
PHYSICAL REVIEW E 91, 062716 (2015)

Chromosomal locus tracking with proper accounting of static and dynamic errors
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The mean-squared displacement (MSD) and velocity autocorrelation (VAC) of tracked single particles or
molecules are ubiquitous metrics for extracting parameters that describe the object’s motion, but they are both
corrupted by experimental errors that hinder the quantitative extraction of underlying parameters. For the simple
case of pure Brownian motion, the effects of localization error due to photon statistics (“static error”) and motion
blur due to finite exposure time (“dynamic error”) on the MSD and VAC are already routinely treated. However,
particles moving through complex environments such as cells, nuclei, or polymers often exhibit anomalous
diffusion, for which the effects of these errors are less often sufficiently treated. We present data from tracked
chromosomal loci in yeast that demonstrate the necessity of properly accounting for both static and dynamic
error in the context of an anomalous diffusion that is consistent with a fractional Brownian motion (FBM). We
compare these data to analytical forms of the expected values of the MSD and VAC for a general FBM in the
presence of these errors.
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I. INTRODUCTION

Camera-based particle tracking has been an important tool
for the study of biophysical systems and other condensed-
matter environments at the single-molecule and single-particle
level for decades. A particle to be tracked is most often
labeled with a fluorescent or scattering marker and imaged
with a wide-field microscope over time. The particle’s spatial
trajectory is thus recorded and further analysis can reveal
properties of both the tracer and the surrounding medium. In
biology this has been applied to the study of molecular motors
[1], motion in membranes [2–5], and motion throughout the
three-dimensional (3D) volume of the cytoplasm [6–9] or
nucleoplasm [10–12], to name a few instances.

The most ubiquitous statistical measure used to analyze
single-particle tracking data is the mean-squared displacement
(MSD). Arguably the next most important metric is the veloc-
ity autocorrelation (VAC) function, and more sophisticated
measures such as those based on maximum likelihood [13]
or covariance-based estimation [14] are closely related to the
VAC. In a real experiment, one cannot directly measure the
true MSD or VAC but rather must estimate them, either by
calculating time averages or ensemble averages, or combining
the two if the underlying process is ergodic. In addition
to being susceptible to sampling statistics from finite track
lengths and numbers [15,16], the estimated MSD and VAC
also depend on two major sources of error: (1) zero-mean
Gaussian localization error due to photon statistics (referred
to as “static error”), and (2) motion blur due to finite exposure
time (referred to as “dynamic error”). Static and dynamic
errors are always present to some degree, and proper care
must be taken to account for them when analyzing any MSD
or VAC. The equations that take these errors into account are
well known for the special case of pure Brownian motion,
but less so for the more experimentally relevant case of
anomalous diffusion. We present derived equations that take
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both of these errors into account for both the MSD and
VAC of an anomalously diffusing object obeying a fractional
Brownian motion (FBM). In fact, the equation for such an
MSD was derived a decade ago by Savin and Doyle [17], yet
the particle tracking community has not widely used it when
appropriate. Biologically oriented studies often neglect both
sources of error, while more quantitative studies sometimes
consider the static error but not the dynamic error. We show
that the dynamic error must also be considered for anomalous
diffusion, especially when the static error has been carefully
removed or mitigated as the leading literature advises [18–20].
The expression presented here for the VAC in the presence of
errors represents a generalization of the corresponding MSD.
We demonstrate the utility of these expressions by application
to experimental data of tracked chromosomal loci in budding
yeast nuclei, as well as to simulated data. Importantly, when
the same object is tracked in two emission color channels
with different detected photon numbers, we show directly that
the correct parameters of motion can be extracted from either
measurement when the proper expressions are used.

II. RESULTS AND DISCUSSION

A. Mean-squared displacement (MSD)

For the simplest case of pure Brownian motion, the MSD,
denoted here by the function M(·), scales linearly with time
lag; i.e., M(n) = 2DntE , where D is the diffusion coefficient,
tE is the exposure time of the camera acquisition, and n is
the number of frames spanning the lag. Throughout this paper
we also refer to the time lag as δ = ntE , and so the MSD in
this case is M(δ) = 2Dδ. This expression is valid for tracking
in one dimension (1D), though extension to 3D is trivially
achieved by adding the MSDs of three 1D processes together.
We assume here and throughout this paper that the sample
is illuminated continuously and that there is no time elapsed
between recorded frames. This situation is common in most
experimental situations, though extension to stroboscopic or
time-lapse imaging is straightforward, as shown previously
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for the case of pure Brownian motion [13,21,22]. The effect
of static and dynamic errors on the expected value of the
estimated 1D MSD for the special case of pure Brownian
motion is to produce a constant offset of the linear dependence
according to Eq. (1) [13,17,21,22]:

E[M̂(n)] = 2DntE + 2σ 2 − 2

3
DtE, (1)

where the E[·] refers to the expectation value and the hat
denotes the estimated quantity. We make a point to indicate the
expected value explicitly, as real data will show fluctuations
about this value due to the aforementioned finite sampling
statistics, which we discuss in more depth below. The form of
Eq. (1) has been known for some time, though recent papers
have pointed out that the σ that appears in Eq. (1) is not the
same as the localization error of an immobile particle σ0, but
instead includes an additional correction due to the spreading
of photons over a greater area of the detector for a moving
particle [22,23]. We discuss this in more detail in the next
section. While Eq. (1) holds for a particle undergoing pure
Brownian motion, it does not apply for the more general case
of anomalous diffusion, despite the importance of anomalous
diffusion in biology.

Anomalous diffusion refers to motion with an MSD of the
form M(n) = 2D∗(ntE)α , where D∗ is an effective diffusion
coefficient and α�(0,2]. Motion with α > 1 is referred to
as “superdiffusive,” while α < 1 specifies motion which is
“subdiffusive.” Subdiffusion is often observed in biology and
other complex systems, and a number of underlying models
have been invoked to explain various subdiffusive phenomena,
including most commonly obstructed diffusion [24], continu-
ous time random walk [25], and fractional Brownian motion
(FBM) [26]. While some or all of these models and others can
be consistent with a given MSD scaling, a number of tests have
been developed to distinguish among them [16,27–35]. For a
thorough review see [36].

Certain previous studies have addressed some of the effects
of static or dynamic errors on the MSD of subdiffusive
processes. Static error is known to cause the log-log MSD
curve (which otherwise has constant slope α) to bend upward
at early times, causing potential underestimation of α [18–20].
It is easy to show that the static error presents itself as an
additive offset of 2σ 2 as in the pure Brownian case, and so the
static error is sometimes accounted for by assuming an MSD
of the form

E[M̂(n)] = 2D∗(ntE)α + 2σ 2. (2)

Despite this fact, it is still very common in the literature
to either ignore the offset due to this error or dismiss it as
irrelevant based on a somewhat qualitative assessment. When
more thoroughly addressed, an experimenter typically either
fits the computed MSD with Eq. (2) directly by allowing for
a positive constant offset, or they estimate σ independently
and subtract the appropriate term from the computed MSD.
However, there are some cases in which these treatments are
insufficient as the dynamic error is also significant.

Our experimental application to chromosomal tracking in
yeast provides such a case. We tracked copies of a single
chromosomal locus (POA1) just downstream of the GAL
locus of genes (GAL 7, 10, and 1) [11,37] in live G1 phase

Saccharomyces cerevisiae cells using the LacO/LacI-GFP
(green fluorescent protein) labeling system [38] in a wide-field
fluorescence microscope. This strain was previously used as a
control for a study on velocity cross-correlations of distinct loci
on yeast chromosomes [39]. In that study we were surprised
to find that α was in the range 0.6–0.75 for all strains we
measured, in contrast to the previously reported value for GAL
in yeast of ∼0.45 [11]. We determined that the most likely
explanation for this discrepancy was the effects of localization
errors; here we explore the effects of static and dynamic errors
in the control strain in much greater detail. We collected data
from 120 tracks in as many cells, consisting of, on average,
338 ± 94 frames (± means standard deviation) taken with
tE = 100 ms. Data were acquired using the double-helix point
spread function (DHPSF) microscope, which allows for 3D
wide-field tracking by encoding the z position into the angle
made between two closely spaced lobes of light [40,41] and a
reference line. Three-dimensional positions were extracted via
a least-squares fit to the sum of two 2D-Gaussian functions.
Additional details regarding cell preparation, microscopy, and
image analysis are given in [39]. A 2D projection from an
example track is shown in the inset of Fig. 1(a).

Images were recorded on a microscope consisting of two
color channels (green and red) split by a dichroic mirror,
with DHPSF-encoding transmissive phase masks located at
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FIG. 1. (Color online) MSD for chromosomal loci in yeast. All
error bars are S.E.M. from 100 bootstrapped samples of the ensemble.
Each panel depicts data from the green channel MSD (green or
light gray), red channel MSD (red or darker gray), and “cross-MSD”
(black). (a) Dots are data points computed from experimental data.
Solid lines are fits to Eq. (8). (Inset) Example image of 2D-projected
locus track in white light image of a yeast cell. This example is from
a diploid, but all cells analyzed here were haploids. Scale bar: 1 μm.
(b) Naı̈ve estimates of α from fitting to a straight line in log-log space.
Each point corresponds to fitting all points from n = 1 through the
marked time point. (c) Estimates of α taking only static error into
account. Only estimates corresponding to five points or more are
shown since the nonlinearity requires several points to be reliably fit
(see Fig. S11 [46] and discussion in main text). (d) Estimates of α

taking both static and dynamic error into account; plotted points start
at n = 5 for the same reason as in (c).
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the Fourier plane in both paths [42]. Because the labeling
system typically resulted in ∼20–30 GFP labels bound to the
locus at a time, the combination of the sum of many emitters
and the red-extending tail of the GFP emission spectrum
allowed for tracking of the same particle simultaneously
in both color channels, albeit with significantly disparate
localization errors. We stress that there is no difference
between the particles’ motion in the red and green channels
since we simultaneously tracked the same 120 particles in
each channel. Yet the disparate localization errors cause the
computed ensemble-mean time-averaged MSDs to appear very
differently [Fig. 1(a)], only beginning to coincide at large n.
Because the particles appeared significantly dimmer in the
red channel, the static error was larger in this channel and
thus the MSD curves upward with a significantly shallower
slope in log-log space. Of course the green channel must
also suffer from nonzero static error, and yet the green MSD
appears to be relatively constant in its slope. Does this mean
that the static error is small enough to be ignored in the
green channel? On the contrary, we argue that the apparently
constant slope is a lucky accident since our experimental
configuration allows us to effectively remove the static error
in the following way: because the random photons hitting the
detector in either channel are independent of one another, the
random static errors in each channel are also independent of
one another. Thus we can compute the MSD in a third way
by multiplying each displacement recorded in the red channel
by the simultaneously determined displacement in the green
channel and then averaging. The result is the “cross-MSD”
shown in black in Fig. 1(a). With the static error now
effectively removed (only leaving a small residual error from
the registration of the two channels [42,43]) we see that the
MSD curve does not assume a perfectly straight line as Eq. (2)
would suggest. Instead we see that the cross-MSD bends
downward at early times—a consequence of the still-present
dynamic error.

An accurate model for the MSD should produce estimates
of α which coincide for all three computed MSDs. The most
naı̈ve estimation is shown in Fig. 1(b). Here we fit each MSD
in log-log space to a straight line, as one would expect in the
absence of errors. We include a variable number of points in
the fit, and show the estimates over a range of time scales.
Unsurprisingly, the red (top, gray), green (middle, light gray),
and black plots in Fig. 1(b) do not coincide at all, as the red
estimates starts from far below around 0.3, the black starts
from significantly above near 1.0, and the green remains in
the range 0.6–0.8, sloping slightly downward at early times.
If we instead fit the log-log MSDs by allowing for a positive
offset from static error according to Eq. (2) we produce the
estimates plotted in Fig. 1(c). The red estimation changes
dramatically as we would expect. While the green and red
estimates now coincide after ∼2 s, there is still a small but
significant discrepancy at earlier times. Most notably, the black
estimates from the cross-MSD are still significantly inflated
relative to the others. It is clear that Eq. (2) is insufficient to
make our experimental results self-consistent. Thus we seek
an extension of Eq. (2) that properly incorporates the effects
of dynamic error for the case of anomalous diffusion.

The manifestation of dynamic error in the MSD of an
anomalous diffusion is more elusive in the literature than that

of static error. It has been described previously in the specific
contexts of “hop” and confined diffusion [3,44,45]. We instead
sought a generalization of the pure Brownian motion case
given in Eq. (1) valid for any FBM with arbitrary α. The full
derivation is given in the Supplemental Material [46] and here
we sketch the derivation and present the result. As it turns out,
the resulting equation for the MSD was derived a different way
and stated a decade ago in [17], but application to appropriate
cases in the literature is lacking. The full, overlooked equation
is required to help resolve standing discrepancies in the
tracking literature and so we here restate the result and apply
it to tracked chromosomal loci to demonstrate its importance.

FBM is the self-similar process that has Gaussian, sta-
tionary increments [26]. Denoting the position of a particle
undergoing FBM at time t as x(t), such a particle exhibits
a characteristic autocovariance function between positions at
two times [47]:

E[x(t1)x(t2)] = D∗(tα1 + tα2 − |t1 − t2|α
)
. (3)

One can easily show that Eq. (3) implies that pairs of
increments exhibit negative correlation when α < 1 (resulting
in subdiffusion), no correlation when α = 1 (resulting in
pure Brownian motion), positive correlation when α > 1
(resulting in superdiffusion), and perfect correlation when
α = 2 (resulting in constant-velocity motion). Thus, pure
Brownian motion and ballistic or directed motion are special
cases of FBM. We chose to work specifically within the
framework of FBM since our chromosomal loci demonstrated
the characteristic Gaussian increments and velocity corre-
lations (vide infra) consistent with this motion [39]. Also,
FBM and the closely related fractional Langevin motion have
been implicated in a number of other previous instances of
particles and biopolymers traversing the cellular cytoplasm
and nucleoplasm, including mRNA and DNA loci in E. coli
[28,35,39,48], lipid granules in fission yeast (at least at long
times [49]), and telomeres in mammalian cells [12,31].

Using Eq. (3) and an extension of the formalism used by
Michalet [22] to derive the variance of position estimation
of a Brownian diffuser, we derived the FBM analog of
Eq. (1). Briefly, we assume that a particle moving in 1D
undergoes FBM with specified D∗ and α, and that within
an imaging frame the particle emits a random number of
photons p ∼ Poisson(p̄). The ith photon during the kth frame
is recorded at a position that is the sum of the position of the
particle at the time of emission, x

(k)
i , and a random variable

ξ
(k)
i , with E(ξ (k)

i ) = 0 and var(ξ (k)
i ) = s2

0 , that accounts for
static error. Here s0 is set by the width of the point spread
function (PSF) of the microscope. The estimated position of
the particle during the kth frame, x̂k = ∑p

i=1 [x(k)
i + ξ

(k)
i ]/p,

is the centroid position of the recorded photons during that
frame. While this formalism does not explicitly account
for background, pixelation of the image, alternative position
estimators, or extension to more spatial dimensions, we show
below that simple modifications to the final result are sufficient
to do so.

The derivation then proceeds by finding an expression for
E[M̂(n)] = E[(x̂k+n − x̂k)2]. Naturally, the final result will
not depend on k since FBM is a stationary increment process
[12,26,31,50]. As shown in the Supplemental Material [46],
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this approach yields the analytical expression

E[M̂(δ)] = 2D∗

(α + 2)(α + 1)t2
E

× [(δ + tE)α+2 + (δ − tE)α+2 − 2δα+2]

− 4D∗tαE
(α + 2)(α + 1)

+ 2

p̄

[
s2

0 + 2D∗tαE
(α + 2)(α + 1)

]
.

(4)

This form is consistent with Eq. (30) presented in [17],
which in fact holds for any motion obeying the appropriate
power-law MSD (i.e., not just FBM).

Examination of Eq. (4) gives rise to a number of interesting
observations. For one, an algebraic check confirms the key
limit: for D = D∗ and α = 1 (thus specifying pure Brownian
motion) we indeed recover Eq. (1) if we allow the equivalence
in Eq. (5):

σ 2 = σ 2
0 + DtE

3p̄
(5)

where σ 2
0 = s2

0/p̄ is the true static error of an unmoving
particle. The term that is proportional to D in Eq. (5) results
from the fact that the effective PSF of a moving object is
effectively larger than that of a stationary one. This term
was found previously via a different derivation [23] and
typically only results in a small inflation of σ . This term
settles a standing discrepancy in the literature in that a similar
expression was also previously reported in [22], but mistakenly
without the factor of 3 in the denominator.

Inspection of Eq. (4) shows that the generalized version of
the static error term given by Eq. (5) is now given by Eq. (6):

σ 2 = σ 2
0 + 2D∗tαE

(α + 2)(α + 1)p̄
. (6)

We can thus state the relative increase of the static
localization error due to the particle motion as

σ

σ0
=

√
1 + 2D∗tαE

(α + 1)(α + 2)s2
0

. (7)

Compared with the α = 1 case, a significant increase of
σ/σ0 can be expected for lower α for a given D∗ and tE .
This is shown in Fig. S1 [46] for various parameters. As an
example, for D∗ = 0.2 μm2/sα , tE = 10 ms, s0 = 0.214 μm,
and α = 1, Eq. (7) yields a ratio of 1.007, i.e., an increase
of less than 1%. However, for the same parameters except
α = 0.4, the increase is ∼19%, and so is significant. Thus,
when one performs an independent measure of σ0 in order to
subtract the positive offset from the MSD, the entire positive
offset may not be fully removed, particularly when α is low.
In any case we can rewrite Eq. (4) as

E[M̂(n)] = 2D∗tαE
(α+2)(α+1)

[(n+1)α+2 + (n − 1)α+2 − 2nα+2]

− 4D∗tαE
(α+2)(α+1)

+2σ 2, (8)

where we have also factored out tα+2
E from the bracketed

portion of the first term in order to write the expression in
terms of n rather than δ. By fitting to Eq. (8) and allowing

σ to be a positive free parameter we automatically take into
account any dilation of the form in Eq. (6). This approach
also automatically accounts for the fact that the exact form of
Eq. (6) depends on the choice of estimator (see below).

The effects of the dynamic error in the pure Brownian
case [Eq. (1)] are captured in the term −2DtE/3. The
generalized version of this term that appears in Eq. (8) is
−4D∗tαE/[(α + 2)(α + 1)]. In Eq. (8) there exists still another
consequence of the dynamic error in that the first bracketed
term contains powers of n beyond just nα . At first glance this
seems somewhat peculiar, but expansion of the relevant term
into an infinite sum gives further insight:

[(n + 1)α+2 + (n − 1)α+2 − 2nα+2]

(α + 2)(α + 1)

=
∞∑

k=0

(
α

k

)
nα−k

[
1 + (−1)k

(k + 2)(k + 1)

]
. (9)

Here the factor (αk ) is a generalized binomial coefficient and
is formally defined via a ratio of gamma functions:(

α

k

)
= �(α + 1)

�(k + 1)�(α − k + 1)
= �(α + 1)

k!�(α − k + 1)
, (10)

for integer k and possible noninteger α.
Evidently the leading nonzero term in Eq. (9) is actually

still nα . We expand the infinite sum to include only the first
few nonzero terms:

[(n + 1)α+2 + (n − 1)α+2 − 2nα+2]

(α + 2)(α + 1)

≈ nα + α(α − 1)

12
nα−2 + α(α − 1)(α − 2)(α − 3)

360
nα−4.

(11)

The terms beyond nα decay rapidly. In some special cases,
however, they can be somewhat significant. By inspection,
the extra terms are most significant when n = 1, i.e., at the
first point of the MSD. For simplicity consider this case when
σ = 0 (or more realistically when σ has been measured and
the corresponding offset has been removed). Figure S2 [46]
shows the importance of including the extra terms as a function
of α at this first point of the MSD relative to the case of
just including the negative constant offset. Note that when
α = 1 Eq. (9) evaluates exactly to the linear term n—the
cubic, square, and constant terms exactly cancel one another.
When the displacements are uncorrelated the additional power
terms disappear, and so equivalently the appearance of these
terms is a direct consequence of the presence of correlations
in the motion. For subdiffusive α, the effect is small, as it only
affects the MSD at this point by ∼5% − 10% below α = 0.6.
For superdiffusive α, however, the effect is indeed significant
as it approaches 20% as α → 2, so while the extra terms
in Eq. (9) are mathematically interesting, they likely do not
have a very significant effect on fitting of the MSD except in
some superdiffusive cases. We will show in the next section,
however, that these terms can indeed make a difference when
considering the VAC for subdiffusive cases.

With the theory paved we now return to our chromosomal
locus tracking data. Fitting each of the three MSD curves in
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Fig. 1(a) using Eq. (8) and allowing three free parameters (α,
D∗, and σ ) gives the results shown in Fig. 1(d). Clearly now the
three cases coincide quite closely with one another on all time
spans considered. We note that there might be some relatively
small, nonconstant temporal dependence of the estimated α

parameter. This may reflect a real but modest amount of
nonstationarity over the time scale considered. This may also
be a manifestation of heterogeneity within the ensemble, as
this appears consistent with the effect reported in [19]. To give
an indication of the heterogeneity within our sample, Fig. S3(a)
[46] shows the individual time-averaged cross-MSDs of each
of the 120 experimentally obtained trajectories. To the same
end, Fig. S3(b) [46] gives the histogram of estimated α̂cross val-
ues as determined from the individual trajectories. The mean of
the distribution is 0.74 and the standard deviation is 0.26. The
width of the distribution of estimated α is indeed comparable to
those explored in [19]. We note, however, that this finite width
of the distribution is a function of the finite track lengths, static
error, and dynamic error, in addition to the true underlying
heterogeneity. A thorough treatment of heterogeneity in the
presence of these factors is saved for future work.

Estimating α from the ensemble mean of the MSDs
gives the same value as taking the mean of the individual
estimates. In particular, the results of fitting the full 10 s
of the ensemble-mean curves show remarkable agreement
with the center of the distribution of individual estimates and
with one another: α̂green = 0.74 ± 0.03, α̂red = 0.74 ± 0.04,
and α̂cross = 0.74 ± 0.03 (error is standard error of the mean
[S. E. M.] as determined from 100 bootstrapped samples of
the individual tracks). To the precision of two significant
figures, all three fits gave D̂∗ = (1.7 ± 0.1) × 10−3μm2/sα .
The estimated 3D localization precisions for the three cases
are σ̂green = 26 ± 2 nm, σ̂red = 59 ± 2 nm, and σ̂cross = 13 ±
2 nm. Note that the 3D localization precision is related to the

x, y, and z precisions via σ =
√
σ 2

x + σ 2
y + σ 2

z . The residual
precision for the cross-MSD case is on the order of what we
expect with our registration method [39,42]. Thus we directly
demonstrate that experimental measurements with different
degrees of error produce the same estimates for the underlying
parameters of motion when the proper expression is used.

To further compare Eq. (8) to data over a range of motion
and imaging parameters, we produced simulated FBM tracks
in 1D, 2D, and 3D using the method of circulant embedding,
with custom MATLAB code building upon the code provided
in [51]. Tracks were simulated with tE = 10 ms and various
mean photon numbers per frame p̄. We generated the position
of each recorded photon by adding the position of the particle
at the (random) time of detection to a random number with PDF
proportional to a simulated PSF. Photon positions within each
frame were then grouped to produce position estimates. In 1D
we estimated the positions via a simple centroid estimator such
that Eq. (6) applies exactly as written. Figure S4 [46] shows
the time-ensemble-averaged MSDs for this 1D simulated
data with parameters α ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 2.0}, D∗ ∈
{10−3,10−2,10−1,100,101} μm2/sα , and p̄ ∈ {50,500,1500}.
Figure S4 [46] reflects results from 100 tracks each consisting
of 100 frames; the plotted points represent the ensemble
mean of the time-averaged MSDs. We see excellent agreement
between our simulations and the theoretical prediction in all

cases, including those in which the errorless prediction either
grossly over- or underestimates the curve. While the cases in
which static error dominates can be matched by Eq. (2), the
dynamic error must also be accounted for in order to match in
other cases.

We compared these results to 2D simulations by producing
two independent FBMs for x and y for each track via the
method described above; independence between the x and
y increments provides a sufficient but not necessary way to
produce the relevant MSD statistics. Again we simulated 100
tracks each consisting of 100 frames. In each frame, photons
(p̄ = 500) were binned into pixels of width a = 160 nm. A
Poisson-distributed background with specified mean b was
added to each pixel before fitting the resulting image with a
2D Gaussian function in order to estimate particle position.
In each frame the estimated position was constrained to
a region of interest (ROI) around the true position of the
particle. In a real experiment this would correspond to cold
starting the fitting near an obvious localization, e.g., by hand
as in our chromosomal tracking experiments. The ROI then
follows the particle by resetting each frame centered on
the localization from the previous frame. Example simulated
images are shown in Fig. 2(a) for α = 0.6, b = 0, and D∗ ∈
{10−3,10−2,10−1,100,101} μm2/sα . Note that the effective
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FIG. 2. (Color online) (a) Example simulated images of particle
diffusing within a single frame with α = 0.6, b = 0, and tE = 10 ms.
From left to right D∗ is 10−3,10−2,10−1,100, and 101. Pixel size =
160 nm. (b) Resulting MSDs from 2D simulation of FBM for various
α (top to bottom rows: α = 0.2,0.4,0.6) and b (left to right columns
b = 0,50,100), with p̄ = 500 and (from bottom to top in each panel:)
D− = 10−3 (blue), 10−2 (cyan), 10−1 (green), 100 (yellow), and 101

(red) μm2/sα . Dots are simulated data, solid lines are theoretical
predictions, and dashed lines are the predictions in the absence of
errors.
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size of the PSF increases with increasing D∗, though this
only becomes noticeable when the increase is sufficiently
larger than the diffraction limit. In fact, we can quantify this
PSF broadening by multiplying s0 by the right-hand side of
Eq. (7) to give the dilated PSF width s. To model σ we then
substituted this expression for s into a known expression for
2D localization error which takes background and pixelation
into account. Such a model was proposed by Thompson et al.
[52] and later made more accurate [53]:

σ 2 = 16(s2 + a2/12)

9p̄
+ 8πb(s2 + a2/12)

2

a2p̄2
. (12)

This treatment of σ is analogous to that done in [23]
for the case of pure Brownian motion. Note also that we
must multiply the rest of Eq. (8) by a factor of 2 since the
simulation at hand was done in 2D. The dots in Fig. 2(b)
are compared to the solid lines generated by Eq. (8), while
the dashed lines are the straight lines of slope α expected in
the absence of errors. Additional data for α ∈ {0.4, 0.8, 2.0}
are shown in Fig. S5 [46]. We omit the case of α = 0.2,
D∗ = 10 because in particular when b > 0, the images for
this extreme subdiffusive motion would be unusable anyway
since the signal is unidentifiable amid the noise (see Fig. S5,
for example). Figure 2(b) clearly shows that we can accurately
match the estimated MSD in 2D over a range of conditions,
with pixelation and background, and using the more common
Gaussian position estimator.

Finally, to compare Eq. (8) to 3D data over a range of
parameters we extended our FBM simulations using a simu-
lated DHPSF (Figs. S7 and S8 [46]). As in our experimental
demonstration, we fit each simulated image to a sum of two
2D-Gaussian functions in order to estimate positions. Though
we do not have a closed-form expression for σ in this case,
with knowledge of the underlying true simulated motion we
could compute it directly for the sake of comparison to Eq. (8).

Admittedly, the chosen track length and number of tracks
considered in our simulations are somewhat arbitrary. As
mentioned in the Introduction and known previously [15,16],
these sources of finite statistics also cause errors in the
computed MSD. For this reason we stress that Eq. (8) only
represents the expected value (i.e., mean) of the MSD of an
ensemble of finite-length trajectories. The full distribution will
have a finite width that depends on track length. This fact is
not a revelation unique to Eq. (8) or FBM. Indeed, fitting an
individual pure Brownian track with Eq. (1) should be treated
with similar care. Previous work has painstakingly detailed
how many points should be ideally fit for a pure Brownian
track of a given length, exposure time, and localization error
[22], and derived the higher moments of the distribution of
the estimated MSD under such circumstances. We reserve the
derivation of the full distribution of the MSD of FBM for future
work, as it becomes immediately much more involved to even
derive the next moment of the distribution.

To partially explore the effects of finite track length, we
shortened and reanalyzed the MSDs of the 2D simulated
tracks described above. Figures S9 and S10 [46] show the full
ensemble of 100 time-averaged MSDs, along with the mean
of the ensemble compared to the curve expected from Eq. (8),
for trajectory lengths of 25, 50, and 100 frames. These depict

the particular case of tE = 10 ms, D∗ = 0.1 μm2/sα , p̄ = 500,
and b = 50; obviously this is only a slice within a massive
parameter space. Figure S9 plots the data in linear space and
Fig. S10 [46] in log-log space. While experimental constraints
such as finite depth of focus or fluorophore bleaching can
realistically limit trajectory lengths, it should always be
possible to record a sufficiently high number of tracks, and
so we did not explore the effects of the latter here further. By
inspection, the ensemble mean in each case closely follows
Eq. (8) except for a fraction of points at the largest lags, since
there are fewer data to average at these lags. To be more
to the point, we assessed the effects of shortened trajectory
length by fitting variable numbers of points of the MSD to
Eq. (8) for these simulated data. The results are shown in
Fig. S11 and point to a very heuristically determined rule
of thumb that fitting the first third of the points available
gives reasonable accuracy and precision (<∼0.1). Fitting too
many points overvalues poorly averaged points. Fitting too
few points makes it more difficult to detect nonlinear behavior
since the limiting case of two points will always be consistent
with α = 1 and some offset.

As mentioned, the effectiveness of this rule of thumb clearly
will depend on the parameters of motion and imaging. Thus
we fit the first third of the MSD for various D∗ and b values
and enumerated the resulting bias and error on estimated α.
Figure S12 [46] shows the results from fitting to Eq. (8)
with free parameters α, D∗, and σ . Estimation errors are
still understandably best (<0.1) for the longest trajectory
lengths, and for the highest ratios of D∗/σ . Figure S13 shows
comparable errors when σ is measured and 2σ 2 is subtracted
from the MSD before fitting with only two free parameters.

B. Velocity autocorrelation (VAC)

Next to the MSD, the VAC is perhaps the second-most
common statistical metric employed in analyzing single-
particle tracking data. In an experiment one can only compute
the mean velocity between recorded frames according to (in
1D)

v̂
(n)
k = x̂k+n − x̂k

ntE
. (13)

Thus the expected value of the measured VAC in one
dimension is defined as

E
[
Ĉ(n)

v (m)
] = E[(x̂k+n − x̂k)(x̂k+n+m − x̂k+m)]

(ntE)2 . (14)

Note the presence of two time indices n and m, or
equivalently, two time variables δ = ntE (time scale for
defining velocity) and τ = mtE (lag in VAC). Again, for a
stationary increment process such as FBM the expectation
does not depend on the index k. Note also that when m = 0
the VAC is proportional to the MSD:

E
[
Ĉ(n)

v (m = 0)
] = E[M̂(n)]

(ntE)2 . (15)

Hence the ensuing expression for the VAC of a particle
undergoing FBM in the presence of both static and dynamic
errors is a generalization of the previously described MSD.
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FIG. 3. (Color online) Computed scaled VACs across various time scales for chromosomal locus data from the green channel [(a) and (d)],
the red channel [(b) and (e)], and the cross-correlated data [(c) and (f)]). Bottom row depicts the same curves from the first 2 s as in the top row,
zoomed in and with a different color scale. The color scales for the top and bottom rows are shown on the right. For reference in gray scale
version, larger δ corresponds to a curve with negative peak further to the right.

It is straightforward to show that the defining covariance
function of FBM in Eq. (3) implies the following VAC in the
absence of errors:

C(n)
v (m) = D∗tαE

(ntE)2 [(n + m)α − 2mα + |n − m|α]. (16)

For m � n, this function is negative for α < 1, positive
for α>1, and zero when α = 1. The characteristic negative
signature is a key tool in distinguishing FBM from other modes
of subdiffusion [ [28,54,55]. Most often the computed VAC is
scaled by Cv

(n)(m = 0) so that values at various n can be
directly compared. For FBM the scaled VAC is

C(n)
v (m)

C
(n)
v (m = 0)

= 1

2

[(
1 + m

n

)α

− 2
(m

n

)α

+
∣∣∣1 − m

n

∣∣∣α]
.

(17)

The scaled VACs computed from our chromosomal loci
data are plotted in Fig. 3, as determined in the green [Figs. 3(a)
and 3(d)] and red [Figs. 3(b) and 3(e)] channels. The cross-
correlation between the two channels is shown in Figs. 3(c)
and 3(f). The bottom row of Fig. 3 shows a closer view of the
first 2-s window depicted in the top row. The plotted values
are the averages of the scaled VACs in x, y, and z. We plot
and color code the VAC as computed for all n between 1 and
100. In all three cases we see negative values at each n. At
sufficiently large n the minima appear to become more-or-less
constant, as we would expect from Eq. (17) for all n. We fit
each VAC (i.e., each colored curve in each panel) to Eq. (17)
to again produce naı̈ve estimates of α. These results are shown
in Fig. 4(a). None of the cases agree well at early times, with
the cross-correlation at higher α than in the green channel, and

the red channel suggesting far lower α. At longer times the
cross-correlation and green channel agree but the red estimates
do not quite reach the others. Much as in the MSD case, our
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FIG. 4. (Color online) Analysis of VACs from chromosomal loci
data. All error bars are S.E.M. from 100 bootstrapped samples of
the ensemble. Each panel depicts data from the green channel VAC
(green or light gray), red channel VAC (red or darker gray), and
cross-correlation (black). (a) Estimates of α resulting from naı̈ve
fits of the VACs without accounting for static or dynamic error. (b)
Estimates of α resulting from taking static error into account, but not
dynamic error. (c) Estimates of α taking both static and dynamic error
into account. (d) Example computed and fit VACs for n = 1. Dots
with error bars are computed from data; solid lines are fits taking
static and dynamic error into account.
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goal is to extend Eq. (16) to properly account for static and
dynamic errors such that estimates of α coincide for the three
cases.

The effects of static error on the VAC have been charac-
terized previously [28]. Namely, this error results in constant
offsets at two particular points:

E
[
Ĉ(n)

v (m)
] = D∗tαE

(ntE)2 [(n + m)α − 2mα + |n − m|α]

+

⎧⎪⎨
⎪⎩

2σ 2

(ntE )2 , m = 0

− σ 2

(ntE )2 , m = n

0 else

. (18)

The main effect on the scaled VAC is an enhanced negative-
going peak at m = n which gradually decays for increasing n

[28]. We clearly see this type of behavior in the red channel as
depicted in Figs. 3(b) and 3(e). If we fit to Eq. (18) allowing for
σ 2 > 0 we obtain the estimates of α shown in Fig. 4(b). The
largest improvement is predictably in the red channel case, and
we see that the red and green channels now coincide well over
the full 10 s. However, the estimates from the cross-correlation
still do not agree with the others at times up to around 1 s. As
discussed in the MSD section, the cross-correlation data have
only a very small contribution from static error (due to finite
registration error) and so the dynamic error dominates. From
Fig. 3(f) we see that the effect on the VAC is opposite that of
large static error, as the negative-going peak becomes larger
in magnitude for increasing n, before it asymptotes to the
constant value predicted by Eq. (17). This positive offset of
the point at m = n has been noted in the case of pure Brownian
motion [13,14,56]. The most general form of Eq. (18) should
be able to match this behavior for an arbitrary FBM as well.

The derivation of the VAC of FBM in the presence of both
errors is presented in the Supplemental Material [46]. It follows
along the same lines as our MSD derivation and makes use of a
number of the mathematical relationships worked out therein.
To simplify our expressions let us define the function A(u)
according to Eq. (19):

A(u) ≡ (u + 1)α+2 + (u − 1)α+2 − 2uα+2. (19)

Note the relevance of Eq. (19) in the previous discussion
surrounding Eqs. (9)–(11). The value at the point m = 0 is of
course given by plugging Eq. (8) into Eq. (15). Making use of
the definition in Eq. (19),

E
[
Ĉ(n)

v (m = 0)
] = 1

(ntE)2

[
2D∗tαE(A(n) − 2)

(α + 2)(α + 1)
+ 2σ 2

]
.

(20)
The next special point to consider is when m = n. Here we

find

E
[
Ĉ(n)

v (m = n)
] = 1

(ntE)2

[
D∗tαE(A(2n)−2A(n)+2)

(α+2)(α+1)
− σ 2

]
.

(21)

Finally, when m 	= 0 and m 	= n we have

E
[
Ĉ(n)

v (m)
] = D∗tαE[A(n + m) − 2A(m) + A(|n − m|)]

(ntE)2(α + 2)(α + 1)
.

(22)

The importance of terms of the form in Eqs. (9) and (19) are
especially apparent in Eq. (22) since there are no additional
constant offsets in Eq. (22). In line with the discussion in
the MSD section, these terms are a direct consequence of the
correlations of the motion, a claim which is buttressed by the
appearance of analogous terms in [14] for a different form of
correlated motion. Taken together, Eqs. (20)–(22) completely
define the expected value of the VAC in the presence of
dynamic and static errors, and are consistent with previously
published equations applicable to pure Brownian motion
[13,14,56]. We fit the data presented in Fig. 3 to this function
[scaled by Eq. (20)] to yield the estimated values of α shown in
Fig. 4(c). With this complete expression we obtain excellent
coincidence of all three cases over the whole 10 s. These
estimates of α are in close agreement with those produced
from fitting the MSD alone as well. In Fig. 4(d) we show the
computed VACs for n = 1, along with the curves estimated
from Eqs. (20)–(22), and the cross-correlation behaves as
expected.

To further demonstrate the utility of Eqs. (20)–(22) over a
range of parameters, we computed the scaled VAC for the same
2D simulated data analyzed in the MSD section. Different
behaviors are shown in Fig. 5 for the case of tE = 10 ms,
p̄ = 500 photons, D∗ = 0.1μm2/sα , and various α and b. This
figure shows that the VACs predicted from Eqs. (20)–(22)
match the simulated data closely, particularly in cases in which
the naı̈ve prediction from Eq. (17) fails due to large static
error (e.g., α = 1 and b = 100), or more uniquely due to large
dynamic error (e.g., α = 0.2 and b = 0).

As a final example of the utility of Eqs. (20)–(22),
we consider simulated 2D data for which we mimic the
independent measurement and removal of static error before
analyzing the VAC for the special case n = 1. While for the
MSD setting n = 1 corresponds to a single point which is
essentially useless to analyze on its own, for the VAC this
corresponds to a full curve. It is not uncommon to subject
this curve to analysis [14,48] since it represents the VAC
with the most statistics and at the shortest time scale of the
measurement. But this also corresponds to the VAC that is
most affected by errors and so independent measurement and
removal of the static error may be especially appropriate. For
this set of simulations we sampled α between 0.1 and 1.0 at
intervals of 0.1; D∗ = 0.01μm2/sα , tE = 10 ms, p̄ = 1000,
and b = 0. Again the sample consisted of 100 tracks of 100
frames each. According to Eq. (7), the ratio σ/σ0 is less
than 1.06 for α � 0.1 and so a measurement of σ0 reflects
the effective static error within reasonable accuracy. Fitting
simulated images of a static emitter with the above prescribed
photon statistics gave σ0 = 9 nm in both x and y. We then
computed the ensemble-mean time-averaged VAC for each
α and subtracted the constant offsets due to static error at
the points m = 0 and m = n = 1. We fit the scaled VAC and
estimated α in three different ways, each treating the dynamic
error at different levels of sophistication. Figure 6(a) shows
the computed and estimated VACs for the case α = 0.2. The
point m = 0 is not plotted since by definition each scaled VAC
is trivially equal to 1 here. The gold dashed line corresponds to
the fit to Eq. (17), which ignores dynamic error altogether. This
fit is highly inaccurate, indicating that the dynamic error cannot
be ignored. The magenta dashed-dotted line corresponds
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FIG. 5. (Color online) Scaled VAC from simulated 2D data for various n, b, and α. Here tE = 10 ms, p̄ = 500 photons, D∗ = 0.1μm2/sα .
Each black rectangle corresponds to a different b (from left to right: 0, 50, 100). Each row corresponds to a particular α (from top to bottom 0.2,
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account. The right panel shows comparison of the same data to the VAC in the presence of errors described in Eqs. (20)–(22). For reference in
gray scale version, larger n corresponds to a curve with negative peak further to the right.

to the fit with an intermediate treatment of dynamic error.
Namely, the correct constant offset is included at m = 0 and
m = n, but A(u) is replaced with (α + 2)(α + 1)uα in each of
Eqs. (20)–(22). This corresponds to the previous discussion of
including powers of n beyond nα in Eqs. (8)–(11) for the MSD,
except for the VAC it is evidently more important. Figure 6(a)
shows that this fit is inaccurate for the most important early
time points. Finally, the cyan solid line corresponds to the
complete treatment of errors consistent with Eqs. (20)–(22),
which matches the simulated data accurately. For each of the
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FIG. 6. (Color online) Illustrative example of n = 1 VAC anal-
ysis of 2D simulated data for D∗ = 0.01μm2/sα , tE = 10 ms,
p̄ = 1000, and b = 0. The ensemble consisted of 100 tracks of length
100 frames each. Offsets due to static error have been removed by
first estimating σ0 for the specified photon statistics. Error bars reflect
the S.E.M. from 100 bootstrapped samples of the ensemble. In both
panels the gold dashed line corresponds to the VAC without inclusion
of dynamic error, the magenta dashed-dotted line corresponds to the
intermediate treatment of dynamic error as described in the text, and
the cyan solid line corresponds to the full treatment of dynamic error.
(a) Example computed VAC for α = 0.2 (black dots and error bars)
and the corresponding predicted curves for each treatment of dynamic
error. The point at m = 1 is not plotted for the sake of scaling the
figure and since each scaled VAC is equal to 1 here by definition. (b)
Bias in the estimate of α for various α.

α values considered in this simulation, Fig. 6(b) shows the
bias in its estimated value for the three fits. Unsurprisingly, the
treatment that ignores dynamic error completely gives very
large biases. More subtle yet still significant are the biases
resulting from the fit of intermediate sophistication—for low
α we see that even this can lead to biases greater than 0.1.

III. CONCLUSIONS

By thoroughly analyzing data from tracked chromosomal
loci in live yeast we found that both static and dynamic errors
must be properly accounted for when considering anomalous
diffusion. Tracking the same particles in two channels with
different static error was shown to be particularly useful in
demonstrating the need for the full analysis. We thus showed
that when the static error has been effectively mitigated, one
must still include the effects of dynamic error in order to
infer the correct parameters of motion. For the MSD, this
means that the complete expression in Eq. (8) should be
applied. For analysis of the VAC we derived Eqs. (20)–(22).
We note that recently proposed analytical methods based on
maximum likelihood [13] and covariance-based estimation
[14] are directly related to the VAC, and so versions of
Eqs. (20)–(22) will be necessary to properly generalize these
approaches beyond pure Brownian motion.

The expected values of MSD and VAC reported here are
clearly useful, as they compare well to our experimental data.
Future work should extend these results to derive the full
distributions of the ensemble, which also depend on sampling
statistics. To this end it is simple to set up the derivation of
higher moments, but it quickly becomes difficult to maintain
analytical tractability. Future work should also include non-
stationary and nonergodic effects, for instance, due to confine-
ment or underdamped fractional Langevin behavior [57].

The equations presented were derived assuming FBM and
its defining covariance function, Eq. (3). This framework is
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appropriate for our purposes since our chromosomal loci data
displayed the characteristic VAC of the form in Eq. (16).
The latter fact certainly distinguishes the source of anomaly
from confined diffusion or continuous time random walk,
as shown in previous work [28,54,55]. The identification of
FBM in our data is also consistent with previous tracking
studies of chromosomal loci in other organisms [12,31,48].
We note that previous work suggests that obstructed diffusion
can also lead to negative signatures in the VAC, and that
the non-Gaussianity of the corresponding increments can be
difficult to detect [55,58]. However, our data not only display
negative signatures in the VAC, but fit well to the specific
form of Eq. (16) consistent with FBM. If another source of
anomaly happens to produce the correlations of Eq. (16), then
our derived Eqs. (20)–(22) still hold, much in the same way
that Eq. (8) holds for any motion of the correct power-law
MSD scaling [17].

IV. METHODS FOR EXPERIMENTAL DATA ANALYSIS

Details on the strain construction and growth, microscopy,
and image analysis can be found in [39]. MSDs and VACs
were produced by calculating the time-averaged version for
each individual trajectory. Then the results from individual
trajectories were averaged together before any fitting. For our
experimental data we used the MATLAB function trimmean
to ignore the maximum and minimum 5% of the values
when computing the ensemble mean. This was done because
we noted that a few outliers exhibited abrupt, very large
jumps in only the x direction, which caused inflated MSDs
and α only in this direction. These large, abrupt jumps are

indicative of some heterogeneous behavior and perhaps a
short-lived active process. They should be investigated in
future work, but here they were removed such that the x,
y, and z data were equivalent in their ensemble means. In
the interest of symmetry, this approach also removed small
outliers before fitting, though the effect of this was less drastic.
We produced estimated parameters by fitting the ensemble
and time-averaged curves to the equations described using the
MATLAB function lsqnonlin. In estimating parameters we
imposed physically reasonable yet modest lower and upper
bounds, mostly in order to ensure non-negative numbers. In
particular, in fitting the MSD of our chromosomal loci we
constrained α to (0, 2), D∗ to (10−5,103)μm2/sα , and σ

to (0, 10) μm. This least-squares fitting was carried out in
log space, i.e., the minimization function was of the form
[log(data)–log(model)]2. We found that doing the fit in log
space put the correct emphasis on the early time points, which
(1) are better averaged and thus more reliable and (2) best
capture the error effects we emphasize. Also, this gives the
most direct connection to the usual treatment in the absence of
errors.
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