C) ∧ D(Cp,Cq) � D(Cq,C)

⇒ D(Cp,Cq) � D(Cp ∪ Cq,C), (1)

where Cp, Cq , and C are clusters of nodes or links.
Equation (1) expresses the fact that if two clusters Cp and
Cq are the closest among clusters, then clusters Cp and Cq

are at least as similar as a joint cluster Cp ∪ Cq is similar to
any other cluster C, simply meaning, that as soon as two most
similar clusters are joined, it is no longer possible to find any
other cluster which would be more similar to the joint cluster
than it is to individual clusters before the joining.

A. Directly computed dissimilarity measures

Directly computed dissimilarity measures are based on
properties of network elements collected in the clusters and
on the structure of the clusters.

1. Simple dissimilarity measures between clusters

A simple dissimilarity measure considering only the struc-
ture of the network is based on Jaccard correlation measure
[22]. It is defined by:

DJ (Lp,Lq) = DJ (Cp,Cq) = 1 − |Cp ∩ Cq |
|Cp ∪ Cq | = |Cp ⊕ Cq |

|Cp ∪ Cq | ,

(2)

where Cp and Cq are clusters of end nodes belonging to clusters
of links Lp and Lq , respectively. ⊕ is the symmetric difference
of sets. The problem with this measure is that it is not always
monotonic.

Its improved version for links is the weighted Jaccard
dissimilarity, given by:

Dw(Lp,Lq) = |Cp ⊕ Cq |
|Cp ∪ Cq | |Lp ∪ Lq |. (3)

To limit Dw to the interval [0,1], we can additionally divide
the right side of (3) by the constant m = |E|. In most cases
the resulting hierarchies of links contain fewer inversions, but
monotonicity is still not guaranteed.

DJ and Dw are both directly computed dissimilarity mea-
sures. They were the first attempts to develop the dissimilarity
measures we use in our algorithms.

2. Dissimilarity measures based on keywords

While the idea of these measures originates from the
bibliographic network analysis, we will explain it through the
example of a collaboration network N = (V,E,κ,∅) of authors
V , κ : V → [K], who use keywords from the set K . For every
author a list of keywords and their usage frequency (or some
other non-negative measure of importance) in their works is
known. The collaboration network is constructed only for a
specific scientific field and a time period. Based on keywords,
we further investigate clusters of connected authors. In other
words, we want to find subclusters of collaborating authors
that use the most similar keywords (are working on similar
topics). Based on lists of keywords of each subcluster we can
also determine subtopics. In Eq. (4) we use a list Fs with
pairs (k : fs,k) as entries, where fs,k is the frequency of every
keyword k ∈ K used by the author s ∈ V . FC and fC,k are
analogously extended to a cluster of authors C,

Fs = {(k : fs,k); k ∈ K}, s ∈ V
(4)

FC = {(k : fC,k); k ∈ K}, fC,k =
∑
s∈C

fs,k.

Note that if the author s does not use a keyword k, then
fs,k = 0. Analogously, fC,k = 0 if in the cluster C a keyword
k is not present. In an implementation the entries (k : fk) with
fk = 0 are omitted. A natural representation is a dictionary
data structure.

In the Eq. (5) we extend the definition (4) to the list
of frequencies for every given keyword k used by two

062814-5

JERNEJ BODLAJ AND VLADIMIR BATAGELJ PHYSICAL REVIEW E 91, 062814 (2015)

collaborating authors s and t or by two clusters of authors
Cp and Cq together,

Fs � Ft = {(k : fs,k + ft,k); k ∈ K}
FCp

� FCq
= {(

k : fCp,k + fCq,k

)
; k ∈ K

}
.

(5)

In Eq. (6) the absolute difference between frequencies of
the individual keyword used by two authors, respectively, by
two clusters of authors, is given:

Fs�Ft = {(k : |fs,k − ft,k|); k ∈ K},
FCp

�FCq
= {(

k :
∣∣fCp,k − fCq,k

∣∣); k ∈ K
}
.

(6)

Finally, in Eq. (7) the new directly computed dissimilarity
measure is defined. It is a normalized version of the absolute
difference between keyword frequencies of two authors or two
clusters of authors:

Dk(Cp,Cq) =
∣∣FCp

�FCq

∣∣∣∣FCp
� FCq

∣∣ ,
(7)

dk(s,t) = Dk({s},{t}) = |Fs�Ft |
|Fs � Ft | ,

where |F | = ∑
f ∈F f . The dissimilarity dk can be used as a

part of one of the recursively computed dissimilarity measures
described later in Sec. V B and Dk can be used directly.
However, Dk is nonmonotonic.

Both dk and Dk are dissimilarity measures between node
clusters. Using recursive principles (Sec. V B) it is possible
to use dk in the adapted algorithm, but we have to adapt
it appropriately. Instead of lists of keywords Fs and Ft of
respective authors s and t , we have to use the lists of keywords
Fu and Fv assigned to respective links u and v.

A simple way to obtain a list of keywords Fe for a link
(edge) e is to consider a union of its end nodes’s keyword
lists. Therefore, for every link e = (s : t) ∈ E, we obtain its
keyword list as Fe = Fs � Ft . To generate sets of keywords
for the links in our benchmark networks to test our adapted
algorithm we used this approach. In general, instead of
combining properties of link’s end nodes, we could directly
use the properties of links as well.

3. Some directly computed monotonic dissimilarity measures

In Eq. (12) we now give three examples of monotonic
dissimilarity measures for units described by keywords as in
Sec. V A 2. Let us start with a definition of an auxiliary function
gt:

gt(x) =
{

1 x > 0
0 otherwise . (8)

For clusters Cp and Cq we then define:

SSF(Cp,Cq) =
∑
k∈K

max
(
fCp,k,fCq,k

)
, (9)

SSC(Cp,Cq) =
∑
k∈K

max
[
gt

(
fCp,k

)
,gt

(
fCq,k

)]
, and (10)

SMF(Cp,Cq) = max
k∈K

(
fCp,k,fCq,k

)
. (11)

Finally, the dissimilarity Dx(Cp,Cq), where x is SF, SC, or
MF, is defined as follows:

Dx(Cp,Cq) =
{
Sx(Cp,Cq) p �= q

0 p = q
. (12)

The first measure, DSF, favors clusters with similar sets of
keywords and with similar frequencies of individual keywords.
The second measure, DSC, is the simplification of the first
measure. It considers only a presence of an individual keyword
instead of considering their frequencies. The third measure,
DMF, is the opposite of the second one. It considers the
frequencies of keywords only.

The reasoning behind these dissimilarities is the following.
Note that FC = FCp

� FCq
when C = Cp ∪ Cq . When a set

of keywords of a cluster Cp is a superset of keywords of a
neighbor cluster Cq in the course of the algorithm and the dis-
similarity between Cp and Cq is the lowest, the cluster Cp gets
its frequencies of keywords incremented by Cq’s frequencies
of keywords following the measure DSF or is left unchanged,
keeping its original frequencies of keywords directed by mea-
sures Dx , x being either SC or MF: Cq ⊆ Cp ⇒ Dx(Cp,Cq) =
Sx(Cp,Cp). This effect can be viewed as the act of engulfing
clusters with smaller sets of the same keywords, favored by
all three dissimilarities. As soon as the engulfing, due to less
compatible clusters, cannot take place, dissimilarities favor
joining the least different neighbor clusters.

Dissimilarity measures DSF, DSC, and DMF can be used in
the adapted algorithm as well, but we have to modify them
first. Instead of keyword lists FCp

and FCq
assigned to clusters

of authors Cp and Cq , we have to use the lists of keywords
FLp

and FLq
assigned to clusters of links Lp in Lq . Lists of

keywords assigned to clusters of links can be obtained using
the same approach as for the clusters of authors or nodes,
respectively, for the dissimilarity measure dk .

B. Recursively computed dissimilarity measures

For pairs of trivial clusters a dissimilarity measure from
this group can be directly obtained using the dissimilarity
d between individual nodes of a network. The dissimilarity
between nontrivial disjoint clusters Cp and Cq , D(Cp,Cq),
is obtained recursively from dissimilarities of their merged
subclusters.

For example, in the traditional single-linkage (also known
as minimal-linking) method the dissimilarity between two
clusters is determined as the smallest dissimilarity between
any two elements, each being from a different cluster:

Dm(Cp,Cq) = min
u∈Cp,v∈Cq

d(u,v). (13)

In this case we get the recursive relation:

Dm(C,Cp ∪ Cq) = min
u∈C,v∈Cp∪Cq

d(u,v)

= min
(

min
u∈C,v∈Cp

d(u,v), min
u∈C,v∈Cq

d(u,v)
)

= min (Dm(C,Cp),Dm(C,Cq)). (14)

The definition of the dissimilarity Dm requires a whole
matrix of dissimilarities d on V × V —at least O(n2) space.
This is too much for large sparse networks. To get an

062814-6

HIERARCHICAL LINK CLUSTERING ALGORITHM IN . . . PHYSICAL REVIEW E 91, 062814 (2015)

efficient algorithm, we limit the definition of the dissimilarity
D to dissimilarities between the end nodes of existing
links [17] only. Let E(Cp,Cq) = {e ∈ E : ext(e) ∩ Cp �= ∅ ∧
ext(e) ∩ Cq �= ∅}. For nodes u and v we then set

D({u},{v}) =
{
d(u,v) (u : v) ∈ E

∞ otherwise (15)

and for an analog to the single-linkage (13) dissimilarity, we
define the constrained single-linkage dissimilarity:

Dmc(Cp,Cq) = min
(u:v)∈E(Cp,Cq)

d(u,v). (16)

It is easy to verify that

Dmc(C,Cp ∪ Cq) = min (Dmc(C,Cp),Dmc(C,Cq)). (17)

Similarly, we introduce the constrained maximal-linkage
dissimilarity:

DMc(Cp,Cq) = max
(u:v)∈E(Cp,Cq)

d(u,v)

(18)
DMc(C,Cp ∪ Cq) = max (DMc(C,Cp),DMc(C,Cq))

and the constrained average-linkage dissimilarity:

Dac(Cp,Cq) = 1

w[E(Cp,Cq)]

∑
(u:v)∈E(Cp,Cq)

d(u,v)

Dac(C,Cp ∪ Cq) = w[E(C,Cp)]

w[E(C,Cp ∪ Cq)]
Dac(C,Cp) (19)

+ w[E(C,Cq)]

w[E(C,Cp ∪ Cq)]
Dac(C,Cq),

where w : E → R+ is a weight of individual links, w(L) =∑
l∈L w(l), L ⊆ E, and w[E(C,Cp ∪ Cq)] = w[E(C,Cp)] +

w[E(C,Cq)] for E(C,Cp) ∩ E(C,Cq) = ∅. For E(Cp,Cq) =
∅ we define Dx(Cp,Cq) = ∞, where x is mc, Mc, or ac.

On a complete network (graph) of size n, N ≡ Kn, the con-
straint dissimilarities reduce to the corresponding traditional
dissimilarities. Other dissimilarity measures exist and most
of them are described in Fortunato’s review article [5]. We,
however, do not know if their constrained versions can be trans-
formed into recursion as we have shown in the upper examples.

To use Dmc, DMc, and Dac in the adapted algorithm, where
link clusters Lp and Lq are used, we have to consider a
corresponding function of active nodes A(Lp,Lq) instead of
E(Cp,Cq); A(Lp,Lq) = {v ∈ V : v ∈ Cp; ∃u �= v : u ∈ Cq},
where Cp and Cq are node clusters belonging to their respective
link clusters as described in Sec. IV. For links u and v we then
set

D({u},{v}) =
{
d(u,v) ext(u) ∩ ext(v) �= ∅
∞ otherwise . (20)

For example, the constrained single-linkage dissimilarity
adapted to link clusters is

Dmcl(Lp,Lq)

= min
u∈Lp,v∈Lq :ext(u)∩A(Lp,Lq)�=∅∧ext(v)∩A(Lp,Lq)�=∅

d(u,v).

(21)

1. Lehmann’s dissimilarity

An example of recursively computed dissmilarity measure,
based on Jaccard dissimilarity, is used in Lehmann’s work
[2] to determine the dissimilarity between link clusters. The
dissimilarity between individual adjacent links u and v is given
by:

dL(u,v) = |n(u) ⊕ n(v)|
|n(u) ∪ n(v)| . (22)

The term n(u) represents the set of neighbor nodes of a link
u in a network, i.e., the set of nodes accessible from link u

through a single link. If links u and v do not share a node (are
not adjacent), then dL(u,v) = 1. A major difference between
the Jaccard dissimilarity from Sec. V A 1 and Lehmann’s one
is in how to determine the dissimilarity between link clusters.
They use the single-linkage principle:

DL(Lp,Lq) = min
u∈Lp,v∈Lq

dL(u,v) (23)

and therefore the Lehmann’s dissimilarity generates mono-
tonic hierarchies. A related proof is given in Appendix A 2.

VI. ALGORITHM COMPLEXITIES

A. Basic algorithm

The basic algorithm, described in Sec. III is quite efficient.
The time complexity is limited by the number of source
network’s nodes n and its maximal degree �, O(n�). In the
worst case, if � = n, the complexity can become quadratic, but
networks with such high maximal degree are rare in practice.
This applies also to scale-free networks which we focus on
in this paper. We ran the algorithm on generated scale-free
networks [23,24] of sizes between 10 and 10 000 nodes.
The maximal degree in any of them was 6780. To generate
networks we used the network analysis package NETWORKX

[25]. We assigned a distinct keyword to each node, i.e., a
string of node’s consecutive number in a network. On Fig. 2
we provide the diagram of average running times in relation
to the product of network size and its maximal node degree.
Depending on the shape of source network and its weights,
the worst-case scenario is a star network (� = n − 1) where
in each iteration of the algorithm all remaining dissimilarities
should be recalculated. In this rare case the time complexity
becomes quadratic O(n2). The space complexity is linear
in terms of the number of links in the source network
m, O(m).

The algorithm starts with n clusters of nodes Ci , i =
1, . . . ,n, where each node belongs to its own cluster. A priority
queue Q is then filled with dissimilarities between individual
clusters of nodes, but only where nodes in its clusters are
linked in the network. We set m dissimilarities in the initial Q.
For each link (u : v) ∈ E we have a dissimilarity d(Cu,Cv).
In every iteration of the algorithm two clusters Cp and Cq

are joined into a new cluster of nodes C and links (at least
one) between nodes from just joined clusters are absorbed into
the cluster. Dissimilarities between former clusters Cp or Cq

and all other clusters are removed from the priority queue.
The time complexity is minimal in path networks. In this case
when any link representing the lowest dissimilarity between
two clusters is chosen, at worst two dissimilarities should be

062814-7

JERNEJ BODLAJ AND VLADIMIR BATAGELJ PHYSICAL REVIEW E 91, 062814 (2015)

FIG. 1. (Color online) Two dendrograms of hierarchies obtained by a monotonic dissimilarity (left) and a nonmonotonic dissimilarity
(right). While the clustering partition on the left, obtained by cutting the hierarchy into clusters 1, 2, and 3, is uniquely defined, the clustering
partition in the right case is not. We have to decide which of the three clustering partitions, A, B, or C, to choose.

recalculated, giving us O(n). In the case of a star, however,
whichever dissimilarity is chosen, all remaining dissimilarities
should be recalculated. Please note that each cluster carries
also the underlying union of keywords that each of their nodes
has. If the number of keywords is large and the dissimilarity
measure takes all of them into account, the time complexity
may increase considerably.

B. Adapted algorithm for links

It is harder to estimate the complexity of the adapted
algorithm as it is more complex and utilizes additional
data structures. As seen from the statistical analysis in the
continuation, the complexity is heavily dependent on the input
network structure and its element properties. The choice of
a dissimilarity measure has a significant impact on the
complexity as well. The algorithm needs the most resources
on fully linked regions in networks (complete subgraphs). It is
useful to know their presence in the source network. Using the
k-cores algorithm [26] on the source network N , we are able to
identify regions with possibly large complete subgraphs in N .
The k-cores algorithm runs in O(m), m being the number of
links in the network. The main core, i.e., the core of the largest
order k, can contain complete subgraphs of size k + 1 but
not of size k + 2. The complexity of the adapted algorithm is
dependent readily on the presence of individual nodes with
high degrees in the network, as inside the corresponding
line graph they evolve into complete subgraphs. It is quite
obvious that it is good to first cluster more isolated links in

FIG. 2. (Color online) A diagram of running times of the basic
algorithm in relation to the product of the number of nodes and the
maximal degree in random generated scale-free networks. Each node
had its own single unique keyword.

the network. After joining any number of links in the close
neighborhood of nodes with high degrees, the degrees of these
get decreased and they therefore generate smaller subgraphs
later. Our adapted algorithm does not have any built-in system
to avoid high-degree nodes.

For path networks and for complete networks we deter-
mined complexities of the adapted algorithm analytically.
These forms of the input network represent both possible
extremes. By measuring the time required for the algorithm to
cluster individual networks from a set of generated scale-free
networks, which are more common in practice, we determined
its complexity statistically.

Using the dissimilarity measure DSF we analyzed the time
complexity of the adapted algorithm for the simplest connected
networks—paths of size m = n − 1 links. We assume the
complexity of the dissimilarity DSF calculation takes a constant
time (set K is small). As the algorithm joins two adjacent
clusters of links in each iteration and calculates at most two
dissimilarities between the newly formed cluster and other
clusters, the resulting time complexity is O(m) in this case. On
the other hand, we analyzed the time complexity in the case
of complete networks with n nodes. The complexity equals
O(n�2) = O(n3) in this case. We get such complexity as
the algorithm starts to build a chain in one of nodes in the
incremental line subgraph, i.e., at one of the link clusters in
the input network and in the worst-case scenario continues
throughout all of its adjacent nodes or link clusters around a
common active vertex in the input network, respectively. In
each step the algorithm has to determine the link cluster which
is the least dissimilar to the last link cluster in the chain. The
complexity of this step is O(�) = O(n) as each link cluster
in the complete graph is adjacent to 2(� − 1) = 2n − 2 other
link clusters in the beginning, giving the step O(�) = O(n).
In the course of the algorithm, the number of adjacent link
clusters to other link clusters in average linearly decreases
to 0 due to their joining. In average the number of adjacent
link clusters is therefore proportional to n keeping the O(n)
complexity of the step. The algorithm therefore needs O(n2)
time to cluster each node and while there is n nodes in a
complete network, the overall time complexity is equal to
O(n�2) = O(n3). While the calculation of the dissimilarity
between a pair of link clusters can take more than O(1) time,
the overall complexity of the algorithm may increase.

In other cases we measured the time complexity statis-
tically. We used the dissimilarity measure DSF. Using the
keyword dissimilarity measure, described in Sec. V A 2, the
complexity would increase proportionally to the number of

062814-8

HIERARCHICAL LINK CLUSTERING ALGORITHM IN . . . PHYSICAL REVIEW E 91, 062814 (2015)

FIG. 3. (Color online) A diagram of running times of the adapted
algorithm in relation to the product of the number of nodes and the
maximal degree (�) in random generated scale-free networks. Each
node had its own single unique keyword.

keywords. On the same generated scale-free networks, as for
the basic algorithm, we measured the required times for the
adapted algorithm to finish. We plotted the complexity measure
in terms of the network size where m stands for the number
of links and n for the number of nodes in the input network.
Results are displayed in Figs. 3 and 4. The results are quite
similar. The computation time mostly varies depending on the
structure of input networks, which were the same in both cases.
The larger number of keywords, however, significantly slows
down the algorithm in the second case (by ∼3.3 times), but
the slowdown is almost even. The estimated complexity of
the algorithm on both sets of networks is given by O(n�).
We are going to see that scale-free networks mostly contain a
small amount of high-degree nodes, yet these mostly increase
the time complexity. Based on observations and reasoning, the
estimation is therefore sensible. The maximal length of any
chain in case of any of the networks we ran the algorithm
on was 15 clusters. The largest incremental line subgraph
contained 13 625 link clusters and 4 930 881 dissimilarities
between them.

Some tests were performed on real-life networks as well.
We took the Amazon product copurchasing network, collected
by Yang et al. [4]. We generated four subnetworks and
measured the time for the adapted algorithm to complete each
of them. The subnetworks are the largest components in the
original network on the subset of nodes having degrees higher

FIG. 4. (Color online) A diagram of running times of the adapted
algorithm in relation to the product of the number of nodes and the
maximal degree (�) in random generated scale-free networks. Each
node had 10 random keywords of a set from 200 keywords.

than a given threshold. The largest component on nodes with
a degree of 2 or more is approximately 20% smaller than the
original network. We give the average computation times in
Table I. The measured times are relatively high, but we have
to consider the fact that the largest incremental subgraph the
algorithm constructed (the most critical part) was composed
of less than 50 000 link clusters and 400 000 dissimilarities
between them only. In our implementation of the algorithm
this resulted in less than 100 MB of memory. Note that if the
incremental line subgraph would not be freed each time the
chain was totally consumed, the time required for the algorithm
to finish would significantly decrease.

It is known that scale-free networks can have quite large
maximal degrees [24], but the number of so-called hubs,
i.e., nodes with large degrees, is usually small. The number
of nodes pk of varying degrees k follows the power-law
distribution [24]: pk ∼ k−γ , where γ is the exponent of the
degree distribution whose value is typically in the range
2 < γ < 3. Upper limits of complexities of our algorithm are
based on the maximal degree in a network, but such high
complexity takes place only if the majority of nodes would
have high degrees. This is unusual in scale-free networks. To
get a feeling of the structure of some scale-free networks,
we present some in Table II: The above-mentioned Amazon
network and Brightkite location-based online social networks
were obtained from SNAP Datasets [27], the lexical network of

TABLE I. Running times of the adapted algorithm on the largest components S1, . . . ,S4 in the Amazon network on nodes with a limited
minimal degree. The longest chain in any of the upper examples was 24 clusters long. The shortest in the group of the longest chains for
each individual example contained 14 clusters. The highest number of stored dissimilarities (links) in the incremental line subgraph among all
upper examples was 345 764. In that particular case there were also stored the most clusters (nodes), i.e., 47 525. The computer used to run the
algorithm had a 2.5-GHz Intel Core2Duo processor and 4 GB of RAM.

Network S1 S2 S3 S4

Minimal degree 10 5 3 2
Maximal degree 52 172 298 361
Number of nodes, n 21 765 145 592 268 380 309 154
Number of links, m 48 077 455 093 822 523 900 163
Average time (one unique keyword per node) (s) 17 1198 4417 5401
Avg. time (10 random keywords from a set of 200 per node) (s) 26 1205 4418 5486

062814-9

JERNEJ BODLAJ AND VLADIMIR BATAGELJ PHYSICAL REVIEW E 91, 062814 (2015)

TABLE II. Properties of some demonstration scale-free networks.

Network n m � γ

Amazon 334 863 925 872 549 3.0
Brightkite 58 228 428 156 2268 1.9
Wordnet 146 005 656 999 1008 2.2
Coauthorship network TI 120 953 209 522 382 2.6
CPNS 61 095 71 651 1167 2.7

words from the Wordnet data set was constructed by Fellbaum
[28], the coauthorship network in the field of topological
indices (TI) was constructed by Bodlaj and Batagelj [29], and
a product copurchasing network (CPNS) from one Slovenian
online store was partially collected for this work.

1. Space complexity of the adapted algorithm

The space complexity of the adapted algorithm is mostly
dependent on the maximal length l of any chain and the
incremental line subgraph constructed around it in the course
of the algorithm. In the worst case it can happen that the chain
is built along all the links in the input network and a whole line
graph is built with it. Further, if the input network is a complete
network, the chain itself will take O(m) = O(n2) space in this
case and the corresponding line graph O(n3) space. This is the
worst space complexity of the adapted algorithm. While large
and dense networks are less common in practice and the chains
built by the algorithm are mostly very short, the expected space
complexity is significantly lower than O(n3). A common type
of networks to be analyzed with our algorithm belongs to
scale-free networks where a small amount of nodes only has a
substantially high degree, close to the maximal degree � of the
network. If one runs the algorithm on such a network, sooner
or later the algorithm will encounter one of the links that has
a high-degree end node. When this happens, the algorithm
will construct a complete subgraph with O(�2) dissimilarities
(links) in the incremental line subgraph. While the chains are
short in practice l � m and the number of high-degree nodes
is relatively low, the expected space complexity of the adapted
algorithm in scale-free networks is in the range of O(l�2),
l � m. Whenever the chain is rebuilt, the current incremental
line subgraph is disposed.

Additional space needed to run the algorithm efficiently is
the space required to store lists of clusters which share each
active node. A node with degree � can be shared among at
most � clusters. In the worst case we have n such nodes in the
network, meaning O(n�) space is needed additionally for the
entire network at most. This does not contribute to the overall
worst space complexity but can represent the major part of
space complexity in specific cases.

VII. ALGORITHM APPLICATION ON NETWORKS AND
EVALUATION

The main issue with evaluating the suitability of results of
community detection algorithms is in lack of strict definition
what a community actually is Ref. [4]. As long this is the
case, it will remain impossible to uniformly compare results
of clustering algorithms side by side.

In the optimization criterion, such as in modularity-based
algorithms, the notion of community is operationalized by
the criterion itself. In terms of some other criterion-based
algorithm, the evaluation of the results of the first algorithm
using the comparison of clusters obtained by both algorithms
is therefore questionable. Algorithms for community detection
were therefore mostly tested on small empirical networks
and on synthetic benchmark networks [30]. Tests mostly
targeted features of the algorithms, for which the algorithms
were designed in the first place. Essentially, we get the
answer to the question regarding which criterion function
is better for a given task. A comparison of nonhierarchical
algorithms with hierarchical ones represents another issue.
It can be performed on the basis of the partition, obtained
by a hierarchical clustering algorithm and having the highest
partition density [15]. However, we have to take into account
that clusterings of hierarchical algorithms might still fit better
than the nonhierarchical ones. The same applies to overlapping
communities. G. Tibély et al. [30] try to address these issues.

Our algorithm considers also network attributes. For these
reasons it is rather hard to compare the results of existing
algorithms with results of our new one. For the evaluation of
the results of our algorithm we therefore use a straightforward
comparison of clusterings [31] and a common-sense approach
using the real-world networks which were characterized by
humans in advance [4]. We try to compare the obtained
clusters to the ground-truth clusters and empirically interpret
the results. A quite extensive evaluation of the link clustering
algorithm was given in Lehmann’s work [2]. Using their
dissimilarity measure DL (23), our algorithm essentially
returns the same results as their algorithm.

A. Artificial demonstration network

To demonstrate the algorithm’s ability to cluster similar
regions in the network, we constructed a small network,
containing 18 nodes and 31 links arranged into densely
connected regions around a central (18th) node, Fig 5. Nodes
in the upper region were assigned keywords {B,U} on the left
part and keywords {B,V } on the right part. The bottom region
consists of three parts, whereby nodes in the left part have {A},
the middle part is without keywords, and the right part has a
keyword {C}. The interconnecting node is without keywords
as well. The network is displayed three times in Fig. 5. It has
color coded (and surrounded by broken lines) link clusters,
determined by the cut intervals in the hierarchy, produced by
the algorithm from the network using the dissimilarity measure
DSC from Eq. (12). Nodes are labeled with a number, followed
by a string of keywords. The flattened hierarchy is shown in
Fig. 6. Flattening was performed from the root of the original
binary hierarchy by recursively moving up upon both branches
of a child branching to the parent’s level when the similarity in
the parent’s branching was equal to the similarity in the child’s
branching. We expected the algorithm to detect the connected
regions with similar sets of keywords. From the diagram
of hierarchy this is clearly evident; however, straight cuts
across the hierarchy result in joint clusters with less different
keywords, following the used dissimilarity measure DSC. At
first, every link is in its own cluster (not shown on Fig. 5), and
then, at dissimilarity level 1, neighboring links with nodes with

062814-10

HIERARCHICAL LINK CLUSTERING ALGORITHM IN . . . PHYSICAL REVIEW E 91, 062814 (2015)

FIG. 5. (Color online) Three clusterings on the demonstration network. Nodes are labeled with their numbers followed by a string of their
keywords. Clusters obtained by cutting the hierarchy (Fig. 6) produced by the algorithm on the intervals below each network sketch are color
coded and surrounded by broken lines. In the top region of the leftmost clustering, each link is in its own cluster.

the same single keyword are joined into clusters. Note the link
(17− : 18−) which could be clustered into either one-keyword
cluster (cluster with {A} or cluster with {C}). Clusters of links
with two distinct keywords are then joined at dissimilarity
level 2, resulting in joining of links with {B,U} into a common
cluster and {B,V } into the other one. Clusters of links with {A}
and {C} are clustered into a joint cluster with {A,C} as well.
At dissimilarity level 3, clusters with three different keywords
are joined. At level 5 all links are finally clustered into a single
cluster.

The dissimilarity DSC favors joining smaller clusters which
inherently have smaller number of different keywords. Only
the number of different keywords is important, regardless
of the number of common keywords. For instance, the
dissimilarity of {A} and {B} is 2 and dissimilarity of {B,U}
and {B,V } is 3.

Now let us consider the same example network using
dissimilarity DSF. The visualization of the resulting hierarchy
is displayed in Fig. 7. For each distinct clustering based on
all possible cut values in the resulting hierarchy, we used
the measure δ to determine the difference between calculated
clusterings Ck = {Ck,1,Ck,2, . . . ,Ck,|Ck |} and the ground-truth
clustering G = {G1,G2, . . . ,G|G|}. Differences are shown in
Fig. 8. The measure of clustering difference δ(Ck,G) is known
as the Best Match [31]. Using μ to represent the number of

moves necessary to convert cluster C into C ′:

μ(C,C ′) = |C ⊕ C ′| (24)

we can compute for each cluster Ck,i ∈ Ck its best represen-
tative G∗ ∈ G such that G∗ = argminG∈Gμ(Ck,i,G). Note that
by normalizing μ(C,C ′) by |C ∪ C ′| we obtain the Jaccard
dissimilarity DJ (C,C ′) given by Eq. (2). By summing numbers
of moves to convert each member of Ck to its respective best
representative in G we can compute how well G represents
Ck . To make the measure symmetric we also sum the numbers
of moves from every member of G to its corresponding best
representative in Ck and obtain:

δ(Ck,G) =
∑
C∈Ck

min
G∈G

μ(C,G) +
∑
G∈G

min
C∈Ck

μ(G,C). (25)

Best Match and other measures were developed to quan-
titatively determine the difference between two possibly
overlapping clusterings. The ground-truth clustering of nodes
in our example network was determined by five clusters: nodes
with the keyword {A}, nodes with keywords {B,U}, nodes
with {B,V }, and nodes with {C}, regardless of connectivity.
Those without keywords were assigned to the fifth separate
cluster.

Using the evaluation on the demonstration network we are
looking to get reference values of the measure of difference

FIG. 6. (Color online) Flattened hierarchy of links obtained by the adapted algorithm using dissimilarity DSC on the demonstration network.
Dissimilarity values are displayed at the top of branchings. Links are displayed on the bottom by pairs of linked network nodes.

062814-11

JERNEJ BODLAJ AND VLADIMIR BATAGELJ PHYSICAL REVIEW E 91, 062814 (2015)

FIG. 7. (Color online) Flattened hierarchy of links obtained by the adapted algorithm using dissimilarity DSF on the demonstration network.
Dissimilarity values are displayed at the top of branchings. Links are displayed on the bottom by pairs of linked network nodes.

among the best clustering produced by the algorithm and
the ground-truth clustering, so we can compare them with
differences of clusterings obtained on larger and real networks.
One such diagram is displayed in Fig. 9. Note the explanation
of diagrams in Figs. 8 and 9.

B. Real-world network example:
Network of online-store-based products

The network was obtained from an online store, selling var-
ious equipment. A similar approach was used in Yang’s work
[4] from Amazon where they also construct the network based
on copurchased items. As ground-truth communities they use
the hierarchy of categories into which items are classified.
Each product is characterized by attributes like color, type,
size, shape, and so on. In our case, products were instances of
electronic measuring equipment, mainly oscilloscope probes
of various types. Each product was categorized into one of four
types. We constructed the network of these products. We con-
nected them by links to other products following the relation,
based on the behavior of customers viewing other products as
well. If a sufficient number of customers were interested in a
specific product, and they were interested in another product as
well, this second product was listed in the first product’s “oth-
ers viewed” list. On the network we ran the adapted algorithm
and, using observation, searched for the appropriate threshold
to cut the obtained hierarchy in such a way that the resulting

FIG. 8. (Color online) A diagram of differences (δ) between each
clustering obtained by a given cut value in the hierarchy generated on
the demonstration network by the adapted algorithm and the ground-
truth clustering. The optimal cut takes place at value 6 and δ = 0.221.
It is marked with a bigger bullet in the diagram.

clusters covered the most suitable regions in the network. The
comparison results are given by the diagram in Fig. 9.

Figures 8 and 9 support our expectations. If we cluster all
links into only one cluster (on the left in both diagrams, the
cut value is zero) the difference to the ground truth is high.
Then, as we cut hierarchies at higher values, we progressively
reach the optimal cut, where the obtained clusters are the most
similar to the ground-truth clusters. Increasing the cut value
towards its maximum, where each link is clustered into its
own cluster, the difference to the ground-truth clusters again
increases.

For demonstration purposes we considered only the uni-
form level cuts in hierarchies. If one would, however, consider
variable level cuts (by cutting branches at different levels in
the hierarchy), the difference of clusterings obtained at the
optimal selection of levels to ground-truth clusterings might
improve.

C. Real-world network example:
Collaboration between authors in the field

of topological indices

In Ref. [29] we investigated bibliographical networks on
the field of topological indices constructed from the Web
of Science data. Networks were constructed by considering
works, authors of works, journals where works were published,
and keywords authors used in their works. One of the networks

FIG. 9. (Color online) A diagram of differences (δ) between each
clustering obtained by a given cut value in the hierarchy generated
on the network of oscilloscope probes by the adapted algorithm, and
the ground-truth clustering. The optimal cut takes place at value 28
and δ = 0.253. See the emphasized dot in the diagram.

062814-12

HIERARCHICAL LINK CLUSTERING ALGORITHM IN . . . PHYSICAL REVIEW E 91, 062814 (2015)

FIG. 10. Scheme of locations of clusters of authors in the
hierarchy from the author collaboration network.

studied was a collaboration network of authors where authors
are represented by nodes and their collaborations in terms of
at least one common work are represented by links. Based
on keywords of works, we equipped each node (author)
with the set of weights (frequencies) for each keyword the
author used in articles he or she (co-)authored. Weights were
obtained by tf-idf ranking [32]. Based on sets of frequencies of
keywords authors used, we then applied the adapted algorithm
to construct the hierarchy of similar authors. For an illustration
we show three sets of keywords belonging to arbitrarily chosen
branches in the obtained hierarchy as displayed in Fig. 10; sets
A and B from common branchings and the set Z from a remote
branching (|A| = 491, |B| = 533, |Z| = 300). As expected in
comparison to set Z, sets A and B have a quite similar structure
of keywords which can be observed in Fig. 11: |A ∩ B| = 227,
|A ∩ Z| = 59. Even if the set Z would be twice its size, its
actual size is approximately a half of the size of sets A or B, the
number of keywords in its intersection with either of sets A or B
would still contain a half of that of A ∩ B only. Now let us point
out the following. While we can expect the strong resemblance
of sets corresponding to branchings close together in the
hierarchy, the opposite is not always the case. Even though
sets corresponding to distant branchings in the hierarchy are
mainly distinct, based on keywords, one could have two similar
regions in the network, yet separated by a long path. Due to the

relational constraint of the algorithm, the hierarchy generated
in this case would have two apparent distinct branches, yet
their accompanying sets of keywords would be similar.

Keywords in green (darker) color on the leftmost and on
the middle set on Fig. 11 correspond to keywords from the
intersection A ∩ B of clusters A and B. Dark keywords on
the rightmost set correspond to the cluster A ∩ Z. Authors
with their short descriptions [29] corresponding to individual
clusters can be found in Table III.

VIII. DISCUSSION

While the adapted algorithm works primarily on undirected
networks, it can easily be turned into the variation, considering
directed networks. When joining the closest clusters in
terms of dissimilarity we could consider additional relational
constraints [33]. The default algorithm preserves the weak
connectivity. Two clusters of links are joined in a step of
the algorithm only if they are linked, i.e., share at least one
common node. Therefore the weak connectivity is maintained.
If, in addition to this, more rules are considered, for instance,
connectivity to a single center or strong connectivity, the
direction of links becomes important.

In Sec. V we discussed dissimilarity measures. Our fo-
cus was mostly on the keyword- or tag-based dissimilarity
measures, for example, in the author collaboration network.
Let us stress once more that dissimilarity measures can be
chosen arbitrarily, based on various properties of networks,
trying to express as well as possible the clustering goal.
While recursively computed measures only can be based
on dissimilarities between individual elements of a network,
directly computed dissimilarity measures can consider also
specific properties of groups of network elements, constructed
in the course of the algorithm, their substructure, for example.
We must, however, take a special care to preserve direct
dissimilarity measures monotonic. Standard approaches for
recursive dissimilarity measures already assure monotonicity.

Monotonicity is an important property of dissimilarity
measures as hierarchies, obtained by their use, regardless of the

FIG. 11. (Color online) Sets of keywords corresponding to selected clusters in the hierarchy from the author collaboration network.
Keywords in green (darker) color on the leftmost and on the middle set correspond to keywords from the intersection of clusters A ∩ B. Darker
keywords on the rightmost set correspond to the cluster A ∩ Z.

062814-13

JERNEJ BODLAJ AND VLADIMIR BATAGELJ PHYSICAL REVIEW E 91, 062814 (2015)

TABLE III. List of authors corresponding to individual clusters. Note the author I. Gutman (GUTMAN_I) in all three clusters.

A AHMADI_A, AIRES-DE_J, ALIPOUR_M, ALIZADEH_Y, AMINI_K, AREZOOMA_M, ASHRAFI_A, AZAD_A, AZARI_M,
BADAKHSH_L, BAHRAMI_A, CIOSLOWS_J, CVETKOVI_, DARAFSHE_M, DAS_K, DOROSTI_N, DOSLIC_T, DU_Z,
DURDEVIC_J, ELBASIL_S, ELIASI_M, ESTRADA_E, FAGHANI_M, FARHAMI_P, GHAZI_M, GHOLAMI-_F, GHOLAMI_N,
GHOLIZAD_S, GHORBANI_M, GILANI_A, GODSIL_C, GOJAK_S, GUTMAN_I, HAMZEH_A, HEMMASI_M, HEYDARI_A,
HOSSEIN-_S, HOSSEINZ_M, HOU_Y, ILIC_A, IRANMANE_A, JADDI_M, JALALI_M, KAFRANI_A, KATONA_G,
KHAKI_A, KHAKSAR_A, KHALIFEH_M, KHORMALI_O, LAM_P, LI_X, LINERT_W, LOGHMAN_A, MAHMIANI_A,
MAIMANI_H, MANDLOI_M, MANOOCHE_B, MATELJEV_M, MESGARAN_H, MILUN_M, MINAILIU_O, MIRZAIE_S,
MIRZARGA_M, MOGHARRA_M, NADJAFI-_M, NAGY_C, NAGY_K, NIKZAD_P, PAKRAVES_Y, PARV_B, PESEK_I,
POP_M, RADENKOV_S, REZAEI_F, ROUVRAY_D, SAATI_H, SABAGHIA_H, SAHELI_M, SALEHI_N, SEYEDALI_S,
SHABANI_H, SHAKERAN_S, SHI_Y, SHIU_W, SOLEIMAN_B, STANKOVI_S, TAERI_B, TAHERKHA_B, TEHRANIA_A,
TOMOVIC_Z, TRINAJST_, WAGNER_S, YAN_W, YANG_B, YAZDANI_J, YEH_Y, YOUSEFI-_H, YOUSEFI_S,
ZAEEMBAS_A, ZERAATKA_M, ZHOU_B, ZIGERT_P, ZIVKOVIC_T

B ABELEDO_H, AOUCHICH_M, ARAUJO_O, ARSIC_B, ASHRAFI_A, CAPOROSS_G, CHEPOI_V, CIGHER_S, CLARK_L,
CMILJANO_N, DAS_K, DELAPENA_J, DOBRYNIN_A, DOMOTOR_G, DOSLIC_T, DU_Z, DURDEVIC_J, FATH-TAB_G,
FENG_L, FURTULA_B, GHOLAMI-_F, GOJAK_S, GORDEEVA_E, GRAOVAC_A, GUEVARA_N, GUTMAN_I, HAMZEH_A,
HANSEN_P, HEMMASI_M, HOSSEIN-_S, HOSSEINZ_M, ILIC_A, ILIC_M, JUVAN_M, KARBASIO_A, KLAVZAR_S,
KOVSE_M, LEPOVIC_M, LINERT_W, LIU_B, LO_S, LUO_Y, MARKOVIC_Z, MARSHALL_G, MEL’NIKO_L, MELOT_H,
MILJKOVI_O, MILOSAVL_S, MOGHARRA_M, MOHAR_B, MORALES_D, MOTOC_I, NADJAFI-_M, NAGY_C,
PAVLOVIC_L, PESEK_I, PLAVSIC_D, POP_M, POPOVIC_L, RADA_J, RADENKOV_S, RAJAPAKS_A, SAATI_H,
SAHELI_M, SALEM_K, SEITZ_W, SHAO_J, SHRIVAST_A, SOSKIC_M, STANKOVI_S, STEVANOV_D, TOMOVIC_Z,
URSU_O, VIDOVIC_D, VIZITIU_A, XU_K, YARAHMAD_Z, YU_G, ZEROVNIK_J, ZHANG_F, ZHAO_H, ZIGERT_P

Z AGRAWAL_V, BABIC_D, BALABAN_A, BALABAN_T, BASAK_S, BRISSEY_G, GRUNWALD_G, GUTMAN_I, HARARY_F,
IVANCIUC_O, JAKLIC_G, KHADIKAR_P, KOPECKY_K, KRILOV_G, LEPOVIC_M, LERS_N, MEDELEAN_M,
MILICEVI_A, MINAILIU_O, NATARAJA_R, PAVAN_M, PISANSKI_T, POMPE_M, POPOVIC_L, RANDIC_M, RUCKER_C,
SABLJIC_A, STANKOVI_S, TRINAJST_N, VIDOVIC_D, VRACKO_M, VUKICEVI_D, YAMAGUCH_T

cut value, assure uniquely defined clusterings. Monotonicity
is also important for our adapted algorithm as its correctness
depends on it. It is important also for aspects of the clustering
algorithm, discussed in the following sections, i.e., regarding
the algorithm stability (Sec. VIII A) and parallelization of
the algorithm (Sec. VIII B). While standard approaches for
recursively computed dissimilarity measures assure mono-
tonicity, this is not always the case with directly computed
dissimilarity measures.

A. Stability of the adapted algorithm

If the adapted algorithm encounters multiple alternative
choices of clusters with equal dissimilarities at the end of
the current chain, the first cluster in regard to the order in
which the links were loaded into the internal network structure
will be greedily appended to the chain. The sequence of
equidistant clusters appended to the chain is operationalized by
the sequence of node and link definitions in the input network
file and the implementation of data structures the algorithm is
based on. In general clustering, however, when there are ties
in the dissimilarities between clusters [34], hierarchies can no
longer be uniquely determined.

In terms of stability, we observed how much the results
differ if the algorithm is run multiple times on the same
network or on the same network with a permuted sequence
of nodes and links. The network used was the authors
collaboration network on the field of topological indices, see
Sec. VII C. In this particular case, the algorithm returned
hierarchies that were equal up to the permutation of their
branches. This means that the sole order of branches in

hierarchies differed, but, structurally, all resulting hierarchies
were equal, i.e., they could be rearranged into one another by
reordering the branches in their branchings only. Dissimilarity
values in their branchings were equal as well. All results
formally give the same canonical form of the hierarchy. To
some extent this indicates that even if the input network is
relatively large and has enough distinct keywords assigned to
its nodes or links, the algorithm can return consistent results.
Using, for example, a less discriminating dissimilarity measure
on perhaps a different network can, however, lead to less
consistent, yet similar, results. A more detailed analysis of
the stability was not performed.

A convenient addition to the algorithm would be a process
to detect the state when multiple equally similar pairs of
nodes or links are available for the algorithm to choose and
to notify the user at the end that multiple solutions exist.
An even better solution to the problem was discussed by
Fernández and Gómez [35], who propose implementing in the
course of clustering the implicit combining of neighboring
branchings with equal dissimilarities in the hierarchy into
combined branchings. Instead of obtaining a hierarchy with
only the two-branch branchings, it is then possible to get a
hierarchy with fewer branchings, but a number of branches
in individual branchings can be larger than two. This kind of
“flattened” (see Sec. VII A) hierarchy can be represented with
a multidendrogram [35].

B. Parallelization

Due to the relational constraint in the algorithm, remote
regions in a source network cannot be joined into a common

062814-14

HIERARCHICAL LINK CLUSTERING ALGORITHM IN . . . PHYSICAL REVIEW E 91, 062814 (2015)

cluster in fewer iterations of the algorithm than the length of
the shortest path between those regions. We could therefore
split the algorithm to work in multiple threads to cluster remote
regions in parallel. The parallel algorithms, the basic and the
adapted, should, however, use a monotonic dissimilarity mea-
sure to produce consistent results. For the adapted algorithm
this is already required. The problems would arise otherwise
when combining partial hierarchies, generated by individual
threads. A similar approach is mentioned as a node-centric
approach in Yang’s work [4].

IX. CONCLUSION

In this work we presented a basic agglomerative algorithm
for clustering nodes in a network and proposed its adapted
version for clustering links in a network. We presented a
few compatible dissimilarity measures as a necessary part
of both algorithms to perform their task. We divided them
into groups of recursively and directly computed dissimilarity
measures and propose some new ones, designed to consider,
in addition to network structure, the attributes of the network,
enabling both algorithms to increase accuracy of deeper levels
in the resulting hierarchies. In the synthetic example and real
networks we then illustrated how algorithms work, analyzed
their complexity, and showed that they can produce reasonable
results. We also discussed their real-life applicability. In
Appendix B we give some information on our implementation
of the adapted algorithm.

The algorithm is available for download as a part of
Abelium’s network analysis library net.Plexor [36]. The source
code of the algorithm can also be obtained from the authors.

ACKNOWLEDGMENTS

This work was in part financed by Slovenian Research
Agency (ARRS), Grant No. J5-5537, as well as by a grant
within the EUROCORES Programme EUROGIGA (Project
GReGAS) of the European Science Foundation. The first
author was financed in part by the European Union, European
Social Fund, Slovenian Ministry of Education, Science and
Sport and in part through operation Competence Center KC
CLASS, financed by the European Union, European Regional
Development Fund.

APPENDIX A: PROOFS FOR THE MONOTONICITY
OF DISSIMILARITY MEASURES

1. Dissimilarity measures DSF, DSC, and DMF are monotonic

Let us consider having three general clusters of nodes or
links Cp, Cq , and C with respective descriptions with keywords
FCp

, FCq
, and F . We now presume the algorithm just joined

clusters Cp and Cq . The description of a joint cluster Cp ∪ Cq

is then FCp
� FCq

.

a. Monotonicity of DSF

To prove that DSF has the reducibility property (1) we
express the assumption DSF(Cp,Cq) � DSF(Cp,C) for the

dissimilarity DSF:∑
k∈K

max
(
fCp,k,fCq,k

)
�

∑
k∈K

max
(
fCp,k,fC,k

)
, (A1)

since fCq,k � 0, fCp,k � fCp,k + fCq,k holds and therefore

�
∑
k∈K

max
(
fCp,k + fCq,k,fC,k

) = DSF(Cp ∪ Cq,C), (A2)

which gives DSF(Cp,Cq) � DSF(Cp ∪ Cq,C). The dissimilar-
ity DSF is monotonic. �

b. Monotonicity of DSC

To prove that DSC has the reducibility property (1) we
express the assumption DSC(Cp,Cq) � DSC(Cp,C) for the
dissimilarity DSC:∑

k∈K

max
(
gt

(
fCp,k

)
,gt

(
fCq,k

))

�
∑
k∈K

max
(
gt

(
fCp,k

)
,gt(fC,k)

)
, (A3)

since fCq,k � 0, fCp,k � fCp,k + fCq,k holds and therefore

�
∑
k∈K

max
(
gt

(
fCp,k + fCq,k

)
,gt(fC,k)

) = DSC(Cp ∪ Cq,C),

(A4)
which gives DSC(Cp,Cq) � DSC(Cp ∪ Cq,C). The dissimilar-
ity DSC is monotonic. �

c. Monotonicity of DMF

To prove that DMF has the reducibility property (1) we
express the assumption DMF(Cp,Cq) � DMF(Cp,C) for the
dissimilarity DMF:

max
k∈K

(
fCp,k,fCq,k

)
� max

k∈K

(
fCp,k,fC,k

)
, (A5)

since fCq,k � 0, fCp,k � fCp,k + fCq,k holds and therefore:

� max
k∈K

(
fCp,k + fCq,k,fC,k

) = DMF(Cp ∪ Cq,C), (A6)

which gives DMF(Cp,Cq) � DMF(Cp ∪ Cq,C). The dissimi-
larity DMF is monotonic. �

2. Constrained single-linkage is monotonic

Assuming that for clusters Cp, Cq , and C Dmc(Cp,Cq) �
Dmc(Cp,C) and Dmc(Cp,Cq) � Dmc(Cq,C), the following
holds:

min
(u:v)∈E(Cp,Cq)

d(u,v) � min
(u:v)∈E(Cp,C)

d(u,v) and

(A7)
min

(u:v)∈E(Cp,Cq)
d(u,v) � min

(u:v)∈E(Cq,C)
d(u,v).

Inequalities in (A7) imply:

min
(u:v)∈E(Cp,Cq)

d(u,v)

� min
(

min
(u:v)∈E(Cp,C)

d(u,v), min
(u:v)∈E(Cq,C)

d(u,v)
)

= min
(u:v)∈E(Cp∪Cq,C)

d(u,v). (A8)

062814-15

JERNEJ BODLAJ AND VLADIMIR BATAGELJ PHYSICAL REVIEW E 91, 062814 (2015)

This proves that the constrained single-linkage dissimilarity
has the reducibility property. The constrained single-linkage
dissimilarity is therefore monotonic. �

Note. The proof for the monotonicity of the constrained
maximal-linkage dissimilarity (18) follows exactly the same
steps. The monotonicity of the traditional single-linkage
dissimilarity (13) follows from the monotonicity of the
constrained single-linkage on a network N embedded into
a complete network (graph) Kn and the monotonicity of
Lehmann’s dissimilarity (23) follows from the monotonicity
of the constrained single-linkage using d = dl .

3. Constrained average-linkage is monotonic

The proof for the monotonicity of the constrained average-
linkage (19) follows similar steps like the proof for the
constrained single-linkage in Sec. A 2. We assume that for
disjoint clusters Cp, Cq , and C:

Dac(Cp,Cq) � Dac(Cp,C) and
(A9)

Dac(Cp,Cq) � Dac(Cq,C)

is true. By multiplying both sides of inequalities (A9)
by w[E(Cp,C)]w[E(Cp,Cq)] and w[E(Cq,C)]w[E(Cp,Cq)],
respectively, we obtain:

w[E(Cp,C)]
∑

(u:v)∈E(Cp,Cq)

d(u,v)

� w[E(Cp,Cq)]
∑

(u:v)∈E(Cp,C)

d(u,v) and

(A10)
w[E(Cq,C)]

∑
(u:v)∈E(Cp,Cq)

d(u,v)

� w[E(Cp,Cq)]
∑

(u:v)∈E(Cq,C)

d(u,v).

We then sum both the left and right sides of inequalities
(A10) to get a single inequality:

{w[E(Cp,C)] + w[E(Cq,C)]}
∑

(u:v)∈E(Cp,Cq)

d(u,v)

� w[E(Cp,Cq)]

⎛
⎝ ∑

(u:v)∈E(Cp,C)

d(u,v) +
∑

(u:v)∈E(Cq,C)

d(u,v)

⎞
⎠,

(A11)

which simplifies to:

w[E(Cp ∪ Cq,C)]
∑

(u:v)∈E(Cp,Cq)

d(u,v)

� w[E(Cp,Cq)]
∑

(u:v)∈E(Cp∪Cq,C)

d(u,v). (A12)

By dividing both sides of (A12) by w[E(Cp,Cq)]w[E(Cp ∪
Cq,C)] we get Dac(Cp,Cq) � Dac(Cp ∪ Cq,C) and the con-
strained average linkage is therefore monotonic. �

APPENDIX B: ALGORITHM IMPLEMENTATION AND
DATA STRUCTURES

Our implementation of the algorithm is as follows. In the
beginning every link is put in its own cluster. The algorithm
then enters into the main loop where it picks a random
link cluster, using it as the beginning of a current chain of
link clusters it advances toward. It then builds the chain in
the direction of the lowest strictly decreasing dissimilarity
between the cluster at the end of the chain and its adjacent
clusters in the input network. To aid the process it constructs
an incremental line subgraph along the chain in which the
links represent dissimilarities between link clusters in the input
network. When the algorithm encounters a pair of mutually
most-similar clusters (reciprocal nearest neighbors) at the end
of the chain, it removes them from that chain, joins them
together into a new cluster, and updates the corresponding
incremental line subgraph accordingly. It then continues to
build the chain from its new ending, and so on. If the
chain gets empty, the algorithm starts building a new chain
from another randomly chosen unvisited cluster. Along the
beginning of each new chain it disposes the current incremental
line subgraph and begins building a new one. When ever two
clusters get joined, the algorithm creates a new branching in
the hierarchy, assigns the clusters to its branches and stores
the dissimilarity between them accordingly. The algorithm
finishes its work when the last two clusters are joined.

1. Incremental line subgraph

The incremental line subgraph is used as a cache of recently
calculated dissimilarities between link clusters in the vicinity
of link clusters in a current chain that the algorithm works
with. We implemented it using two data structures. The first is a
dictionary of dissimilarities between pairs of link clusters from
the input network. In principle, the dictionary is used to store
the weights of links in the partial line graph, which represent
the pairs of adjacent clusters of links in the original network.
It provides an efficient access to the cached dissimilarity of
a given pair of link clusters. The second structure used is
a dictionary of sets of link clusters adjacent to a given link
cluster. It is used as an efficient structure to provide direct
access to nodes adjacent to a selected node in the partial line
graph.

a. Hierarchy representation

Hierarchy is implemented using the data structure, known
as the parent pointer list of size 2m − 1, in the form of
an index array. In the beginning, every cluster, i.e., link, is
assigned its own cell in the array at index from 1 to m. Then,
in every iteration k of the main loop of the algorithm, two
clusters being joined adapt the number of the current iteration
increased by the number of links in the source network m:
k + m. The cell in the list with the index k + m is going to
be used for the index to the parent of a new joined cluster
in one of the following iterations. The cell represents a new
branching in the hierarchy. The cells belonging to two joined
clusters in the current iteration are filled with the index of their
new parent, a joined cluster, k + m. In the last iteration of the

062814-16

HIERARCHICAL LINK CLUSTERING ALGORITHM IN . . . PHYSICAL REVIEW E 91, 062814 (2015)

algorithm, the last two clusters are joined together and their
cells in the array are filled with index value or the hierarchy
root, which is usually given the value 0.

b. Cluster structure

The cluster consists of a set of links, which were put into a
cluster. Besides that, it contains a list of pointers to active nodes

in which it is present and the list of frequencies of keywords
characterizing it.

c. Structure to store active nodes

Our implementation of the algorithm keeps the list of active
nodes. Each active node has its own list of pointers to clusters
which interact in it.

[1] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi,
Proc. Natl. Acad. Sci. USA 101, 2658 (2004).

[2] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, Nature 466, 761
(2010).

[3] T. S. Evans and R. Lambiotte, Phys. Rev. E 80, 016105 (2009).
[4] J. Yang and J. Leskovec, Proceedings of the ACM SIGKDD

Workshop on Mining Data Semantics, MDS ’12 (ACM, New
York, 2012), pp. 3:1–3:8.

[5] S. Fortunato, Phys. Rep. 486, 75 (2010).
[6] J. Xie, S. Kelley, and B. K. Szymanski, ACM Comput. Surv. 45,

43 (2013).
[7] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, Nature 435, 814

(2005).
[8] S. Fortunato and A. Lancichinetti, Proceedings of the 4th

International ICST Conference on Performance Evaluation
Methodologies and Tools, VALUETOOLS ’09 (ICST, Brussels,
Belgium, 2009), pp. 27:1–27:2.

[9] J. Baumes, M. K. Goldberg, M. S. Krishnamoorthy, M. Magdon-
Ismail, and N. Preston, in IADIS AC, edited by N. Guimarães
and P. T. Isaı́as (IADIS, Algarve, Portugal, 2005), pp. 97–104.

[10] S. Gregory, New J. Phys. 12, 103018 (2010).
[11] J. Xie and B. K. Szymanski, arXiv:1202.2465.
[12] P. D. Meo, E. Ferrara, G. Fiumara, and A. Provetti,

arXiv:1108.1502.
[13] A. Ferligoj and V. Batagelj, Psychometrika 47, 413 (1982).
[14] G.-J. Kim, K.-Y. Whang, M.-S. Kim, H.-S. Lim, K.-H. Lee,

and B. S. Lee in Second International Conference on the
Applications of Digital Information and Web Technologies,
2009. ICADIWT’09 (IEEE, London, 2009), pp. 438–445.

[15] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
J. Stat. Mech: Theor. Exp. (2008) P10008.

[16] A. Ferligoj and V. Batagelj, Psychometrika 48, 541 (1983).
[17] V. Batagelj, A. Ferligoj, and A. Mrvar, Hierarchi-

cal clustering in large networks http://perso.uclouvain.be/
vincent.blondel/workshops/2008/files/batagelj.pdf (2008).

[18] F. Murtagh, Multidimensional Clustering Algorithms (Physica-
Verlag, Vienna, 1985), pp. 59–88.

[19] C. de Rham, La classification hiérarchique ascendante
selon la méthode des voisins réciproques, Les Cahiers de
I’Analyse des Données, Dunod, 5 (1980), pp. 135–144,
http://www.numdam.org/item?id=CAD_1980__5_2_135_0.

[20] L. Fu, D. Sun, and L. R. Rilett, Comput. Oper. Res. 33, 3324
(2006).

[21] M. Bruynooghe, Stat. Anal. Données no. 3, 24 (1977).
[22] P. Jaccard, Bull. Soc. Vaud. Sci. Natur. 37, 547 (1901).
[23] C. Herrera and P. J. Zufiria, in Proceedings of the 2011 IEEE

Network Science Workshop, NSW’11 (IEEE Computer Society,
Washington, DC, USA, 2011), pp. 167–172.

[24] A.-L. Barabási, Network Science, Chap. 4 (2012), http://
barabasilab.neu.edu/networksciencebook/download/network_
science_december_ch4_2013.pdf .

[25] A. A. Hagberg, D. A. Schult, and P. J. Swart, in Proceedings of
the 7th Python in Science Conference (SciPy2008) (Pasadena,
CA, USA, 2008), pp. 11–15.

[26] V. Batagelj and M. Zaveršnik, Adv. Data Anal. Class. 5, 129
(2011).

[27] J. Leskovec and A. Krevl, SNAP Datasets: Stanford large
network dataset collection http://snap.stanford.edu/data (2014).

[28] C. Fellbaum, ed., WordNet: An Electronic Lexical Database
(MIT Press, Cambridge, MA, 1998).

[29] J. Bodlaj and V. Batagelj, Molec. Inform. 33, 514 (2014).
[30] G. Tibély, L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and

J. Saramäki, Phys. Rev. E 83, 056125 (2011).
[31] M. K. Goldberg, M. Hayvanovych, and M. Magdon-ismail, in

Proceedings of the 2010 IEEE Second International Conference
on Social Computing, SOCIALCOM ’10 (IEEE, Minneapolis,
Minnesota, 2010), pp. 303–308.

[32] G. Salton and C. Buckley, Inform. Process. Manag. 24, 513
(1988).

[33] V. Batagelj and A. Ferligoj, Data Analysis, edited by W. Gaul,
O. Opitz, M. Schrader (Springer, Berlin, 2000), pp. 3–15.

[34] B. J. T. Morgan and A. P. G. Ray, Appl. Stat. 44, 117 (1995).
[35] A. Fernández and S. Gómez, J. Class. 25, 43 (2008).
[36] http://www.abelium.eu/razvoj/net.plexor

062814-17

http://dx.doi.org/10.1073/pnas.0400054101
http://dx.doi.org/10.1073/pnas.0400054101
http://dx.doi.org/10.1073/pnas.0400054101
http://dx.doi.org/10.1073/pnas.0400054101
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1103/PhysRevE.80.016105
http://dx.doi.org/10.1103/PhysRevE.80.016105
http://dx.doi.org/10.1103/PhysRevE.80.016105
http://dx.doi.org/10.1103/PhysRevE.80.016105
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1145/2501654.2501657
http://dx.doi.org/10.1145/2501654.2501657
http://dx.doi.org/10.1145/2501654.2501657
http://dx.doi.org/10.1145/2501654.2501657
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1088/1367-2630/12/10/103018
http://dx.doi.org/10.1088/1367-2630/12/10/103018
http://dx.doi.org/10.1088/1367-2630/12/10/103018
http://dx.doi.org/10.1088/1367-2630/12/10/103018
http://arxiv.org/abs/arXiv:1202.2465
http://arxiv.org/abs/arXiv:1108.1502
http://dx.doi.org/10.1007/BF02293706
http://dx.doi.org/10.1007/BF02293706
http://dx.doi.org/10.1007/BF02293706
http://dx.doi.org/10.1007/BF02293706
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1007/BF02293878
http://dx.doi.org/10.1007/BF02293878
http://dx.doi.org/10.1007/BF02293878
http://dx.doi.org/10.1007/BF02293878
http://perso.uclouvain.be/vincent.blondel/workshops/2008/files/batagelj.pdf
http://www.numdam.org/item?id=CAD_1980__5_2_135_0
http://dx.doi.org/10.1016/j.cor.2005.03.027
http://dx.doi.org/10.1016/j.cor.2005.03.027
http://dx.doi.org/10.1016/j.cor.2005.03.027
http://dx.doi.org/10.1016/j.cor.2005.03.027
http://barabasilab.neu.edu/networksciencebook/download/network_science_december_ch4_2013.pdf
http://dx.doi.org/10.1007/s11634-010-0079-y
http://dx.doi.org/10.1007/s11634-010-0079-y
http://dx.doi.org/10.1007/s11634-010-0079-y
http://dx.doi.org/10.1007/s11634-010-0079-y
http://snap.stanford.edu/data
http://dx.doi.org/10.1002/minf.201400014
http://dx.doi.org/10.1002/minf.201400014
http://dx.doi.org/10.1002/minf.201400014
http://dx.doi.org/10.1002/minf.201400014
http://dx.doi.org/10.1103/PhysRevE.83.056125
http://dx.doi.org/10.1103/PhysRevE.83.056125
http://dx.doi.org/10.1103/PhysRevE.83.056125
http://dx.doi.org/10.1103/PhysRevE.83.056125
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.2307/2986199
http://dx.doi.org/10.2307/2986199
http://dx.doi.org/10.2307/2986199
http://dx.doi.org/10.2307/2986199
http://dx.doi.org/10.1007/s00357-008-9004-x
http://dx.doi.org/10.1007/s00357-008-9004-x
http://dx.doi.org/10.1007/s00357-008-9004-x
http://dx.doi.org/10.1007/s00357-008-9004-x
http://www.abelium.eu/razvoj/net.plexor

