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Investigating the performance of different methods is a fundamental problem in graph partitioning. In this
paper, we estimate the so-called detectability threshold for the spectral method with both un-normalized and
normalized Laplacians in sparse graphs. The detectability threshold is the critical point at which the result of the
spectral method is completely uncorrelated to the planted partition. We also analyze whether the localization of
eigenvectors affects the partitioning performance in the detectable region. We use the replica method, which is
often used in the field of spin-glass theory, and focus on the case of bisection. We show that the gap between the
estimated threshold for the spectral method and the threshold obtained from Bayesian inference is considerable
in sparse graphs, even without eigenvector localization. This gap closes in a dense limit.
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I. INTRODUCTION

Over recent decades, significant attention has been paid to
the clustering problem on graphs or networks [1]. Although
clustering is sometimes considered as simply an optimization
problem, e.g., finding the most efficient partitioning in parallel
computing, it can also be used to find physically meaningful
modules, or communities, among which each vertex or edge
shares a common attribute. The latter technique is usually
called community detection, and is often formulated as a
discrete optimization problem. Many methods and algorithms
have been developed for clustering graphs [1], and their
performance has been investigated both theoretically [2–15]
and experimentally [16–23].

One important theoretical problem concerns the so-called
detectability threshold [5,8]. Suppose that we apply a clus-
tering method to a set of random graphs produced by a
generative model with a planted block structure and examine
the degree of correlation between the planted partition and
the partition obtained by the method. The standard generative
model is called the stochastic block model or planted partition
model. As the connection between modules gets stronger,
i.e., as the block structure gets weaker, the partition given
by the clustering method will be less correlated with the
planted partition. The detectability threshold is the critical
point of a parameter that indicates the strength of the block
structure. Below this threshold, the partition obtained by the
method is completely uncorrelated to the planted partition.
This transition is especially problematic in sparse graphs. For
dense graphs, it has been shown that such a transition does
not exist and we are always able infer the planted structure in
the large size limit [24–26]; as we increase the total number
of nodes, the average degree also increases in dense graphs,
and therefore we obtain more information about the module
assignment of each node. Unfortunately, this is not the case
for sparse graphs because the average degree remains constant
independent of the graph size. Needless to say, the detectability
threshold in sparse graphs is a significant problem, as many
real networks are sparse. Note that, although we specify
the algorithm, i.e., the spectral method, the existence of the
detectability threshold itself is not an algorithmic problem,
but the theoretical limit of an objective function.

Although there are many levels of graph clustering, e.g.,
hierarchical clustering and clustering with overlaps, we focus
on undirected graphs without hierarchical structures and
consider the graph partitioning problem, i.e., partitioning of
a graph into nonoverlapping modules. In addition, we focus
on the case of bisection in the large-size limit.

As mentioned above, the planted partition is given in the
analysis of the detectability threshold. In practice, however, not
only do we not know the model parameters a priori (such as
the module sizes and the fraction of edges between modules),
we are not even sure whether it is appropriate to assume
that the graph was generated by the same mechanism as the
stochastic block model in the first place. Therefore, knowing
the detectability of a method does not readily contribute to
its practical use. It does, however, provide an important clue
for categorizing the detection method: It reveals the similarity
of outcomes between methods through the stochastic block
model. Thus, for this purpose, the stochastic block model
should be regarded as a model that gives a measure for
comparison. For example, although block structures exist in
many senses [1], applying all the existing methods to the given
data obviously entails a huge cost and is also redundant. If
we know which methods tend to give a similar partitioning,
we could reduce the cost significantly. Whereas performance
comparison studies are often experimental, it is promising that
theoretical analyses can provide deeper insights.

In this paper, we discuss the detectability threshold of the
spectral method. The spectral method can be employed with
three major discrete objective functions: ratio cut (RatioCut),
normalized cut (Ncut), and modularity. The spectral method
solves the continuous relaxation of these objective functions
as an eigenvalue problem of the corresponding matrix. The
un-normalized Laplacian L corresponds to RatioCut, the
normalized LaplacianL corresponds to Ncut, and the so-called
modularity matrix B corresponds to modularity. Nadakuditi
and Newman [8] predicted that the detectability threshold of
the spectral method with the modularity function coincides
with the threshold given by Bayesian inference [5,6]. However,
this assumes that the average degree c is sufficiently high. It
was argued in [27] that the estimate in [8] may not be precise for
sparse graphs and that there exists a gap between the spectral
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method with modularity and Bayesian inference; indeed, it
was confirmed numerically that the spectral method does not
detect the planted partition all the way down to the detectability
threshold.

It was later discovered that the spectral method with a
nonbacktracking matrix [28] was a promising means of filling
this gap. This approach provides a formalism that avoids
the emergence of localized eigenvectors, known to be a
drawback of the spectral method. A localized eigenvector is
one in which the weight of its elements is concentrated on
a few characteristic vertices. Once the eigenvector used for
partitioning becomes localized, the information of the block
structure will be washed out. Thus, preventing this effect will
enhance our ability to detect the planted structure.

To the best of our knowledge, however, the true detectability
threshold for the spectral method in sparse graphs remains
unknown. Therefore, we do not know to what extent the gap
actually exists. Furthermore, although the nonbacktracking
matrix approach improves the detectability by avoiding the
eigenvector localization problem, the logical and quantitative
connection to detectability seems to be incomplete. That is, it is
not known whether the gap appears because of the localization
or if it exists even when the localization is absent. When both
are present, evaluating the relative degree of their effects is an
important problem. Our results show that, in sparse graphs, a
considerable gap exists even when localization is absent and
that the effect of localization may be significant when the
degree fluctuates considerably.

Using the so-called replica method, which is often used
in spin-glass theory, we derive estimates for the detectability
threshold of the spectral method with both un-normalized and
normalized Laplacians. Note that, as pointed out in [11], the
spectral method with the normalized LaplacianL and the mod-
ularity matrix B are equivalent for the bisection problem, as
long as the continuous relaxation gives a good estimate of the
original discrete problem. We compare our analytical estimates
with the results of numerical experiments for the two-block
random graphs with uniform, bimodal, and Poisson degree
distributions. Although our estimates contain some approxi-
mations, they agree quite well with the results of the numerical
experiment, as long as localization does not occur. For the
analysis of localized eigenvectors, we show that our estimate
is fairly accurate for graphs with bimodal degree distributions.

The rest of this paper is organized as follows. We first
introduce a more precise definition of the stochastic block
model (Sec. II) and the spectral method in graph partitioning
(Sec. III). Then we derive an estimate of the detectability
threshold in two-block random regular graphs in Sec. IV. Note
that there is no distinction between un-normalized and normal-
ized Laplacians in this case. We analyze the effect of degree
fluctuation for the un-normalized Laplacian L in Secs. V and
VI. In Sec. V we present a formal solution for estimating the
detectability threshold and analyze the case of graphs with
bimodal degree distributions, and in Sec. VI we estimate the
localized eigenvector and its eigenvalue for a graph with a
bimodal degree distribution. A similar analysis is done for
the normalized Laplacian L in Secs. VII and VIII. For the
normalized LaplacianL of graphs with an arbitrary degree dis-
tribution, the resulting estimate of the detectability threshold
resembles that of random regular graphs. Finally, we discuss

the case of stochastic block models, i.e., two-block random
graphs with Poisson degree distributions, with the normalized
Laplacian L in Sec. IX. We summarize our results in Sec. X.

II. STOCHASTIC BLOCK MODEL AND THE
DETECTABILITY THRESHOLD

The stochastic block model [29] is a generative model
of random graphs with a block structure, and is commonly
used for analyzing the performance of clustering methods.
While many variants have been proposed [30–35], the model
is fundamentally a generalization of the Erdős-Rényi random
graph. In the stochastic block model, the number of modules
q, size of each module, and probability prs that vertices in
modules r and s are connected are specified as inputs. With
these parameters, the graphs are constructed as follows. Each
vertex has a preassigned module index σi = r (r ∈ {1, . . . ,q})
to which the vertex belongs. Based on this block structure,
edges are generated between pairs of vertices at random; i.e.,
vertices i ∈ r and j ∈ s are connected with probability prs .

In the case of sparse graphs of N vertices, we set prs =
crs/N , where crs remains constant in the limit N → ∞. To
construct an assortative block structure, we typically choose
prr = cin/N and prs = cout/N for r �= s, where cin and cout

are constants that satisfy cin > cout. In the case of two modules
of equal size, we have the average degree c = (cin + cout)/2.
Note that, in this case, unlike the dense case, the fluctuation of
the degree of each vertex does not vanish in the limit N → ∞.

According to [5,6], the Bayesian inference method has a
detectability threshold at

cin − cout = 2
√

c. (1)

That is, even when the generative model has the assortative
property cin > cout, it is impossible to retrieve that information
with any detection algorithm, unless the difference cin − cout

is greater than 2
√

c (for other detectability analyses with
sufficiently large average degree, see [12,13,36,37]).

In the present paper, we parametrize the stochastic block
model differently. As mentioned above, we restrict ourselves
to the two-block model. Instead of setting cin and cout as the
model parameters, we set the average degree c and the average
number of edges γ from one module to the other, or, in other
words, the total number of edges γN between two modules.
The parameter γ controls the strength of block structure; the
larger is the value of γ , the weaker is the block structure. It is
related to cout and cin by

γN =
(

N

2

)2

pout = N

4
cout, (2)

cN

2
− γN = 2

(
N
2

2

)
= N

4
cin, (3)

in the limit N → ∞. Although the total number of edges
between modules fluctuates in the standard formulation when
the graphs are finite, we let every realization have exactly γN

and cN/2 − γN for the number of edges between modules and
the total number of edges within modules, respectively. This
is called the “microcanonical” formulation of the stochastic
block model [34].
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III. SPECTRAL METHOD IN GRAPH BISECTION

Graph partitioning is often formulated as a discrete opti-
mization problem for some objective function that is computa-
tionally difficult. The spectral method constitutes a continuous
relaxation of the original problem using eigenvectors of a
proper matrix. The un-normalized Laplacian L, which is used
for RatioCut, and the normalized Laplacian L, which is used
for Ncut, are defined as

L = D − A, (4)

L = D−1/2LD−1/2. (5)

The matrix A is the adjacency matrix; i.e., Aij = 1 if vertices
i and j are connected and Aij = 0 otherwise. The matrix D

is a diagonal matrix with degree ci of vertex i on the diagonal
element; i.e., Dij = ciδij .

Although the details differ depending on the objective
function, the basic procedure of spectral bisection is the same
and quite simple [11,38]. We denote the total degree of the
graph as K . For a graph with a set of vertices V partitioned
into V1 and V2, the objective function of RatioCut is defined as

fRatioCut(V1,V2) = E(V1,V2)

N1N2
, (6)

where the cut size E(V1,V2) is the number of edges between
modules V1 and V2 and we denote by N1 and N2 the number
of vertices in each module. Similarly, the objective function
of Ncut is defined as

fNcut(V1,V2) = E(V1,V2)

K1K2
, (7)

where K1 and K2 are the total degrees of each modules. Using
the un-normalized Laplacian L and the normalized Laplacian
L, minimizing RatioCut and Ncut are equivalent to

min
x

xTLx, subject to xi =
{√

N2/N1 i ∈ V1,

−√
N1/N2 i ∈ V2,

(8)

and

min
x

xTLx, subject to xi =
{√

K2/K1 i ∈ V1,

−√
K1/K2 i ∈ V2.

(9)

Finally, allowing xi to take an arbitrary real number, we
obtain the relaxed versions of the above discrete optimization
problems. For RatioCut,

min
x∈RN

xTLx subject to x ⊥ 1, xTx = N, (10)

and for Ncut,

min
x∈RN

xTLx subject to x ⊥ D1/21, xTx = K. (11)

The smallest values of xTLx and xTLx are achieved when the
x are the eigenvectors corresponding to the smallest eigenvalue
of L and L, respectively. Note, however, that L is positive
semidefinite and 1 is the eigenvector of L corresponding to
the zero eigenvalue (i.e., the smallest eigenvalue). Because of
the constraint that x must be perpendicular to 1, the smallest
value of xTLx in Eq. (10) is achieved when we select the
eigenvector corresponding to the second-smallest eigenvalue
of L. Similarly, L is also positive semidefinite, and D1/21 is
the eigenvector corresponding to the zero eigenvalue.
Hence, the eigenvector corresponding to the second-smallest

FIG. 1. (Color online) A realization of two-block 4-random reg-
ular graphs.

eigenvalue of L gives the smallest value of xTLx in Eq. (11).
As the sign of xi indicates which module vertex i belongs
to in Eqs. (8) and (9), we retrieve information about the
optimal partition from the solutions of the relaxed problems
by referring to the sign of each element in the eigenvector,
i.e., vertices with the same sign belong to the same module.
It is known that this prescription works well when the module
sizes are not very different. Of course, it is not obvious
whether the optimal partition of the relaxed problem coincides
with that of the unrelaxed problem. However, this is beyond
the scope of the present paper, and we concentrate on the
relaxed problem, i.e., the spectral method.

In the following sections, we analyze how the optimal
partitions in the spectral method are correlated to the planted
partitions in various random graphs.

IV. DETECTABILITY THRESHOLD IN RANDOM
REGULAR GRAPHS

In this section, we analyze the detectability of the c-random
regular graph with a two-block structure. A realization of such
graphs is shown in Fig. 1. As c is a constant and does not
increase as a function of the graph size N , this is regarded as a
sparse random graph that has the property of dense graphs that
the degree fluctuation is negligible. This is worth investigating,
because the results we show in Sec. VII for the normalized
Laplacian L are analogous to those we obtain for random
regular graphs in this section. Although we analyze the un-
normalized Laplacian L here, as the degree is the same for
every vertex, there is no distinction between the un-normalized
and normalized Laplacians.

We calculate the average of the second-smallest eigenvalue
of the un-normalized Laplacian [λ2]L, where [· · · ]L represents
the average with respect to L of each realization of a random
graph. As we increase the fraction γ of edges between
modules, the value of [λ2]L increases until it reaches the edge
of the spectral band, above which [λ2]L becomes constant
irrespective of γ . As we show in the following, by calculating
[λ2]L, we can obtain the distribution of the elements in the
corresponding eigenvector.

The basic methodology here runs parallel to that in [39].
To calculate the second-smallest eigenvalue, we first introduce
the Hamiltonian H (x|L), partition function Z(β|L), and free
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energy f (β|L),

H (x|L) = 1

2
xTLx, (12)

Z(β|L) =
∫

dxe−βH (x|L)δ(|x|2 − N )δ(1Tx), (13)

f (β|L) = − 1

Nβ
ln Z(β|L), (14)

where x is an N -dimensional vector, 1 is the vector in which
each element is 1, and T denotes the transpose. The Hamilto-
nian corresponds to the objective function to be minimized in
Eq. (10); the factor 1/2 in Eq. (12) is purely conventional. The
δ functions in Eq. (13) impose the constraints in Eq. (10). The
crucial aspect of this formulation is that, in the limit β → ∞,
in conjunction with the operation of δ(1Tx), the contribution
from the second-smallest eigenvalue is dominant in the integral
in Eq. (13). Thus, Eq. (13) actually evaluates exp [−Nβλ2/2].
Hence, the second-smallest eigenvalue λ2 is given by

λ2 = 2 lim
β→∞

f (β|L). (15)

We then take the average over all realizations of random
graphs. However, the direct calculation of this average is not

tractable. Therefore, we recast [λ2]L as

[λ2]L = −2 lim
β→∞

1

Nβ
[ln Z(β|L)]L

= −2 lim
β→∞

lim
n→0

1

Nβ

∂

∂n
ln[Zn(β|L)]L. (16)

The assessment of [Zn(β|L)]L is also difficult for a general real
number n. However, when n is a positive integer, [Zn(β|L)]L
can be expressed as a high-dimensional integral with respect to
n replicated variables x1,x2, . . . ,xn, which can be analytically
evaluated by the saddle-point method as N tends to infinity.
In addition, the resulting expression of N−1 ln[Zn(β|L)]L is
shown to be a function of n that can be extended to real values
of n under a certain ansatz concerning the permutation sym-
metry among the replica indices a = 1,2, . . . ,n. Therefore, we
employ such an expression to calculate the right-hand side of
Eq. (16). This procedure is often termed the replica method.
Although the mathematical validity of the replica method has
not yet been proved, we see that our assessment based on the
simplest permutation symmetry for the replica indices offers a
fairly accurate prediction of the experimental results.

For n ∈ N, we can write [Zn(β|L)]L as

[Zn(β|L)]L =
∫ [

n∏
a=1

dxaδ(|xa|2 − N )δ(1Txa)

][
exp

(
−β

2

∑
a

xT
aLxa

)]
L

, (17)

and the exponential factor is given by

exp

(
−β

2

∑
a

xT
aLxa

)
= exp

⎧⎨
⎩−β

4

n∑
a=1

⎡
⎣∑

ij∈V1

uij (xia − xja)2 +
∑
ij∈V2

uij (xia − xja)2 + 2
∑
i∈V1

∑
j∈V2

wij (xia − xja)2

⎤
⎦
⎫⎬
⎭ , (18)

where uij = {Aij |i ∈ r,j ∈ r} and wij = {Aij |i ∈ V1,j ∈ V2}. For the average over the random graphs, we assume that each
realization occurs with equal probability. The condition of being a regular graph requires∑

l∈V1

uil +
∑
k∈V2

wik = c (for i ∈ V1), (19)

∑
l∈V2

ujl +
∑
k∈V1

wjk = c (for j ∈ V2), (20)

and the number of edges between modules is ∑
i∈V1

∑
k∈V2

wik = γN. (21)

Therefore, we have[
exp

(
−β

2

∑
a

xT
aLxa

)]
L

= 1

NG

∑
{uij }{wij }

⎧⎨
⎩
∏
i∈V1

δ

(∑
l∈V1

uil +
∑
k∈V2

wik − c

) ∏
j∈V2

δ

(∑
l∈V2

ujl +
∑
k∈V1

wjk − c

)
δ

(∑
i∈V1

∑
k∈V2

wik − γN

)

× exp

⎡
⎣−β

4

n∑
a=1

⎛
⎝∑

ij∈V1

uij (xia − xja)2 +
∑
ij∈V2

uij (xia − xja)2 + 2
∑
i∈V1

∑
j∈V2

wij (xia − xja)2

⎞
⎠
⎤
⎦
⎫⎬
⎭ , (22)
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where NG is the number of random regular graphs with two modules (see Appendix A for the count of NG in random regular
graphs). With the technique in Appendix A, Eq. (22) can be written as[

exp

(
−β

2

∑
a

xT
aLxa

)]
L

= 1

NG

∮ ∏
i∈V1

dzi

2π
z
−(1+c)
i

∮ ∏
j∈V2

dzj

2π
z
−(1+c)
j

∫
dη

2π
eηγN

×
∏

i<j∈V1

∑
uij ={0,1}

{
zizj exp

[
−β

2

∑
a

(xia − xja)2

]}uij

×
∏

i<j∈V2

∑
uij ={0,1}

{
zizj exp

[
−β

2

∑
a

(xia − xja)2

]}uij

×
∏
i∈V1

∏
j∈V2

∑
wij ={0,1}

{
zizj exp

[
−η − β

2

∑
a

(xia − xja)2

]}wij

. (23)

When N � 1, an element in Eq. (23) can be approximated as

∏
i<j∈Vr

∑
uij ={0,1}

{
zizj exp

[
−β

2

∑
a

(xia − xja)2

]}uij

≈ exp

⎧⎨
⎩

∑
i<j∈Vr

zizj exp

[
−β

2

∑
a

(xia − xja)2

]⎫⎬
⎭

≈ exp

{
(p1N )2

2

∫ n∏
a=1

dμ(r)
a dν(r)

a Qr (μ(r))Qr (ν(r)) exp

[
−β

2

∑
a

(
μ(r)

a − ν(r)
a

)2

]}
, (24)

where we have introduced the order parameter functions

Qr (μ(r)) = 1

prN

∑
i∈Vr

zi

∏
a

δ
(
xia − μ(r)

a

)
, (25)

for r = 1,2. Then, inserting the identity

1 =
∫

dQr (μ(r))δ

[
1

prN

∑
i∈Vr

zi

∏
a

δ
(
xia − μ(r)

a

) − Qr (μ(r))

]

= prN

∫
dQr (μ(r))dQ̂r (μ(r))

2π
exp

{
Q̂r (μ(r))

[∑
i∈Vr

zi

∏
a

δ
(
xia − μ(r)

a

) − prNQr (μ(r))

]}
(26)

for each μ(r) and replacing the δ functions as

δ

(
N∑

i=1

x2
ia − N

)
=
∫

βdφa

4π
e− β

2 φa (
∑

i x2
ia−N), (27)

δ

(
N∑

i=1

xia

)
=
∫

βdψa

4π
e− β

2 ψa (
∑

i xia ), (28)

we can recast Eq. (17) as

[Zn(β|L)]L = p1p2N
2
∫ ∏

r=1,2

dQr (μ(r))dQ̂r (μ(r))

2π

∫ n∏
a

βdφa

4π

βdψa

4π

∫
dη

2π

× exp

{
N2KI(Qr ,Q̂r ) + N

[
β

2

∑
a

φa −
∑
r=1,2

KIIr (Qr ,Q̂r ) + 1

N

∑
r=1,2

ln KIII,r (Q̂r ,{φa},{ψa})

+ ηγ − 1

N
lnNG − ln c!

]}
, (29)
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where

KI(Qr ,Q̂r ) =
∑

r,s=1,2

prps

2

∫
dμ(r)dν(s) Qr (μ(r))Qs(ν

(s))e−(1−δrs )η− β

2

∑
a (μ(r)

a −ν
(s)
a )2

, (30)

KIIr (Qr ,Q̂r ) = pr

∫
dμ(r) Q̂r (μ(r))Qr (μ(r)), (31)

KIIIr (Q̂r ,{φa},{ψa}) =
∫ ∏

i∈Vr

n∏
a=1

dxia

∏
i∈Vr

{
Q̂c

r (xi) exp

[
−β

2

∑
a

(
φax

2
ia + ψaxia

)]}
. (32)

Now we evaluate limN→∞{ln[Zn(β|L)]L}/N with the saddle-point method and calculate the second-smallest eigenvalue
according to Eq. (16). For this, we assume that the functional forms of Qr (μ) and Q̂r (μ) are invariant under any permutations of
replica indices a ∈ {1,2, . . . ,n}, which is often termed the replica-symmetric ansatz. Further, the Gaussian nature of the current
problem allows us to assume that Qr (μ) and Q̂r (μ) are mixtures of Gaussian functions; this originates from the fact that the
effective Hamiltonian yielded by appropriate exponentiations of the δ functions is composed of quadratic forms. These restrict
the functional forms of Qr (μ) and Q̂r (μ) as

Qr (μ) = Tr

∫
dAdH qr (A,H )

(
βA

2π

) n
2

exp

[
−βA

2

n∑
a=1

(
μa − H

A

)2
]

, (33)

Q̂r (μ) = T̂r

∫
dÂdĤ q̂r (Â,Ĥ ) exp

[
β

2

n∑
a=1

(
Âμ2

a + 2Ĥμa

)]
, (34)

i.e., some superpositions of Gaussian functions with weights qr (A,H ) and q̂r (Â,Ĥ ), where A and Â denote the variances and
H and Ĥ denote the means of each Gaussian distribution, respectively. When n = 0, the order parameters Qr (μ) and Q̂r (μ)
coincide with Eqs. (A9) and (A10) in Appendix A, and thus the normalization factors Tr and T̂r are equal to Eqs. (A19) and (A20).
With Eqs. (33) and (34), (30)–(32) become functions of n that are extendable to real values of n. Inserting these expressions into
the identity N−1 [ln Z(β|L)]L = limn→0(∂/∂n)N−1 ln [Zn(β|L)]L, we have

[λ2]L = − extr
qr ,q̂r ,φ,ψ

{∫
dAdH

∫
dA′dH ′ (A,H,A′,H ′)

× cp1p2

2

[(
p1

p2
+ �

)
q1(A,H )q1(A′,H ′) +

(
p2

p1
+ �

)
q2(A,H )q2(A′,H ′) + 2 (1 − �) q1(A,H )q2(A′,H ′)

]

+ φ − c
∑
r=1,2

pr

∫
dAdH

∫
dÂdĤ qr (A,H )q̂r (Â,Ĥ )

[
(H + Ĥ )2

A − Â
− H 2

A

]

+
∑
r=1,2

pr

∫ c∏
g=1

[dÂgdĤgq̂r (Âg,Ĥg)]

(
ψ/2 − ∑

g Ĥg

)2

φ − ∑
g Âg

}
, (35)

where we set

� = 1 − γ

cp1p2
, (36)

(A,H,A′,H ′) = (1 + A′)H 2 + (1 + A)H ′2 + 2HH ′

(1 + A)(1 + A′) − 1
− H 2

A
− H ′2

A′ . (37)

In the above calculation, we have assumed the replica symmetry for φa and ψa , i.e., φa = φ and ψa = ψ , respectively, for
a = 1,2, . . . ,n. The saddle-point conditions yield the following set of integral equations:

q̂1(Â,Ĥ ) =
∫

dA′dH ′
[(

1 + p2

p1
�

)
p1q1(A′,H ′) + (1 − �) p2q2(A′,H ′)

]
δ

(
Â + A′

1 + A′

)
δ

(
Ĥ − H ′

1 + A′

)
, (38)

q̂2(Â,Ĥ ) =
∫

dA′dH ′
[(

1 + p1

p2
�

)
p2q2(A′,H ′) + (1 − �) p1q1(A′,H ′)

]
δ

(
Â + A′

1 + A′

)
δ

(
Ĥ − H ′

1 + A′

)
, (39)
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(b)(a)

FIG. 2. (Color online) Distributions of the elements of the second-smallest eigenvector of the two-block random regular graphs. The dots
in each plot represent the numerical results with N = 104 vertices, in which the average is over 100 samples. The solid lines in each plot
represent the results from the saddle-point equations (38)–(40) with parameters (a) c = 3, p1 = 0.7, p2 = 0.3, γ = 0.1, and (b) c = 4, p1 = 0.6,
p2 = 0.4, γ = 0.1.

and

qr (A,H ) =
∫ c−1∏

g=1

[
dÂgdĤgq̂r (Âg,Ĥg)

]
δ

⎛
⎝H + ψ/2 −

c−1∑
g=1

Ĥg

⎞
⎠ δ

⎛
⎝A − φ +

c−1∑
g=1

Âg

⎞
⎠ . (40)

Note that we set c > 2 here. To obtain nontrivial random regular graphs, the degree c of each vertex needs to be greater than 2.
Furthermore, the saddle-point conditions with respect to the auxiliary parameters ψ and φ give∑

r

pr

∫
dAdH Qr (A,H )

H

A
= 0, (41)

∑
r

pr

∫
dAdH Qr (A,H )

(
H

A

)2

= 1, (42)

respectively, where we have defined

Qr (A,H ) =
∫ c∏

g=1

[
dÂgdĤgq̂r (Âg,Ĥg)

]
δ

⎛
⎝H + ψ/2 −

c∑
g=1

Ĥg

⎞
⎠ δ

⎛
⎝A − φ +

c∑
g=1

Âg

⎞
⎠ , (43)

which corresponds to the complete marginal of Eq. (40). The distribution of A and H in module r , Qr (A,H ), can be obtained
by iteratively updating the saddle-point equations (38)–(40), while keeping the constraints (41) and (42).

Recall that φ leads to the normalization condition
∑

i x
2
i /N = 1 [see Eq. (27)]. Then Eq. (42) should indicate the same

restriction as it incorporates the average over the random graphs at the same time. Hence, Eq. (43) indicates that the distribution
of H/A gives the distribution Pr (x) = ∑

i∈Vr
δ(x − xi)/Nr of the elements of the second-smallest eigenvector of each module. As

shown in Fig. 2, the distributions obtained by iterating the saddle-point equations agree very well with the numerical experiments.
To obtain an analytical expression, we further restrict the form of the solution. We assume that the variances in Eqs. (33) and

(34) have the same values a and â, i.e., q(A) = ∫
dHq(A,H ) = δ(a − A) and q̂(Â) = ∫

dĤ q̂(Â,Ĥ ) = δ(â − Â). Then Eq. (35)
becomes

[λ2]L = − extr

(
1

a(a + 2)

{
c p1

[
(1 + a)m21 + m2

11

] + c p2
[
(1 + a)m22 + m2

12

] − γ (m11 − m12)2
}

− 1

a − â

∑
r=1,2

c pr (m2r + 2m1r m̂1r + m̂2r ) + 1

φ − c â

∑
r=1,2

pr

[
ψ2

4
− c ψm̂1r + c m̂2r + c(c − 1)m̂2

1r

]
+ φ

)
, (44)
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(b)(a)

FIG. 3. (Color online) Average second-smallest eigenvalues of the un-normalized Laplacian L of the random regular graphs as a function
of (a) γ and (b) cin − cout. The solid lines represent the analytical solutions [(48) and (51)] and the dots represent the numerical results. The
numerical experiments used N = 104 vertices, and each dot represents the average over 100 samples.

where we have denoted the moments of H and Ĥ as mnr =∫
dHHnqr (H ) and m̂nr = ∫

dĤ Ĥ nq̂r (Ĥ ). Equation (44) has
solutions with m1r �= 0 and m1r = 0. For the solution with
m1r �= 0, after taking the saddle point, we have

1 + â = 1

1 + a
, (45)

a = φ − (c − 1)â, (46)

m̂2
11 = p2

cp1

[
1 − 1

(c − 1)2�2

]
[(c − 1)�2 − 1], (47)

[λ2]L = (1 − �)

(
c − 1 − 1

�

)
. (48)

The requirement that m̂2
11 � 0 implies that the above solution

is valid for
1√

c − 1
� �, (49)

or, in terms of γ ,

γ � cf (c)p1p2,

[
f (c) = 1 − 1√

c − 1

]
. (50)

The point at which the equality holds in Eq. (50) is the
detectability threshold of the random regular graphs. Above
this point, we have the solution with m̂1k = 0. When m̂1k = 0,
we have

[λ2]L = −φ = c − 2
√

c − 1, (51)

which matches Eq. (48) at the boundary of (50). In both cases,
we have ψ = 0, which comes from the symmetry property in
which the problem is invariant under conversion from x to −x.
Equations (48) and (51) are plotted in Fig. 3(a), together with
the results of the numerical experiments. Again, the agreement
is quite good.

To compare our results with those reported in the literature,
we recast Eq. (49) in terms of cin = pinN and cout = poutN ,
and set the module sizes to p1 = p2 = 0.5. First, we recast
Eq. (50) in terms of the total degree within a module Kin and
the total degree from one module to the other Kout. With these
quantities, we have Kout = γN and K = cN = 2(Kin + Kout)
for the total degree of the whole graph K . Then Eq. (50) reads

Kin − Kout � N

2

c√
c − 1

. (52)

In the limit N → ∞, Kin(=cN/2 − γN ) and Kout(=γN )
are related to cin and cout as Eqs. (2) and (3), respectively.
Therefore, the detectable region (52) is

cin − cout � 2
c√

c − 1
. (53)

In the dense limit c → ∞, Eq. (53) converges to the result in
[8]. The implication of Eq. (53) is that, even if the effect of
localization is absent, the spectral method for sparse graphs
never reaches the ultimate limit 2

√
c [5,7,8].

Although the distribution Pr (x) is not of Gaussian form,
even for the case of equal size modules [see Figs. 4(a)
and 4(b) for the apparent cases], it is expected to be somewhat
close to the Gaussian distribution, especially when the peaks
are not well separated. Estimating the mean m(x) and variance
s2(x) from the replica analysis above, we can calculate the
mean value of the fraction of correctly classified vertices as
[1 + erf(|m(x)|/

√
2s2(x))]/2, under the Gaussian approxima-

tion (see Appendix B for details). Figure 5 illustrates this
estimate, together with the results of numerical experiments
and the populations obtained by iterating the saddle-point
equations. The Gaussian fitting appears to give a fairly good
approximation, especially around the detectability threshold.
We can also observe some convergence of the numerical results
to our estimate, which is for the infinite-size limit.
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(b)(a)

FIG. 4. (Color online) Gaussian fitting of the distributions of elements for the second-smallest eigenvector of the two-block 3-random
regular graphs. The values of γ are (a) 0.1 and (b) 0.05, and the equal module sizes are considered in both plots. The dots in each plot represent
the results of the numerical experiments with N = 104 vertices, in which the average is over 100 samples. The solid lines in each plot represent
the Gaussian distributions with the same mean and variance as the values in the numerical experiments.

Note that there exists a finite fraction of misclassified
vertices, even in the limit N → ∞. Although the poor per-
formance of optimization algorithms may have crucial effects
in practice, misclassification occurs, in principle, because the
planted partition is not necessarily the partition that optimizes
the objective function. Unless the block structure of the planted
partition is sufficiently strong, the random graph is likely to
have a partition that is better, in the sense of the objective
function, than the planted partition.

We now discuss the behavior of the detectability threshold
(50). We consider γ /c, the fraction of connections between
modules normalized by the degree. The upper bound of this

FIG. 5. (Color online) Estimate of the fraction of correctly clas-
sified vertices in the two-block 3-random regular graphs with equal
module sizes and the numerical results. The crosses represent the
estimates using the replica method, and the solid line represents their
Gaussian approximation. The numerical experiments were conducted
for various graph sizes.

quantity is min{p1,p2}, which is achieved when all edges in
a smaller module are connected to the other module, i.e., the
case where the small module has a bipartite structure. For a
uniform random graph, i.e., a graph with no block structures,
the expected value of γ /c is p1p2. This is because, for each stub
or half-edge in the first module in cN1, the probability of being
connected to the second module is N2/N . Therefore, we have
γN = cN1 × N2/N . This can also be obtained as the value of
γ with η = 0 in (A15). Note that the parameter 1 − � is the
ratio of γ to cp1p2. Because 0 < f (c) < 1, the detectability
threshold γc/c falls somewhere in the range (0,p1p2) (see
Fig. 6).

Let us consider the value of γ /c such that the total degree
within a module is greater than the number of edges between
modules. As the number of edges within a smaller module is
cN min{p1,p2} − γN , we have

γwd

c
<

1

2
min{p1,p2}. (54)

This corresponds to the region where the weak definition of a
community [40] is satisfied with respect to the smaller module.
While the detectability threshold (50) is always in the region
stated in (54) for equal-size modules, this may not be the
case for unequal-size modules, because the larger module may
possess a strong block structure even if the smaller one does

0
weak definition

0.5

FIG. 6. (Color online) Parameter region of the detectability
threshold for random regular graphs, f (c)p1p2, in the space of γ /c.
This is in the range (0,p1p2), whereas the region in which the weak
definition of a community is satisfied is below min{p1,p2}/2.
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not. Such a situation is achieved when 2f (c) max{p1,p2} > 1.
In other words, because f (5) = 1/2, the spectral method
always loses all information about the planted solution when
the weak definition is not satisfied in any module size for
c � 5. Note that this is for bisection using the sign of the
eigenvector with the second-smallest eigenvalue. Although
this is the standard approach, as we mentioned at the end
of Sec. III, its performance is not reliable in practice when the
module sizes are very different.

V. DETECTABILITY THRESHOLD IN RANDOM
GRAPHS WITH DEGREE FLUCTUATION:

THE UN-NORMALIZED LAPLACIAN

We now analyze the case where the degree fluctuates in the
un-normalized Laplacian L. Within Nr = prN vertices, we
consider a graph in which btNr (t ∈ {1,2, . . . ,T }, ∑T

t=1 bt =
1) vertices have degree ct . In the limit N → ∞, the replica-
symmetric solution of the second eigenvalue is given by

[λ2]L = − extr
qr ,q̂r ,φ,ψ

⎧⎨
⎩
∫

dAdH

∫
dA′dH ′ (A,H,A′,H ′)

× 1

2
[(c p1 − γ )q1(A,H )q1(A′,H ′) + (c p2 − γ )q2(A,H )q2(A′,H ′) + 2γ q1(A,H )q2(A′,H ′)]

+φ − c
∑
r=1,2

pr

∫
dAdH

∫
dÂdĤ qr (A,H )q̂r (Â,Ĥ )

[
(H + Ĥ )2

A − Â
− H 2

A

]

+
∑
r=1,2

pr

∑
t

bt

∫ ct∏
g=1

[dÂgdĤgq̂r (Âg,Ĥg)]

(
ψ/2 − ∑

g Ĥg

)2

φ − ∑
g Âg

⎫⎬
⎭ . (55)

The saddle-point equations derived from (55) are

q̂1(Â,Ĥ ) =
∫

dA′dH ′
[(

1 − γ

c p1

)
q1(A′,H ′) + γ

c p1
q2(A′,H ′)

]
δ

(
Â + A′

1 + A′

)
δ

(
Ĥ − H ′

1 + A′

)
, (56)

q̂2(Â,Ĥ ) =
∫

dA′dH ′
[(

1 − γ

c p2

)
q2(A′,H ′) + γ

c p2
q1(A′,H ′)

]
δ

(
Â + A′

1 + A′

)
δ

(
Ĥ − H ′

1 + A′

)
, (57)

and

qr (A,H ) =
∑

t

bt ct

c

∫ ct−1∏
g=1

[dÂgdĤgq̂r (Âg,Ĥg)]δ

⎛
⎝H + ψ

2
−

ct−1∑
g=1

Ĥg

⎞
⎠ δ

⎛
⎝A − φ +

ct−1∑
g=1

Âg

⎞
⎠ . (58)

Compared with the saddle-point equations for the random regular graphs, we now have a step in (58) to draw a degree ct from
the excess degree distribution btct/c at every iteration.

Note that, in the case of the random regular graphs, we had a set of solutions qr (A,H ) and q̂r (A,H ) of the saddle-point
equations (38)–(40), with A and Â fixed at certain values a and â. Although these give exact solutions with random regular
graphs, functions of this form cannot solve Eqs. (56)–(58) because of the degree fluctuation. Although the saddle-point equations
(56)–(58) no longer have solutions of simple form, it is still important to obtain an analytical expression. For this purpose, we
again employ qr (A) and q̂r (Â) of the form qr (A) = δ(a − A) and q̂r (â − Â), respectively. This is called the effective medium
approximation (EMA) [39,41]. We can then recast Eq. (55) as

[λ2]L = −extr

(
φ + 1

a(a + 2)

{
c
∑

r

pr

[
(1 + a)m2r + m2

1r

] − γ (m11 − m12)2

}

− c
∑

k

pr

a − â
(m2r + 2m1r m̂1r + m̂2r ) +

∑
r=1,2

pr

∑
t

bt

φ − ct â

[
ψ2

4
+ ct (m̂2r − ψm̂1r ) + ct (ct − 1)m̂2

1r

])
. (59)

Introducing

Rn =
∑

t

bt c
n
t

φ − ct â
, (60)

Sn =
∑

t

bt c
n
t

(φ − ct â)2
, (61)
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(b)(a)

FIG. 7. (Color online) Average second-smallest eigenvalues of the un-normalized Laplacian L of the two-block random graphs with
bimodal degree distributions, as a function of γ . The degree sets are (a) {c1,c2} = {3,6} and (b) {c1,c2} = {3,9}. The ratio of module sizes is set
to p1 = 0.6 (p2 = 0.4) in both cases. The estimates given by the replica method with the EMA and the estimated eigenvalues for the localized
eigenvectors are represented by the solid lines (see Sec. VI for details of the localized eigenvectors). When the latter gives a lower eigenvalue,
the former is indicated by a dashed line. The dots represent the numerical results with N = 104. The average is over ten samples. In each plot,
results are plotted, from top to bottom, for b1 = 0.1,0.5,0.9 (b2 = 0.9,0.5,0.1).

and provided that a and φ are obtained at the saddle point, we
have

m2
11 = X1 − S2

(S2 − S1)X1X2 + (
S1S3 − S2

2

)
X2 − S1X3

, (62)

[λ2]L = p1

p2
m2

11

[
c

a(a + 2)
� − R2 − R1

(1 + a)2
�

2
]

− φ, (63)

where we set

� = 1 − γ

cp1p2
, (64)

X1 = R2
1

c
(a2 + 2a + 2), (65)

X2 = p1

p2

(
�

1 + a

)2

, (66)

X3 = 2
R2

1

c

p1

p2

�

1 + a
. (67)

We have m11 = 0 when S2 � X1, i.e.,

(1 + a)2 � cS2

R2
1

− 1. (68)

Equation (63) gives the formal solution for the second-smallest
eigenvalue, and the equality condition in (68) is our estimate
of the detectability threshold with the EMA.

When the graph has a bimodal distribution, i.e., {b1,b2}
for c1 and c2, we can solve for a and φ at the saddle point

analytically. In this case, the saddle-point conditions give

φ = c1c2a

1 + a

(
1 + a

�
+ 1 − c

)[
c2 − c

(
1 + 1 + a

�

)]−1

,

(69)

where we have defined c2 = b1c
2
1 + b2c

2
2, and a is the solution

of the following quadratic equation:

c

(
1 + a

�

)2

+
(
c − c2 + c1c2

� − 1

)
1 + a

�
+ c1c2(1 − c)

� − 1
= 0.

(70)

We take the smaller value for the solution of Eq. (70), which
gives a non-negative value for m2

11.
Figures 7(a) and 7(b) show the eigenvalues of the un-

normalized Laplacian with the EMA and those of the localized
eigenvectors, together with the results of the numerical
experiments. The estimate of the localized eigenvectors and
their eigenvalues is discussed in Sec. VI, and we describe
the resulting behavior here. As γ increases, the eigenvector
possessing information about the modules will eventually have
a higher eigenvalue than that of the localized eigenvector;
the standard spectral method fails in such a region. Our
estimate agrees very well with the numerical result, as long as
localization does not occur. Although we do not know which
g should be chosen a priori (see Sec. VI for the meaning
of g), if we choose a value that is consistent with the result
of the numerical experiment, our estimate of the localization
transition is close to the point where the result given by the
replica method with the EMA starts to deviate from numerical
result.
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FIG. 8. (Color online) A tree with the defects aggregated around
its root.

Eigenvector localization is expected to result from the
existence of a few vertices with irregular degrees, which
we call the defects. In Figs. 7(a) and 7(b), we regard the
vertices with the lower population as the defects. As we
show in Secs. VI and VIII, localization tends to occur in
both un-normalized and normalized Laplacians when the
defects have a lower degree. Therefore, when we have equal
populations, i.e., b1 = b2 = 0.5, we regard vertices with lower
degree as defects. Indeed, when vertices with lower degree are
dominant, localization does not seem to occur, or produces
only a negligible effect.

VI. LOCALIZED EIGENVECTOR OF THE
UN-NORMALIZED LAPLACIAN WITH BIMODAL

DEGREE DISTRIBUTIONS

The behavior of the eigenvalues of localized eigenvectors
for the un-normalized Laplacian L was described in Sec. V.
This section is devoted to their derivation and an analysis
of some specific examples. As mentioned in the previous
section, localized eigenvectors emerge because of degree
fluctuations. They are the vectors in which the weight of their
elements is concentrated around a few defects, the vertices with
characteristic degrees. Here we analyze the localization of an
eigenvector for the un-normalized Laplacian L and consider
this process for the normalized Laplacian L in Sec. VIII. We
focus on sparse graphs with bimodal degree distributions. The
graphs have two types of degree, cD and cB , with populations
bD and bB (bD + bB = 1), respectively. We let bD < bB and
refer to the vertices with degree cD as the defects.

As frequently analyzed for sparse graphs in the literature
[39,41–43] (see Fig. 8), we consider a tree with defects
aggregated around its root, up to a distance g from the root.
Hereafter, we denote a localized eigenvector as v. We now
simplify the graph by letting all vertices at distance d > g

have a uniform degree cB . Then the symmetry of the graph
implies that, for all vertices located at distance d from the root,
vi = Vd . From the definition of the eigenvector Lv = λv, for

g � 1, we have

(cD − λ)V0 − cDV1 = 0,

(cD − 1)Vd+1 − (cD − λ)Vd + Vd−1 = 0 (0 < d � g),

(cB − 1)Vd+1 − (cB − λ)Vd + Vd−1 = 0 (d � g + 1).

(71)

To be a localized eigenvector, the elementVd needs to vanish at
d → ∞. Thus, we choose a solution of the form Vd+1 = κVd

with |κ| < 1 for d > g, where κ satisfies

(cB − 1)κ2 − (cB − λ)κ + 1 = 0. (72)

In addition, we have the constraint that the norm of the
eigenvector needs to be finite, i.e., |v|2 < ∞. Let us consider
the case g = 0, i.e., only the vertex at the root is defective.
From Eq. (71), λ must satisfy

cD − λ

cD

= V1

V0
= V2

V1
= κ(λ), (73)

where κ(λ) is a function of λ determined by Eq. (72). The
resulting nonzero eigenvalue is λ = cD(cB − cD − 2)/(cB −
cD − 1), and the corresponding damping factor κ is κ =
1/(cB − cD − 1). In addition, the constraint finite norm re-
quires cD < cB − 1 − √

cB − 1. Interestingly, the defect must
have a lower degree than the other vertices, whereas, in the case
of the adjacency matrix, it was hubs that caused localization.
Note, however, that this is the condition for a tree with uniform
degree at d > 0 and does not hold in general.

Let us now consider using the results given by the replica
method with the EMA from the previous section in the
case where the vertex degrees at d > g are not necessarily
uniform. Recall that [λ2]L = −φ when m11 = 0, and that â

satisfies Eqs. (45) and (46) for random regular graphs. From
these relations, we see that the factor 1 + â obeys the same
characteristic equation as (72). This connection can also be
seen from the saddle-point equation; Eqs. (38)–(40) yield
∂H/∂Hg = (1 + a)−1 = 1 + â. This implies that, in treelike
graphs, the response function ∂Vi/∂Hj generally damps as
O[(1 + â)D(i,j )], where D(i,j ) is the distance between sites i

and j . In particular, taking vertex j to the root (g = 0) and
comparing the relation with the solution form Vd = const κd

for d > g, where const is proportional to V0, we conclude κ =
1 + â. Hence, one way to estimate the localized eigenvector
and its eigenvalue is to replace the damping factor κ with
1 + â∗(λ), where â∗(λ) is the value of â obtained via the EMA
as a function of λ. Then, analogously to the example above, we
numerically compute the eigenvalue λ so that it is consistent
with the equations for d � g in Eq. (71), i.e.,

Vg+1

Vg

= Vg+2

Vg+1
= 1 + â∗(λ). (74)

If this eigenvalue is smaller than the second-smallest eigen-
value calculated in the previous section, we can conclude that
the localization transition has occurred.
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VII. DETECTABILITY THRESHOLD IN RANDOM
GRAPHS WITH DEGREE FLUCTUATION: THE

NORMALIZED LAPLACIAN

We now analyze the spectral method with the normalized
Laplacian L and consider the two-block random graph with
degree fluctuations. With y := D−1/2x, the Hamiltonian can
be written as

H (x|L) = 1
2 xTLx = 1

2 yTL y, (75)

and, noting that the total degree reads K = cN , we define the
partition function in terms of y as

Z(β|L) =
∫

d ye−βH ( y|L)δ( yTD y − cN )δ(1TD y), (76)

where we have omitted the constant factor obtained by defining
the partition function in terms of x. The free energy defined
by this partition function is related to the second-smallest
eigenvalue according to

2 lim
β→∞

[f (β|L)]L = −2 lim
β→∞

1

Nβ
[ln Z(β|L)]L = c [λ2]L .

(77)

Note that the vector y is not the eigenvector ofL, and therefore
the distribution P (y) does not give the distribution of the
second-smallest eigenvector. However, as the sign of each
vector element is not changed by the conversion from y to x,
the fraction of correctly classified vertices is readily obtained
from the distribution P (y).

In the limit N → ∞ (as in Secs. IV and V), the replica-
symmetric solution can be obtained as

c [λ2]L = − extr
qr ,q̂r ,φ,ψ

⎧⎨
⎩
∫

dAdH

∫
dA′dH ′ (A,H,A′,H ′)

1

2
[(c p1 − γ )q1(A,H )q1(A′,H ′) + (c p2 − γ )q2(A,H )q2(A′,H ′)

+ 2γ q1(A,H )q2(A′,H ′)] + c φ − c
∑
r=1,2

pr

∫
dAdH

∫
dÂdĤ qr (A,H )q̂r (Â,Ĥ )

[
(H + Ĥ )2

A − Â
− H 2

A

]

+
∑
r=1,2

pr

∑
t

bt

∫ ct∏
g=1

[dÂgdĤgq̂r (Âg,Ĥg)]

(
ctψ/2 − ∑

g Ĥg

)2

ctφ − ∑
g Âg

⎫⎬
⎭ . (78)

We have the same saddle-point equations as (56) and (57) for q̂r (Â,Ĥ ). For qr (A,H ), we have an analogous equation to (58),
but with ψ and φ replaced with ctψ and ctφ, i.e.,

qr (A,H ) =
∑

t

bt ct

c

∫ ct−1∏
g=1

[dÂgdĤgq̂r (Âg,Ĥg)]δ

⎛
⎝H + ctψ

2
−

ct−1∑
g=1

Ĥg

⎞
⎠ δ

⎛
⎝A − ctφ +

ct−1∑
g=1

Âg

⎞
⎠ . (79)

With the EMA, Eq. (78) is approximated as

[λ2]L = − extr

(
φ + 1

a(a + 2)

{∑
k

pk

[
(1 + a)m2k + m2

1k

] − γ

c
(m11 − m12)2

}
− 1

a − â

∑
k

pk (m2k + 2m1km̂1k + m̂2k)

+ 1

c(φ − â)

{
cψ2

4
+

∑
k=1,2

pk

[
m̂2k − cψm̂1k + (c − 1)m̂2

1k

]})
. (80)

From the saddle-point conditions, for the solution with m1k �=
0, we have

1 + â = 1

1 + a
, (81)

a = c φ − (c − 1)â, (82)

m2
11 = (c − 1)2 p2

cp1

[
1 − 1

(c − 1)2�
2

]
[(c − 1)�2 − 1],

(83)

[λ2]L = −φ = 1 − �

c

(
c − 1 − 1

�

)
, (84)

and in the region where m1k = 0, we have

[λ2]L = −φ = (
√

c − 1 − 1)2

c
. (85)

Again, ψ = 0 in both cases. The condition for the solution
with m1k �= 0 to exist is

1√
c − 1

� �, (86)

and the detectability threshold is the condition when the
equality holds.
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(b)(a)

FIG. 9. (Color online) Average second-smallest eigenvalues of the normalized Laplacian L of two-block random graphs with bimodal
degree distributions as functions of γ . The degree sets are (a) {c1,c2} = {3,6} and (b) {c1,c2} = {3,9}. The ratio of module sizes is set to
p1 = 0.6 (p2 = 0.4) in both cases. The estimates given by the replica method with the EMA and the estimated eigenvalues of the localized
eigenvectors are represented by solid lines (see Sec. VIII for details of the localized eigenvector). When the latter gives a lower eigenvalue,
the former is indicated by a dashed line. The dots represent the numerical results with N = 104. The average is over 10 samples. In each plot,
results are plotted, from top to bottom, for b1 = 0.1,0.5,0.9 (b2 = 0.9,0.5,0.1).

Figures 9(a) and 9(b) plot Eqs. (84) and (85), together
with the results of the numerical experiments for bimodal
distributions. These figures are plotted in the same way as in
Figs. 7(a) and 7(b). Again, our estimate gives a fairly accurate
prediction of the numerical results [44]. As conjectured in
Sec. VIII, a comparison of Figs. 7(a) and 7(b) and Figs. 9(a)
and 9(b) shows that localization is less likely to occur with
the normalized Laplacian L than with the un-normalized
Laplacian L.

Figures 10(a) and 10(b) show the fraction of correctly
classified vertices, ignoring the effect of localization. Although
our estimates are close to the numerical results when the effect
of localization is negligible, they differ significantly in the
region where localization is present. Note that the difference
between the crosses and the solid line in each figure is not
totally due to the Gaussian approximation of the distribution
of the eigenvector elements (see Appendix C for details). In
this case, the Gaussian fitting (solid line) whose mean and

(b)(a)

EMA (distribution)
EMA (moment)

EMA (distribution)
EMA (moment)

FIG. 10. (Color online) Fraction of correctly classified vertices with the spectral method for two-block random graphs with bimodal degree
distributions as functions of γ . The normalized Laplacian L is used, and the degree sets are (a) {c1,c2} = {3,6} and (b) {c1,c2} = {3,9}. The
population of each degree and the ratio of module sizes are b1 = 0.5 (b2 = 0.5) and p1 = 0.5 (p2 = 0.5) in both cases. The dots represent the
numerical results with various graph sizes. The crosses represent the results obtained by iterating the saddle-point equations (56), (57), and
(79). The solid lines represent the results obtained by fitting the distribution of eigenvector elements to a Gaussian distribution whose mean
and variance are estimated by the saddle point of the free energy with the EMA (see Appendix B for details).
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variance are estimated by the EMA of the free energy seems
to be a better approximation.

VIII. LOCALIZED EIGENVECTOR OF THE
NORMALIZED LAPLACIAN WITH BIMODAL

DEGREE DISTRIBUTIONS

In this section, we analyze the localized eigenvectors of the
normalized Laplacian L. The behavior of the eigenvalues of
these localized eigenvectors for the normalized Laplacian L
were described in Sec. VII, and this section is devoted to their
derivation and an analysis of some specific examples.

We consider the tree in which the defects are aggregated
around its root up to a distance of g. The analysis here is
completely analogous to that for the un-normalized Laplacian
L in Sec. VI. The equations corresponding to (71) for g � 1 are

V1 − (1 − λ)V0 = 0,

(cBc2)−1/2(c2 − 1)Vg+1 − (1 − λ)Vg + c−1
2 Vg−1 = 0,

c−1
B (cB − 1)Vg+2 − (1 − λ)Vg+1 + (cBc2)−1/2Vg = 0,

c−1
B (cB − 1)Vd+1 − (1 − λ)Vd + c−1

B Vd−1 = 0

(d � g + 2).

(87)

As in Sec. VI, we consider the case where the vertices at
d > g have a uniform degree cB . Interestingly, when g = 0,
an analogous calculation as for the un-normalized Laplacian L

in Sec. VI yields that the eigenvector with a nonzero eigenvalue
of the form Vd+1 = κVd for d > 1 has κ = −1; i.e., we never
have a localized eigenvector. Moreover, when g = 1, the con-
dition 2cD < cB must be satisfied to give a localized eigenvec-
tor with a finite norm; again, the defects need to have a lower
degree. Note also that the results obtained here are more severe
than the conditions in Sec. VI for the un-normalized Laplacian
L in the sparse case. This implies that localization tends to
be suppressed in the normalized Laplacian L. In fact, this ten-
dency is consistent with the analysis in data clustering [38,45].

In the case where the vertex degrees at d > g are not
necessarily uniform, a localized eigenvector can be estimated
in almost the same way as for the un-normalized Laplacian
L in Sec. VI, utilizing the results of the replica method
with the EMA in Sec. VII. Note that, unlike the case of
the un-normalized Laplacian L, the value of cB is needed
to determine the ratio Vg+2/Vg+1 in Eq. (87). Thus, when
we solve for the consistent eigenvalue by Vg+2/Vg+1 =
Vg+3/Vg+2 = 1 + â∗(λ), we replace cB in the ratio Vg+2/Vg+1

with the average degree c.

IX. DETECTABILITY THRESHOLD OF THE
STOCHASTIC BLOCK MODEL WITH THE

NORMALIZED LAPLACIAN

Finally, we consider the eigenvalues and detectability
threshold in the stochastic block model, i.e., the random
graph with a Poisson degree distribution. To compare with the
literature, we recast our result in terms of cin and cout and set
the module sizes to p1 = p2 = 0.5. With these quantities, the
detectability threshold in the normalized Laplacian, Eq. (86),

FIG. 11. (Color online) Phase diagram of the detectable and
undetectable regions given by the replica method with the EMA (solid
line) and the ultimate threshold [5,7,8] (dashed line). The model
cannot take parameter values with cin − cout > 2c (invalid region)
because of the condition that cout � 0.

reads

cin − cout = 2c√
c − 1

. (88)

Compared with the threshold obtained in [8], we have a
correction factor of

√
c/

√
c − 1. The phase diagrams of these

two thresholds are shown in Fig. 11. While the difference
between them is negligible when the average degree is
sufficiently large, considering the fact that the upper bound of
the parameter cin − cout is 2c, this gap is indeed considerable
in sparse graphs.

We can compare the average estimate of the second-
smallest eigenvalue [λ2]L with the numerical results. In terms
of cin and cout, Eq. (84) reads

[λ2]L = 1 − (c − 1)

2c2 (cin − cout) − 2

cin − cout
. (89)

Figures 12(a) and 13(a) show that the estimated eigenvalues
with the EMA agree excellently with the numerical results,
as long as the localized eigenstate does not occupy the
second-smallest eigenvalue. We measured the localization
strength with the inverse participation ratio (IPR), defined
as
∑N

i=1 x4
i /(

∑N
i=1 x2

i )2 for a vector x, and have plotted this in
Figs. 12(b) and 13(b). The IPR grows rapidly below the point at
which the estimates start to deviate from the numerical results
in Figs. 12(a) and 13(a). Similarly, as shown in Figs. 12(c)
and 13(c), our estimates for the fraction of correctly classified
vertices start to deviate from the numerical results at that point.

For the stochastic block model with c = 6, the localized
eigenvector appears in the region significantly above the
detectability threshold, i.e., in the detectable region, and its
effect is not negligible. However, for the stochastic block
model with c = 8, although the estimate with the EMA is
still not precise, the error due to localization seems to be
much smaller for the graph sizes we tested. Note that as the
average degree c increases the degree fluctuation of each vertex
decreases because of the law of large numbers. Therefore, the
effect of localization is expected to eventually disappear. That
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(c)

(b)(a)

EMA (distribution)
EMA (moment)

EMA (moment)

Nadakuditi-Newman

FIG. 12. (Color online) (a) Average second-smallest eigenvalue
of the method with the normalized Laplacian L, (b) the IPR of
its eigenvector, and (c) the fraction of correctly classified vertices
with the spectral method in the stochastic block model. We set the
average degree c = 6. In each plot, the dots represent the numerical
results with various graph sizes. In (a), the estimate of the eigenvalue
with the EMA is represented by a solid line. The dotted line shows
the estimated detectability threshold and the dashed line shows the
estimate in [8]. In (c), the crosses represent the fraction of correctly
classified vertices with the EMA and the solid line represents their
Gaussian approximation (see Appendix B for details). The dashed
line is, again, the estimate in [8].

is, the point at which localization occurs will finally become
buried in the undetectable region.

As mentioned in Sec. VII, the solid lines and crosses behave
differently in Figs. 12(c) and 13(c). Moreover, the results of
the saddle-point equation with the EMA seem to converge to
the result in [8] around the detectability threshold. It should be
noted, however, that this coincidence is due to the property of
the Poisson degree distribution in the stochastic block model.
As described in Appendix C, the difference between these
results with the EMA generally depends on the form of the
degree distribution.

X. SUMMARY

In summary, we have analyzed the limitations of the spectral
method for graph partitioning, known as the detectability
threshold, and the localization of eigenvectors. We derived
estimates for the detectability thresholds of the spectral method

(c)

(b)(a)

EMA (moment)

EMA (distribution)
EMA (moment)
Nadakuditi-Newman

FIG. 13. (Color online) Same plots as in Fig. 12, but with the
average degree c = 8. In this case, the effect of localization is weaker,
and the estimate with the EMA is more precise.

with the un-normalized Laplacian L [Eq. (68)] and the
normalized Laplacian L [Eq. (86)] for sparse graphs. The
detectability threshold with the normalized Laplacian L can
generally be written as (88) (for equal size modules), which
is analogous to the threshold for random regular graphs (53).
This converges to the result in [8] in the dense limit c → ∞.
For the condition where a localized eigenvector emerges,
although it is difficult for a graph with an arbitrary degree
distribution, our estimates give a fairly good prediction for
two-block random graphs with bimodal degree distributions.
Overall, our estimates with the replica method agree with the
numerical results quite well, as long as localization is absent,
for the graph sizes we tested. It should be noted, however,
that the localization of eigenvectors is expected to be sensitive
to rare events such as the emergence of vertices of irregular
degree. Therefore, when the support of the degree distribution
is infinite, e.g., a Poisson distribution, we must be careful as
the finite size effect may not be negligible.

We revealed that the spectral method with Laplacians
does not detect modules all the way down to the ultimate
detectability threshold 2

√
c in any sparse graph. In fact, the

estimated gap between the precise detectability threshold and
the ultimate one is already considerable for very sparse graphs
even in the case where eigenvector localization is absent or
negligible (see Fig. 11). Another way of viewing this result is
that the method with the nonbacktracking matrix closed the
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gap of detectability in two ways. Furthermore, for the graph
sizes we tested, the effect of localization was relatively weak
in the stochastic block model when the average degree was
not very low. Finally, we comment that we must be careful
when we compare the performance between the normalized
Laplacian and modularity. Although their spectral methods
become equivalent for a certain choice of normalization [11],
there is no guarantee that our results precisely coincide with
the detectability threshold of the modularity matrix, i.e., the
method with the spherical normalization [46].
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APPENDIX A: NUMBER OF RANDOM GRAPHS
WITH TWO MODULES

In this section, we calculate NG, the number of possible
graph realizations. Although the value of NG does not appear
in the final result in the main text, the technique used here is
essential for calculating the moment of the partition function.
Let us first consider the two-block c-random regular graphs.
We sum all the connection patterns ({uij },{wij }) that satisfy
the constraint of constant degree. That is,

NG =
∑

{uij }{wij }

∏
i∈V1

δ

(∑
l∈V1

uil +
∑
k∈V2

wik − c

) ∏
j∈V2

δ

(∑
l∈V2

ujl +
∑
k∈V1

wjk − c

)
δ

(∑
i∈V1

∑
k∈V2

wik − γN

)
. (A1)

Using the relations

δ(x) =
∮

dz

2π
zx−1, (A2)

δ(x) =
∫ +i∞

−i∞

dη

2π
e−ηx, (A3)

we have

NG =
∑

{uij }{wij }

∏
i∈V1

∮
dzi

2π
z

(
∑

l∈V1
uil+

∑
k∈V2

wik−c−1)

i

∏
j∈V2

∮
dzj

2π
z

(
∑

l∈V2
ujl+

∑
k∈V1

wjk−c−1)

j

×
∫

dη

2π
exp

[
−η

(∑
i∈V1

∑
k∈V2

wik − γN

)]
(A4)

=
∮ ∏

i∈V1

dzi

2π
z
−(1+c)
i

∮ ∏
j∈V2

dzj

2π
z
−(1+c)
j

∫
dη

2π
eηγN

∏
i<l∈V1

∑
uil={0,1}

(zizl)
uil

∏
j<l∈V2

∑
ujl={0,1}

(zj zl)
ujl

∏
i∈V1

∏
k∈V2

∑
wik={0,1}

(zizke
−η)wik

(A5)

=
∮ ∏

i∈V1

dzi

2π
z
−(1+c)
i

∮ ∏
j∈V2

dzj

2π
z
−(1+c)
j

∫
dη

2π
eηγN

∏
i<l∈V1

(1 + zizl)
∏

j<l∈V2

(1 + zj zl)
∏
i∈V1

∏
k∈V2

(1 + zizke
−η). (A6)

Setting the contours with respect to zi and zj to be small, we can approximate the last factors as

∏
i<l∈V1

(1 + zizl) = exp

[ ∑
i<l∈V1

ln(1 + zizl)

]
≈ exp

( ∑
i<l∈V1

zizl

)
≈ exp

(
1

2

∑
i∈V1

zi

∑
l∈V1

zl

)
, (A7)

∏
i∈V1

∏
k∈V2

(1 + zizke
−η) = exp

[∑
i∈V1

∑
k∈V2

ln(1 + zizke
−η)

]
≈ exp

(
e−η

∑
i∈V1

zi

∑
k∈V2

zk

)
, (A8)

where we have neglected the diagonal term in (A7) because N � 1. Introducing the order parameters

q1 = 1

p1N

∑
i∈V1

zi, (A9)

q2 = 1

p2N

∑
j∈V2

zj , (A10)
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we can recast (A6) as

NG = p1p2N
2
∫

dq1

∫
dq2

∮ ∏
i∈V1

dzi

2π
z
−(1+c)
i

∮ ∏
j∈V2

dzj

2π
z
−(1+c)
j

∫
dη

2π
eηγNδ

(
p1Nq1 −

∑
i∈V1

zi

)
δ

⎛
⎝p2Nq2 −

∑
j∈V2

zj

⎞
⎠

× exp

[
1

2
(p1Nq1)2

]
exp

[
1

2
(p2Nq2)2

]
exp[e−ηp1p2N

2q1q2] (A11)

= p1p2N
2
∫

dq1dq̂1

2π

∫
dq2dq̂2

2π

∮ ∏
i∈V1

dzi

2π
z
−(1+c)
i

∮ ∏
j∈V2

dzj

2π
z
−(1+c)
j

∫
dη

2π

× exp

[
−q̂1

(
p1Nq1 −

∑
i∈V1

zi

)]
exp

⎡
⎣−q̂2

⎛
⎝p2Nq2 −

∑
j∈V2

zj

⎞
⎠
⎤
⎦

× exp

[
1

2
(p1Nq1)2 + 1

2
(p2Nq2)2 + e−ηp1p2N

2q1q2 + ηγN

]
. (A12)

Since ∮ ∏
i∈Vr

dzi

2π
ezi q̂r z

−(1+c)
i =

∮ ∏
i∈Vr

dzi

2π

∑
m

(zi q̂r )m

m!
z
−(1+c)
i =

(
q̂c

r

c!

)Npr

(r = 1,2), (A13)

Eq. (A12) becomes

NG = p1p2N
2
∫

dq1dq̂1

2π

∫
dq2dq̂2

2π

∫
dη

2π
exp

[
N2

2

(
p2

1q
2
1 + p2

2q
2
2 + 2e−ηp1p2q1q2

)

+N (ηγ − p1q̂1q1 − p2q̂2q2 + c p1 ln q̂1 + c p2 ln q̂2 − ln c!)

]
. (A14)

In the limit N → ∞, the saddle point of the integrand gives NG. The saddle-point conditions yield

γ = Ne−ηp1p2q1q2, (A15)

Np1q1 + Np2e
−ηq2 − q̂1 = 0, (A16)

Np2q2 + Np1e
−ηq1 − q̂2 = 0, (A17)

q1q̂1 = q2q̂2 = c. (A18)

We then have

q1 =
√

c p1 − γ

Np2
1

, (A19)

q2 =
√

c p2 − γ

Np2
2

. (A20)

Inserting the values at the saddle point, we obtain the number of graphs for N � 1:

NG � exp

{
N

[
c

2
(ln N − 1) − ln c! − γ ln γ + cp1 ln (cp1) + cp2 ln (cp2)

− 1

2
(cp1 − γ ) ln (cp1 − γ ) − 1

2
(cp2 − γ ) ln (cp2 − γ )

]}
. (A21)

A completely analogous result holds for the number of possible two-block random graphs with a given degree sequence, i.e.,
the two-block configuration model or the degree-corrected ensembles with “hard” constraints [34]. We let {ct }Tt=1 be the sequence
of degrees, each of which has probability {bt }Tt=1; i.e., the number of nodes with degree ct is Nbt . The number of graphs NG can
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then be written as

NG =
∑

{uij }{wij }

T∏
t=1

⎡
⎣ ∏

i∈V(1,t)

δ

(∑
l∈V1

uil +
∑
k∈V2

wik − ct

) ∏
j∈V(2,t)

δ

(∑
l∈V2

ujl +
∑
k∈V1

wjk − ct

)⎤⎦ δ

(∑
i∈V1

∑
k∈V2

wik − γN

)
, (A22)

where, as in the main text, we denote the set of vertices in module r with degree ct as V(r,t). A similar calculation to the
single-degree case yields

NG = p1p2N
2
∫

dη

2π

∫
dq1dq̂1

2π

∫
dq2dq̂2

2π

∏
t

⎡
⎣ ∏

i∈V(1,t)

1

ct !

∏
j∈V(2,t)

1

ct !

⎤
⎦

× exp

{
N

[
N

2
p2

1q
2
1 + N

2
p2

2q
2
2 + Ne−ηp1p2q1q2 + ηγ − p1q̂1q1 − p2q̂2q2 + c (p1 ln q̂1 + p2 ln q̂2)

]}
, (A23)

where, as in the main text, c = ∑
bt

bt ct is the average degree. The saddle-point conditions yield analogous results,

γ = Np1q1p2q2e
−η, (A24)

Np1q1 + Np2q2e
−η = q̂1, (A25)

Np1q1e
−η + Np2q2 = q̂2, (A26)

q1q̂1 = q2q̂2 = c, (A27)

and

q1 =
√

cp1 − γ

Np2
1

, (A28)

q2 =
√

cp2 − γ

Np2
2

. (A29)

Finally, we have

NG � exp

{
N

[
c

2
(ln N − 1) − ln c! − γ ln γ + cp1 ln (cp1) + cp2 ln (cp2)

− 1

2
(cp1 − γ ) ln (cp1 − γ ) − 1

2
(cp2 − γ ) ln (cp2 − γ )

]}
, (A30)

where c! = ∑
t bt ct !.

APPENDIX B: GAUSSIAN APPROXIMATION OF THE
FRACTION OF CORRECTLY CLASSIFIED VERTICES

We consider the distribution of elements of the second-
smallest eigenvector belonging to the rth module, averaged
over the realization of the un-normalized Laplacian L. This is
defined as

Pr (x) = 1

Nr

∑
i∈Vr

[δ(x − xi)]L , (B1)

and, as mentioned in the main text, it can be expressed in terms
of H and A as

Pr (x) =
∫

dAdH Qr (A,H ) δ

(
x − H

A

)
. (B2)

For the Gaussian fitting of the distribution Pr (x), we solve
for the mean and variance in (B2). To obtain an analytical
expression, we fix the distribution of A, i.e., Qr (A) =∫

dHQr (A,H ) = δ(afull − A). Note that afull here is differ-
ent from a in the saddle-point equations. From the cavity
interpretation of Eqs. (38)–(40), Qr (A,H ) can be regarded as

the complete marginal distribution corresponding to qr (A,H ).
Therefore, instead of (46), afull can be determined as

afull = φ − câ

= (c − 1)� − 1

(c − 1)�
, (B3)

where we have inserted the values of φ and â at the saddle point.
Then, in the detectable region, the mean can be approximated
as

mr (x) = 1

afull

∫
dH HQr (H )

= 1

afull

∫ c∏
g=1

dĤgq̂r (Ĥg)

⎛
⎝−ψ

2
+

c∑
g=1

Ĥg

⎞
⎠

= c(c − 1)�m̂1r

(c − 1)2�2 − 1
, (B4)

where we have used the fact that ψ = 0 at the saddle point.
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Similarly, for the second moment, we have

〈x2〉r = 1

a2
full

∫ c∏
g=1

dĤgq̂r (Ĥg)

⎛
⎝ c∑

g=1

Ĥg

⎞
⎠

2

=
[

(c − 1)�

(c − 1)2�2 − 1

]2 [
cm̂2r + c(c − 1)m̂2

1r

]
. (B5)

Then the variance reads

s2
r (x) = 〈x2〉r − 〈x2〉r

= c

[
(c − 1)�

(c − 1)2�2 − 1

]2 (
m̂2r − m̂2

1r

)
. (B6)

With mr (x) and sr (x), {1 + erf[mr (x)/
√

2s2
r (x)]}/2 gives the fraction of correctly classified vertices in module r . For the

equal-size modules, |m1(x)| = |m2(x)|[=: |m(x)|] and s2
1 (x) = s2

2 (x)(=: s2(x)) by symmetry. The total fraction of correctly
classified vertices is then {1 + erf[|m(x)|/

√
2s2(x)]}/2.

For the normalized Laplacian L with the EMA, the analogous calculation for the detectable region gives

mr (x) = c2

c

(c − 1)�m̂1r

(c − 1)2�
2 − 1

, (B7)

s2
r (x) =

[
(c − 1)�

(c − 1)2�
2 − 1

]2
⎧⎨
⎩c2

c
m̂2r +

⎡
⎣c3 − c2

c
−
(

c2

c

)2
⎤
⎦ m̂2

1r

⎫⎬
⎭ , (B8)

where cn = ∑
t bt c

n
t .

APPENDIX C: APPROXIMATIONS OF THE
SADDLE-POINT EQUATIONS AND THE FREE ENERGY

As shown in Figs. 10(a), 10(b), 12(c), and 13(c), the results
obtained by the EMA of the saddle-point equation (crosses
in the figures) and the Gaussian fitting of the distribution of
the eigenvector elements (solid lines in the figures), whose
mean and variance are estimated by the EMA of the free
energy, are different. One may expect that the former is simply
more accurate, as long as the stationary state is achieved by
a sufficient number of iterations, because the latter contains a
Gaussian approximation. However, this is not correct. In fact,
the EMA of the saddle-point equations is not equivalent to the
EMA of the free energy; in the latter, the approximation is

applied before taking the saddle point. For example, the rela-
tion between the first moment of H , m1r , and its conjugate m̂1r ,
derived by the saddle-point equation (79) with the EMA, is

m1r =
(

c2

c
− 1

)
m̂1r , (C1)

whereas we have m1r = (c − 1)m̂1r from the saddle point of
the free energy with the EMA. Hence, the difference depends
on the ratio of the mean and the variance, or the Fano factor.
In the case of the Poisson degree distribution, Eq. (C1) reads
m1r = cm̂1r , which corresponds to the dense limit of the saddle
point for the free energy. As neither quantity is exact, it is not
readily obvious which offers the better estimate in general.
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[44] In Fig. 8(a), the localization transition might have occurred right

before the detectability threshold. However, we could not find
an eigenvalue close to the numerical experiment within g � 3.

[45] U. Von Luxburg, M. Belkin, and O. Bousquet, Ann. Statist. 36,
555 (2008).

[46] M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).

062803-21

http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.84.066122
http://dx.doi.org/10.1103/PhysRevE.84.066122
http://dx.doi.org/10.1103/PhysRevE.84.066122
http://dx.doi.org/10.1103/PhysRevE.84.066122
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1038/srep02216
http://dx.doi.org/10.1038/srep02216
http://dx.doi.org/10.1038/srep02216
http://dx.doi.org/10.1038/srep02216
http://dx.doi.org/10.1103/PhysRevE.90.062805
http://dx.doi.org/10.1103/PhysRevE.90.062805
http://dx.doi.org/10.1103/PhysRevE.90.062805
http://dx.doi.org/10.1103/PhysRevE.90.062805
http://dx.doi.org/10.1103/PhysRevE.89.032809
http://dx.doi.org/10.1103/PhysRevE.89.032809
http://dx.doi.org/10.1103/PhysRevE.89.032809
http://dx.doi.org/10.1103/PhysRevE.89.032809
http://dx.doi.org/10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO;2-2
http://dx.doi.org/10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO;2-2
http://dx.doi.org/10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO;2-2
http://dx.doi.org/10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO;2-2
http://dx.doi.org/10.1073/pnas.0907096106
http://dx.doi.org/10.1073/pnas.0907096106
http://dx.doi.org/10.1073/pnas.0907096106
http://dx.doi.org/10.1073/pnas.0907096106
http://dx.doi.org/10.1088/1742-5468/2012/12/P12021
http://dx.doi.org/10.1088/1742-5468/2012/12/P12021
http://dx.doi.org/10.1088/1742-5468/2012/12/P12021
http://dx.doi.org/10.1073/pnas.1312486110
http://dx.doi.org/10.1073/pnas.1312486110
http://dx.doi.org/10.1073/pnas.1312486110
http://dx.doi.org/10.1073/pnas.1312486110
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://dx.doi.org/10.1103/PhysRevE.85.056122
http://dx.doi.org/10.1103/PhysRevE.85.056122
http://dx.doi.org/10.1103/PhysRevE.85.056122
http://dx.doi.org/10.1103/PhysRevE.85.056122
http://dx.doi.org/10.1103/PhysRevE.90.012805
http://dx.doi.org/10.1103/PhysRevE.90.012805
http://dx.doi.org/10.1103/PhysRevE.90.012805
http://dx.doi.org/10.1103/PhysRevE.90.012805
http://dx.doi.org/10.1103/PhysRevE.89.042816
http://dx.doi.org/10.1103/PhysRevE.89.042816
http://dx.doi.org/10.1103/PhysRevE.89.042816
http://dx.doi.org/10.1103/PhysRevE.89.042816
http://arxiv.org/abs/arXiv:1409.3207
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1088/1751-8113/45/32/325001
http://dx.doi.org/10.1088/1751-8113/45/32/325001
http://dx.doi.org/10.1088/1751-8113/45/32/325001
http://dx.doi.org/10.1088/1751-8113/45/32/325001
http://dx.doi.org/10.1073/pnas.0400054101
http://dx.doi.org/10.1073/pnas.0400054101
http://dx.doi.org/10.1073/pnas.0400054101
http://dx.doi.org/10.1073/pnas.0400054101
http://dx.doi.org/10.1088/0305-4470/32/24/101
http://dx.doi.org/10.1088/0305-4470/32/24/101
http://dx.doi.org/10.1088/0305-4470/32/24/101
http://dx.doi.org/10.1088/0305-4470/32/24/101
http://dx.doi.org/10.1088/0305-4470/35/23/303
http://dx.doi.org/10.1088/0305-4470/35/23/303
http://dx.doi.org/10.1088/0305-4470/35/23/303
http://dx.doi.org/10.1088/0305-4470/35/23/303
http://dx.doi.org/10.1103/PhysRevE.82.031135
http://dx.doi.org/10.1103/PhysRevE.82.031135
http://dx.doi.org/10.1103/PhysRevE.82.031135
http://dx.doi.org/10.1103/PhysRevE.82.031135
http://dx.doi.org/10.1214/009053607000000640
http://dx.doi.org/10.1214/009053607000000640
http://dx.doi.org/10.1214/009053607000000640
http://dx.doi.org/10.1214/009053607000000640
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.74.036104



