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Robust criticality of an Ising model on rewired directed networks
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We show that preferential rewiring, which is supposed to mimic the behavior of financial agents, changes a
directed-network Ising ferromagnet with a single critical point into a model with robust critical behavior. For
the nonrewired random graph version, due to a constant number of out-links for each site, we write a simple
mean-field-like equation describing the behavior of magnetization; we argue that it is exact and support the
claim with extensive Monte Carlo simulations. For the rewired version, this equation is obeyed only at low
temperatures. At higher temperatures, rewiring leads to strong heterogeneities, which apparently invalidates
mean-field arguments and induces large fluctuations and divergent susceptibility. Such behavior is traced back to
the formation of a relatively small core of agents that influence the entire system.
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I. INTRODUCTION

Understanding the complex behavior of financial markets
is one of the main objectives of econophysics. Fat-tail non-
Gaussian fluctuations, volatility clustering, or rapid decay of
autocorrelations of returns characterize most of the financial
markets, suggesting that these stylized facts [1] have some
more fundamental explanation. Searching for such an ex-
planation, one can resort to an approach particularly suited
for physicists, namely, agent modeling [2]. In the spirit of
statistical mechanics, one considers a collection of agents
involved in interactions resembling the functioning of financial
markets. Since buying and selling are the most important
activities of such agents, a number of models of financial
markets bear some similarity to the two-state percolation [3]
or Ising-like models [4].

An important agent interaction is mimicking some other
agent’s behavior, which suggests a similarity to ferromagnetic
systems. However, ferromagnets typically exhibit rather small
fluctuations, which is much different from the behavior of
financial markets. Ferromagnets exhibit large fluctuations only
at the critical point separating ferromagnetic and paramagnetic
phases. To place the system at the critical point requires,
however, a fine-tuning of control parameters. On the other
hand, financial markets seem to be more robust with strong
fluctuations appearing without any tuning of parameters.
Some models were proposed where mimicking other agents’
behavior is compensated by the tendency to be in the
minority [5] or where agents with more complex strategies
were used [6]. They do reproduce some of the stylized facts, but
their considerable complexity hinders a deeper understanding.

Apparently, the analogy with simple ferromagnetic systems
is not sufficient to model financial markets and one should
search for more suitable extensions. In our opinion, an
important ingredient of models of financial markets should be
the possibility to choose and sometimes also change neighbors
that a given agent would like to mimic. The objective of the
present paper is to implement such a rewiring mechanism and
to show that it drastically affects the behavior of the model.
When the neighbors to be mimicked are selected at random
and kept fixed, the model behaves as an ordinary ferromagnet
with ferromagnetic and paramagnetic phases separated at

a critical point. However, when agents might switch the
neighbors and preferentially select those they consider as
more influential, the system generically exhibits divergent
fluctuations. Such behavior indicates that preferential rewiring
induces a robust criticality, which is a required feature of
stock-market models [7]. We also examine the mechanism
leading to the robust criticality.

II. MODEL WITHOUT REWIRING

In our model we consider N agents represented by spinlike
variables si = ±1, i = 1,2, . . . ,N . At each time step t , each
agents decides whether to buy (si = 1) or sell (si = −1) an
asset. To make the decision, an agent tries to mimic the
behavior of its neighbors and the model evolves according
to the heat-bath dynamics

si(t + 1) =
{

1 with probability p = 1
1+exp[−2hi (t)/T ]

−1 with probability 1 − p,

(1)
where

hi(t) =
∑

j

sj (t) (2)

is the local field acting on a given agent i and the summation
in is over its neighbors. The control parameter T is the analog
of the temperature in the magnetic Ising model and determines
the level of fluctuations in the decision process.

The neighborhood of a given agent is set randomly, namely,
each agent has a fixed number of z randomly selected
neighbors, which it interacts with via the local field. The
neighboring relation is not necessarily symmetric: If agent
j enters the expression for the local field of agent i, it does
not imply that agent i enters the expression for the local field
of agent j . In other words, agents are nodes of a directed
random network and each node has z out-links (arrows point
at the nodes that contribute to the local field). The number of
in-links of a given agent, which specifies how many agents
it influences, is not fixed and it can vary among agents (of
course, the average over all agents equals z). Equal numbers
of out-links and unequal numbers of in-links constitute an
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important feature of our model, which we will refer to as the
out-homogeneity.

Taking into account the spin variables, the above rules
define actually an Ising ferromagnet on a directed random
graph. Models of this kind were already analyzed and shown
to exhibit an ordinary ferromagnetic-paramagnetic phase
transition belonging to the mean-field universality class [8].

In the following, we present a more detailed analysis of our
model for z = 4. Due to the out-homogeneity, one can write
a relatively simple equation, which governs the evolution of
magnetization. Let Pi(t) denote the probability that agent i at
time t takes the value si = 1. Assuming that Pi(t) is spatially
homogeneous and does not depend on i, from the heat-bath
rules we obtain that

P (t + 1) =
4∑

k=0

(
4

k

)
P k(t)[1 − P (t)]4−k

× 1

1 + exp [−4(k − 2)/T ]
. (3)

Of course, Eq. (3) can be easily rewritten in terms of magneti-
zation [m(t) = 2P (t) − 1], which is common in Ising-model
studies. In the steady-state limit (t → ∞) Eq. (3) becomes a
fourth-order polynomial equation, which can be easily solved
numerically (and with some more effort even analytically).
Moreover, the critical temperature Tc can be found using the
standard procedure of expanding the t → ∞ limit of Eq. (3)
in the vicinity of the critical point. Elementary calculations
reveal that Tc obeys

2 = tanh (4/Tc) + 2 tanh (2/Tc). (4)

The solution of Eq. (4) can be written as

Tc = 4

ln [(1 + x)/(1 − x)]
, (5)

where

x = 1

3

[
1 − 5 3

√
2

11 + 3
√

69
+ 3

√
1

2
(11 + 3

√
69)

]
. (6)

We thus obtain Tc ≈ 3.089 82, approximately.
The factorized form of the probabilities suggests that Eq. (3)

is nothing more than the mean-field equation for our model and
thus it is only approximate. This would certainly be the case
for undirected graphs, where neighbors j and k of agent i are

FIG. 1. In a directed random graph, neighbors j and k of node i

are not more correlated than any other two randomly selected nodes.
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FIG. 2. (Color online) Temperature dependence of the magneti-
zation m for the rewired and nonrewired models (z = 4). The data
are obtained from Monte Carlo simulations and are compared with
the numerical solution of Eq. (3). Simulation and equilibration times
are equal to 104 Monte Carlo steps.

strongly correlated (since i contributes to the local fields of
both j and k). For undirected random graphs, some insight
into the behavior of the Ising model can be obtained by using
a replica method [9] or some recurrence relations based on the
similarity of random graphs to Cayley trees [10]. On the other
hand, in directed networks, even though j and k are neighbors
of i, they are not more correlated than any other two randomly
selected nodes (Fig. 1). Since the graph is sparse, we expect
that in the limit N → ∞, such correlations are negligible and
consequently the factorization in Eq. (3) should be legitimate.

Monte Carlo simulations of our model confirm the above
analysis (Fig. 2). Calculating the magnetization for N = 104

and z = 4, we find it to be in very good agreement with
m = 2P (t = ∞) − 1 obtained from the numerical solution
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FIG. 3. (Color online) Magnetization m as a function of the
inverse of size calculated for the nonrewired model of size N = 104,
3 × 104, 105, 3 × 105, 106, and 3 × 106, with z = 4 and T = 3.
Simulation and equilibration times are equal to 107 and 104 Monte
Carlo steps, respectively. In the limit N → ∞, perfect agreement
with the solution of Eq. (3) can be seen.
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of the steady-state limit of Eq. (3). For T = 3, we made
much more extensive calculations (Fig. 3). The linear ex-
trapolation N → ∞ based on simulations for N � 3 × 106

gives m = 0.347 23(2), which is in perfect agreement with
m = 0.347 225 . . . obtained from the numerical solution of
Eq. (3). In our opinion, such agreement strongly supports the
claim that Eq. (3) is exact (at least in the limit t → ∞).

III. MODEL WITH REWIRING

The model analyzed in the previous section behaves
similarly to some other Ising-like models with ferromagnetic
and paramagnetic phases separated at the critical point. Our
primary motivation is to modify such ordinary ferromagnets
so that they would resemble the behavior of financial markets,
at least to some extent. We are particularly interested in
supplanting a fine-tuned critical point with a more generic
critical behavior, which would exist in some, possibly large,
temperature range. So far our agents make the decision to
buy or sell based on the observation of their z neighbors and
the assignment of these neighbors is fixed during the entire
evolution of the model. In the present section we modify this
rule and allow one to change the neighbors. The rewiring we
use is preferential: Each agent has its status equal to the number
of in-links that are (currently) attached to it. The selection of
a new neighbor takes place with probability proportional to its
status [11]. A single step of the dynamics of our model is thus
defined as follows: Update spin variables Si (i = 1,2, . . . ,N )
according to the heat-bath algorithm (1) and rewire each agent
selecting preferentially anew its z out-links.

Since we keep the dynamics of spin variables basically
unchanged, one might expect that Eq. (3) still describes the
behavior of our model. Monte Carlo simulations show that
to some extent this is indeed the case (Fig. 2) and very
good agreement with Eq. (3) can be seen over much of
the temperature range. However, close to the critical point
T = Tc, the rewired model shows much lower and perhaps
zero magnetization. It would be desirable to understand the
reasons why Eq. (3) is no longer obeyed at higher temperatures.
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FIG. 4. (Color online) Time dependence of magnetization m for
the rewired and nonrewired models (z = 4 and N = 104). Simulations
were made for T = 4, which for the nonrewired model is deep in the
paramagnetic phase.
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FIG. 5. (Color online) Size dependence of susceptibility χ for
the rewired model (z = 4). The power-law fit χ ∼ Nα shows that α

varies from 0.67 for T = 6 up to 0.91 for T = 3.

Possible explanations include the appearance of correlations
(which we argue are negligible in the nonrewired case) or
a breakdown of homogeneity [which is also one of the
assumptions leading to Eq. (3)]. An effort to understand the
origin of this behavior will be made in the next section.

What is even more interesting is that the magnetiza-
tion in the rewired version shows large fluctuations also
at temperatures much higher than Tc (Fig. 4). To mea-
sure these fluctuations more quantitatively, we calculated
the susceptibility χ that up to the temperature factor is
equal to the variance of magnetization χ = 1

N
[〈(∑N

i=1 Si)2〉 −
〈∑N

i=1 Si〉2]. Numerical values indicate that as a function of
system size N the susceptibility diverges as χ ∼ Nα , where
α ∼ 0.67–0.91 depends slightly on temperature (Fig. 5). Such
behavior is observed in a large temperature range (3 � T � 6)
for the system size 103 � N � 3 × 104. The divergence of
susceptibility indicates that the model exhibits a robust critical
behavior. Together with data from Fig. 2, this suggests that the
model with rewiring has two phases: low-temperature, which
is ferromagnetic, and high-temperature, which is critical. It is
difficult for us to locate precisely the transition point between
these two phases. For longer simulations, it seems to shift
slightly toward lower temperatures. Moreover, one cannot
exclude that at sufficiently large temperature the critical phase
will be replaced with the paramagnetic one (having much
smaller fluctuations).

The critical behavior in our model is also robust with
respect to the frequency of rewiring. We made simulations
with rewiring taking place, e.g., with probability 0.1 (i.e.,
with probability 0.9, the out-links of a given agent at a given
step were left unchanged). Such modification slows down
the dynamics but retains the power-law divergence of the
susceptibility.

IV. DYNAMICS OF REWIRING

To get some understanding of our model, we look at the
structure of the network that emerges during the rewiring.
We notice that rewiring is not affected by spin variables
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FIG. 6. (Color online) Network structure after simulations of t =
103 steps for N = 30 agents and z = 2 [12]. Nodes with no in-links
(open circles) represent agents that do not influence the decisions of
any other agent (links that go out from them are drawn with dotted
lines). Nodes with some in-links (closed red circles) represent the
only agents that influence other agents (their out-links are drawn with
solid lines).

and thus might be considered as an independent process (but
not vice versa—the spin dynamics depends of course on the
structure of the network). Some insight is already obtained
from simulations of a small system (Fig. 6). One can notice
that most agents have no in-links and thus they do not influence
any other agent. There is only a small core of agents that are
responsible for the decision formation of the other agents.
Such structure appears also for larger systems (Fig. 7). One
can notice a substantial heterogeneity of the resulting core as
for the number of agents that a given agent is influencing.

A more detailed analysis shows, however, that the core size
L slowly diminishes in time (Fig. 8). This is not surprising
since once an agent loses all of its in-links, it cannot get

FIG. 7. (Color online) Network structure after simulations of t =
104 steps for N = 103 agents and z = 2 [12]. Agents with no in-links
are omitted. The size of a circle is proportional to the number of
in-links.
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FIG. 8. (Color online) Time dependence of the size of the core
(log-log scale); calculations were made for N = 104. The inset shows
that for z = 2 and 4 the steady-state size of the core increases
approximately as N1/2. To generate the network of fractional z

(1 < z < 2), with probability 2 − z we created one out-link and with
probability z − 1 we created two such links for each agent. Thus
fractional z has only an average sense.

them back because the probability to be selected in a rewiring
process is proportional to the current number of in-links (which
is 0 for such an agent). Although the process of diminishing
of L is irreversible, it is extremely slow for z > 1. Only at
z = 1, this process is considerably faster and in a large time
interval consistent with t−1 decay. Such a slow decay for z > 1
suggests that at long (but not infinitely long) time, the core is
almost in a steady state and has a certain size. Numerical
calculations show that for z = 2 and 4 it increases with the
system size approximately as N1/2 (inset in Fig. 8).

Some insight into the stability of the core can be obtained
from the analysis of the time τ needed for the system to
condensate, i.e., for a given z to reach the core size z + 1
(which is the smallest core size that the system can reach).
Numerical calculations show that for z > 1, τ exhibits a fast,
possibly exponential, increase with the system size (Fig. 9).
Again, a slower increase (∼N ) is obtained only at z = 1.

Our results in Figs. 8 and 9 show that rewiring for z = 1
leads to a rather fast condensation, while for z > 1 the
dynamics is basically trapped in a core of size ∼N1/2. Even
though the condensed state could be reached in principle, for
large N and z > 1 it virtually never happens. The situation
is reminiscent of some models with the so-called absorbing
states: For some values of control parameters, the absorbing
state of the dynamics is basically unavailable and the model
remains in the active phase (the lifetime of which in that regime
is also exponentially divergent with the system size) [13].

A network structure with a nearly stable core suggests an
explanation of the generic divergence of susceptibility that
we reported in the previous section. Indeed, since agents
are influenced only by agents from the core, on average
there are N1/2 agents that are influenced by a single agent
belonging to the core. Considering core agents as independent
(and influencing N1/2 other agents), we easily obtain that
χ ∼ N1/2. Numerical results (Fig. 5) suggest a faster increase
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FIG. 9. (Color online) System size dependence of the time τ to
condensate, i.e., to reach the core size z + 1. Notice that even for z

slightly larger than 1, τ shows a rapid increase.

at low temperatures (for T = 3, we obtained χ ∼ N0.91)
that most likely result from some correlations between core
agents. Another factor affecting our simple estimations of
the divergence of χ might be some heterogeneity of the core
(Fig. 7).

V. CONCLUSION

In the present paper we have shown that preferential
rewiring changes an Ising ferromagnet, which has a single
critical point, into a model with robust critical behavior. The
rewiring mechanism that we used is supposed to mimic the
behavior of financial agents who try to follow their neighbors
but at the same time have also some freedom to choose the
ones to follow. We assume that the preference in the rewiring
process is proportional to the number of in-links of a given
agent. It is thus not a more or less objective measure of its
performance but solely how the agent is perceived by the
population of other agents. Similar recipes turned out to be
successful in, e.g., some page rank algorithms used by search
engines [14] or various recommendation systems [15].

Our model is of some interest from the statistical-mechanics
point of view. Due to out-homogeneity, we could write a simple

mean-field-like equation [Eq. (3)] that can be used to obtain
the magnetization of the model. We argued, however, that
for the present model in the nonrewired version this equation
should be exact and numerical simulations provide a very
strong support for the claim. Very good agreement with this
equation was obtained also for the rewired case, but only in the
low-temperature regime. We made some attempts to explain
why rewiring invalidates this equation at higher temperatures
and at the same time leads to the divergence of susceptibility
and criticality. In our opinion this is related to the formation
of a relatively small subset of agents that retain some in-links
and thus drive the entire system.

The change of the dynamical regime in the rewired version
at z = 1 is also of some interest. It is tempting to associate
the change with some percolation transition that for random
graphs is known to take place at z = 1 [16]. However, rewiring
redistributes links in a highly nonrandom fashion and a
possible relation to random graphs is by no means obvious.

We hope that our model might be useful also in the
econophysics context. Relatively simple rules that generate
a robust criticality might serve as a starting point for further
modifications and analysis. For example, one might consider
a model where an agent that no longer has any in-links
still retains some (small) status ε and can be thus selected
during the rewiring process. We expect that for small (possibly
N -dependent) ε such a model would be similar to our (ε = 0)
model, but certainly numerical simulations would be needed to
support such a claim. One of the important stylized facts that
apparently is missing in our model is volatility clustering. One
might hope that some extensions where agents, for example, try
to be in the minority (like in the so-called minority games [17])
or use more sophisticated strategies (such as fundamentalist,
trend follower, or noise trader) will provide a more realistic
description of financial markets and at the same time will retain
simplicity of the model.
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