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Nonlinear irreversible thermodynamics of single-molecule experiments
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Irreversible thermodynamics of single-molecule experiments subject to external constraining forces of a
mechanical nature is presented. Extending Onsager’s formalism to the nonlinear case of systems under
nonequilibrium external constraints, we are able to calculate the entropy production and the general nonlinear
kinetic equations for the variables involved. In particular, we analyze the case of RNA stretching protocols
obtaining critical oscillations between different configurational states when forced by external means to remain
in the unstable region of its free-energy landscape, as observed in experiments. We also calculate the entropy
produced during these hopping events and show how resonant phenomena in stretching experiments of single
RNA macromolecules may arise. We also calculate the hopping rates using Kramer’s approach obtaining a good

comparison with experiments.
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I. INTRODUCTION

Many mesoscopic systems of great interest ranging from
biology, such as proteins, RNA, or DNA molecules [1-10], to
nanoengineering, like rotaxanes and catenanes [11-13], have
similar dynamic behaviors due to their intrinsic properties
and structure, as well as to their strong coupling with the
surroundings. In particular, when they are subject to stressing
conditions, like stretching forces or radiative interaction, the
dynamics of these systems may present critical oscillations and
stochastic resonance phenomena. Although well understood
from the point of view of stochastic processes theory, the
connection between these dynamical behaviors and the ther-
modynamic properties of these small systems and its coupling
with changing surroundings is poorly understood [14].

A better understanding of these peculiarities is of great
importance in molecular biology, since it opens the possibility
of correlating relevant physical-chemistry laws with simple
models, thus allowing a transparent interpretation of experi-
mental data and an agile prediction of different effects. Here,
we establish this correlation through an irreversible thermo-
dynamic description of biological small systems subject to
external forces of a mechanical nature. This formalism is
a powerful generalization of a previous analysis performed
in Ref. [15] involving thermal constraints and permits one
to calculate nonlinear kinetic equations for the variables
comprised and the entropy produced during the hopping
events in both the critical oscillations and stochastic resonant
phenomena. In this way, we can better distinguish between
reversible and irreversible behaviors of small systems and
their coupling with the surroundings, through thermal and
nonthermal fluctuations.

In order to highlight the ideas and simplify the presentation,
we apply our formalism to analyze single RNA macromolecule
stretching experiments, which provide information on its
energy landscape [2-9,16]. Specifically, the existence of a loop
in the force-extension curve (FEC) implies that there is a range
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of tensions for which two stable configurations of the system
are possible. We will show that the transition between these
two possible (folded and unfolded) configurations of RNA is
concomitant with an irreversible generation of entropy by the
molecule [17,18].

Typically, the theoretical modeling of RNA macromolecule
stretching experiments is performed by considering the com-
posite system: RNA-macromolecule plus heat-bath, as an
isolated system in thermal equilibrium. However, we propose
here a novel approach to the problem of single macromolecule
stretching experiments that differs from previous theoretical
analysis because it is based on Onsager’s nonequilibrium
thermodynamics, specifically applied to the description of
the time evolution of the state of the single macromolecule.
This huge difference with respect to the mentioned previous
descriptions allows one to understand in a simpler and more
consistent way the effect of fluctuations on both the single
macromolecule dynamics realizations as well as over the
time-averaged (or collective) properties that may be extracted
from these experiments. Using the Onsager’s theory to obtain
the evolution equation for the extension of a single RNA
molecule is a very general and simple form that does not
need to consider confusing or even inappropriate assumptions
like ergodicity and equilibrium that are commonly used in
the literature on this problem. In general terms, the idea
is to calculate the entropy produced by the single RNA
molecule during its transition between the folded and unfolded
states and to relate this with the corresponding free energy
change between these configurations. This procedure is very
rich since it shows that the folding and unfolding process may
not be viewed as an equilibrium situation and permits us to
deduce the stochastic nonlinear kinetic equations that govern
the hopping process for different conditions of the thermal
bath and of the experimental devices.

It is convenient to mention here that some previous works
have shown that entropy production may be associated to the
process of transition between folded and unfolded states in
single RNA macromolecule stretching experiments [17,18].
However, they have been focused to show that nonequilibrium
statistical arguments lead to the well-established master
equation formalism, which is the usual mathematical tool for
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the theoretical description of these systems [16]. The important
precedent here is that it was shown that the master equation
formalism is compatible with the fact that entropy is produced
during the hopping dynamics of the single RNA molecule
stretching experiments.

The use of a master equation comes from the fact that it
allows one to determine the transition rates between the folded-
unfolded states of the single RNA molecule, and it suggests
a chemical-like interpretation of the process. This description
appears to be sufficiently accurate from the quantitative point
of view because it can be associated to average values in
the thermal noise case. However, although non-Markovian
master equations exist, using them to obtain practical results
in more complex situations involving colored noises becomes
a very difficult task that may substantially modify the obtained
results and even their interpretation. Furthermore, it may result
in confusion when used under the perspective of chemical
kinetics, as we will discuss in detail. The evolution equation for
the extension we derive using our generalization of Onsager’s
theory is of the Langevin type and therefore can be easily
generalized to more complex situations.

The article is organized as follows. First, we present
our approach to calculate the entropy production of the
system from which we obtain and analyze the nonlinear
stochastic kinetic equation accounting for the evolution of the
variable determining the state of the system, the elongation
of a RNA molecule. Afterwards, we solve numerically the
equation showing four main results. We also calculate the
entropy produced during a single realization of hopping events.
Then, we discuss the ensemble description that is widely
used to reconstruct the free-energy landscapes of biological
small-systems and discuss some important aspects in relation
with the single molecule description. Finally, we present our
conclusions.

II. DISSIPATION IN SINGLE-MOLECULE EXPERIMENTS,
ENTROPY PRODUCTION, AND KINETIC EQUATIONS

We begin our approach to the problem by considering a
single RNA molecule of length (x) subject to a stretching force
7, which can be controlled as an external parameter. According
to thermodynamics [19,20], for the case of constant volume
and temperature, the differential amount of work done by the
surroundings on the molecule in order to change its elongation,
dW = 1d(x), satisfies the inequality

dw > dF, (D

where d F is the differential of the Helmholtz free-energy. As
it is well known, the minimum work is performed in reversible
processes for which the equality holds, implying that dF =
AdWrey = td(x).

For unequilibrated irreversible processes, the same change
of state comprises a larger work due to dissipation and the
inequality holds. Following Ref. [21], it is easy to show that
in the irreversible case the equality can be restored by adding
the entropy produced during the process, 7d;S. This leads to
the relation

dW =dF +Td;S. (2)
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This equation is very general since it is valid for variables
determining the global state of the system (even if it is small)
and may be used to determine the evolution equations of
the system during the unequilibrated process. From Eq. (2)
it follows that the differential of the dissipated work is
dWyis = Td;S.

In order to analyze the dissipative dynamics of the elonga-
tion of the RNA molecule, we have to notice that Eq. (2) gives
the entropy produced by the system during the unequilibrated
elongation process in terms of its free-energy change and the
work done on the system:

Td;S =—dF + td(x). 3)

From this equation the Onsager’s theory may be generalized
by assuming the existence of linear laws between fluxes and
thermodynamic forces. As we will show, the flows are given
by the time derivative of the independent variables, d(x)/dt,
whereas the forces are given as derivatives of the free energy
with respect to the independent variables, d F/dx [22]. In
this sense, the nonlinear character of the resulting evolution
equations comes from the fact that the free-energy is nonlinear
in the independent variables x, in contrast with original
Onsager’s theory, in which the forces are linear functions of the
fluctuating variables. Finally, it is important to mention that in
a previous work [15] we discussed how equations of the form
of Eq. (3) can be derived based on statistical mechanics and
discuss the relation of these equations with the internal stability
of small systems. As we have shown, a change of convexity in
the corresponding thermodynamic potential of a small system,
irrespective of its nature, triggers irreversible processes that
dissipate energy and, more importantly, establishes differences
between the performed work and the corresponding free-
energy change as we discuss in the next subsections.

A. Entropy production and stochastic kinetic equations

In the general case when dF # td(x), a dynamics is
established in the system. This dynamics can be analyzed
by computing the entropy production and using the second
law of thermodynamics within the framework of Onsager’s
irreversible thermodynamics [21,23]. For this, we may divide
Eq. (3) by dt and take the limitdt — 0 yielding the differential
equation for the entropy production [22]

d[ S d F(X> d (X>
— = - T —.
dt d(x) dt

Since the second law imposes that the entropy production must

be nonnegative, d; S/dt > 0, we may assume, without loss of
generality, the relationship

dx) _ |9k
dr _”[ 3 (x) +t]’ ©)

where y > 0 is an Onsager coefficient having dimensions of
mobility. It is important to mention here that an equation
similar to Eq. (5) has been previously derived in Ref. [17]
by using using mesoscopic nonequilibrium thermodynamics.
Such a connection with the statistical Gibbs entropy is relevant
for two reasons: (i) It shows that during the transitions
of the single molecule between configurations entropy is
produced and, (ii) at the same time, establishes a connection
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between this entropy production and the master equation
formalism mentioned in the Introduction; see Refs. [16,18].
In addition, it must be stressed that the derivation given
in Ref. [17] introduces an internal degree of freedom that
allows one to describe in detail the distribution of tension and
forces along the system length. When this internal variable
is considered, a thermodynamic formulation of the problem
needs the assumption of local equilibrium in the corresponding
level of description. The equivalence of results shows that
the local equilibrium assumption remains valid for large
gradients in small systems, like proteins [24] and carbon
nanotubes [25], where the nonequilibrium thermal relaxation
as been successfully studied.

Equation (5) is the overdamped dynamic equation for
the average elongation of the molecule and thus, meaning
that at equilibrium (d({x)/dt = 0) the external tension 7 is
compensated by the internal tension: i, = 0 Fyy/0(x).

In the case of small systems in contact with a heat bath, like
in the single RNA-molecule experiments under consideration,
thermal fluctuations should produce fluctuations of the instan-
taneous elongation of the molecule, x(¢), that in turn induce
an unbalance of forces, d F # tdx. This is the well-known
program of Onsager’s irreversible thermodynamics [20,23].
Therefore, for small systems one has to formulate the stochas-
tic version of Eq. (5), which is given by the Langevin-like
equation

ax _ Y [t — Tind +§@), (6)
dt

where £(f) is an additive random Gaussian noise having
zero mean and obeying the fluctuation-dissipation theorem,
(E@)E(t)) =2D38(t —t'), with D = kgTy the intensity of
noise. The derivation of Eq. (6) can also be obtained by
applying a fluctuating hydrodynamics scheme.

The key point here is that thermal fluctuations sponta-
neously modify the state of the system, which develops a
dynamics that depends on the stochastic nature of those
fluctuations and on the internal and external constraints. In
the case of stretching experiments with single RNA molecules
that we are considering, two outputs are possible: (i) If the
external tension is below or above of the bistable region of
the force-extension curve, the elongation is single valued,
which means that these fluctuations should be Gaussian
with respect to an average value of the elongation because
the molecule is in equilibrium. (ii) However, if the tension
takes values in the portion of the force-extension curve with
negative slope (corresponding to the convex part of the free
energy) the system is intrinsically unstable and therefore
thermal fluctuations should trigger the critical oscillations
of the elongation of the molecule between the folded and
unfolded states. The probability distribution associated to these
fluctuations, although it may take a stationary shape, is bimodal
and cannot be taken as an equilibrium distribution compatible
with thermodynamic equilibrium.

According to the experimental and simulation results
reported in Ref. [3], for tensions around 15 pN, the intrinsic
free energy of the RNA molecule is bistable as a function of
the elongation x. A series expansion of F,y around the critical
value of the elongation (x) = x. + x, yields the Landau-De
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Gennes-like model,
F.~F.+ ri(nct)x + K0x2 — K1x3 + K2x4, (7)

where the coefficients g, k1, and k, are considered positive and
ti(nct) is the tension of the RNA molecule at the critical value
x. of the elongation. The internal tension is therefore given
by Tine =~ ti(lft) + 2K0x — 3k1x? 4 4icox3. Upon substituting the
last expression into Eq. (6), an effective free energy can in
turn be defined that incorporates the effect of the externally

imposed tension t, that is

2

F,~F.+ (ri(ncl) — r)x + Kkox° — K1x3 + K2x4, (8)

The external tension tilts the internal free-energy landscape F,
allowing transitions between the two possible configurations,
folded and unfolded. The equation for the average elongation
is now

at) __ ok

a - a)
The effective free-energy is reported in experiments and
simulations from which the values of the parameters and
important biological information can be obtained [2,3,5-7,26].

The numerical solutions of Eq. (6) for the free energies
considered were obtained using the Euler-Maruyama scheme
and presented in Figs. 1 and 2. Critical oscillations appear
when the external and internal tensions balance each other
out in such a way that the effective free energy F, has two
minima with similar energies. For sufficiently low or large
external tensions, the free energy has a dominant minimum
corresponding to the folded and unfolded states, respectively
[see Figs. 1(a)-1(c)]. The noise induces critical oscillations
between the two stable states separated by the free-energy
barrier. The stochastic process associated with this oscillation
of the molecule’s elongation is not a Gaussian white noise,
as should occur for equilibrium fluctuations. On the contrary,
it resembles a dichotomous stochastic process having a finite
correlation time due to the intermittency, which causes hopping
events between both metastable states of the system. As it is
well known, this intermittency, characterized by non-Gaussian
distributions, is one of the characteristics of nonequilibrated
processes [27,28].

It is also important to emphasize here that the critical oscil-
lations associated to the hopping events cannot be understood
as an example of an equilibrated chemical reaction [2,7].
The first aspect of the problem is to consider that unlike the
concentrations of chemical species in equilibrium chemical
reactions, a single molecule can never be in both states at
the same time (coexistence). The second aspect is that the
thermodynamics of chemical reactions involves the concept
of concentration, which in statistical language entails the
assumption of an ensemble of systems. For dilute compounds,
concentration and probability are related concepts. Thus,
any chemical information and chemical kinetics description
implicitly corresponds to an ensemble of systems and not to
individual ones. Our contention here is that during a single
experiment, each molecule cannot be in equilibrium because
it jumps alternatively between the folded and unfolded states;
its elongation is an oscillatory function of time. These hopping
events imply a finite change of length of the molecule at a finite
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FIG. 1. (Color online) Elongation of RNA molecules subject to
tension near the folding and unfolding states. The corresponding
shape of the free energy as obtained by fitting simulation data from
Ref. [6] is also shown. (a) For low external tensions applied on the
RNA molecule the fitting of the free energy implies that the second
term at the right-hand side of Eq. (8) is 19— =—472 pN, where
the absolute minimum of the free energy corresponds to the folded
configuration. (b) For external tensions in the range of the unstable
region of the force-extension curve, the free energy is bistable and
the effective tension takes the value rl(m) — 1t = —5.24 pN. (c) For
large enough tensions, rl(n? — 7 = —6.42 pN, the absolute minimum
of the free energy corresponds to the unfolded configuration.
(d) Effect of a periodically driving force 7(¢) on the hopping dynamics
of the molecule. The parameters of the oscillation are @ = y /10 and
19—t~ —532pN.

rate and thus cannot be seen as an adiabatic hopping process.
It may happen, however, that in the case of a collectivity
of RNA molecules the number of molecules passing from
the folded to the unfolded states and vice versa, compensate
each other, thus leading to the well-known definition of the
equilibrium constant in terms of the average reaction rates
of a chemical reaction. The crucial point here is very well
understood in statistical physics: Although the ensemble may
be in a stationary state (there is not clear evidence of a
thermodynamic equilibrium here), each system (molecule)
develops a dynamics, that is, a nonequilibrium process that
should satisfy the well-known fluctuation-dissipation theorem.

The last result indicated in Fig. 1(d) shows an example of
the effect of a periodically time-dependent force on the critical
oscillations. Depending on the intensity of this oscillation,
stochastic resonance and more controlled jumps between
folded and unfolded states may be obtained, thus allowing
to infer more regular shapes for the free energy. It should be
stressed that this oscillating force is a toy model of existent
feedback mechanisms used in the experimental devices to
maintain a constant tension when spontaneous oscillations
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FIG. 2. (Color online) The entropy produced as a function of time
(lines) by integrating Eq. (4) for the single noise realization shown.
Different intensities of the noise term o = kzTy were considered.
Increasing noise intensity (larger o) implies larger entropy produced
because hopping events are promoted. [, is the persistence length of
the handles, L the length of the handles, and x,y the dimensions of
the hairpin according to Ref. [5].

(folded and unfolded configurations) take place. Many details
of this interesting aspect of experimental setups and their
theoretical modeling are well discussed in Refs. [29,30] for
the so-called passive or constant force modes. Here, we
assumed a time-dependent tension imposed on the system:
7(t) = 7[1 4 d sin(wt)], with d an amplitude factor and w
the frequency, with the aim to emphasize that this kind of
mechanism may modify the response of the system as shown
in Fig. 1(d), leading to stochastic resonance events [8]. The
results that can be obtained in this case have a direct influence
on the probability distributions (or histograms) obtained from
simulations and/or experiments, and therefore may influence
some aspects of the determination of the free-energy profiles.

B. Entropy produced by a single molecule in a single realization

For a single realization of the noise and, therefore, for a
single sequence of hopping events of one RNA molecule, it
is possible to calculate the entropy produced by numerically
integrating Eq. (4). Furthermore, a general analytic expression
for the entropy produced can be obtained by realizing that
the hopping events can be modeled with sum of Heaviside
functions having a stochastic distribution of transition times #;:

x(t) ~ ZAx@[t —11, (10)

with Ax the elongation change between folded and unfolded
states. The time derivative of this function is known as the
comb function IIl(r — ;) = >, 8(t — 1;):

dx
T AxII(t — ¢;). (11)

Using this result into Eq. (4) and integrating over time one
obtains that the entropy produced during a given elapsed time is

Ax
AiS=— Z [ — T ()] (12)
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FIG. 3. (Color online) Three probability distributions as a function of elongation for different times obtained numerically from Eq. (13).
(a) Two probability distributions (modal non-Gaussian and bimodal) from the initial stage to the stationary regime in the case of a constant
external tension. (b) Two oscillatory behaviors of the bimodal distribution in the presence of a periodic external force, the alternative increase
of probability in folded and unfolded states, and the oscillation of the maximum corresponding to the unfolded state.

For the realization of the noise shown in Fig. 2, the entropy
produced in terms of time is also shown. The average behavior
resembles a stair-like increase due to the hopping events
between the two possible states. Thermal fluctuations in the
unfolded and folded states of the dynamics were subtracted in
order to keep only the hopping events.

III. ENSEMBLE DESCRIPTION

The results obtained in the previous subsection refer to a
single RNA molecule. However, the stochastic nature of the
dynamics of the system allows one to introduce an interesting
aspect of the problem that is associated with the collective
behavior of an ensemble of equivalent systems. This collective
behavior can be analyzed in terms of a probability density
whose time evolution is concomitant with the Langevin-like
Eq. (6).

For the present case with additive white noise, the Fokker-
Planck equation for the probability distribution of x, P(x,t),
associated to Eq. (0) is

apP d oP
=Y [(tmt—r)PJrkBT—] 13)
at x ox

job)

For constant external tensions, it is well known the stationary
solution of this equation

Peq(x) — Q*]ef[F(x)ftx]/kBT — Q*]ede(x)/kBT’ (14)
with Q = [0 e [F&)=m'1/ksT g5’ This expression predicts

a distribution function that may be bimodal depending on
the balance between the external and internal tensions [26].

For example, for an externally applied tension of 15 pN (see
Ref. [6]), the value of the fitting parameter of the linear
term of the free energy is: 7¥) — 7 = —5.22 pN. In this
case, the effective free energy AF, has two well-defined
minima and it follows that the internal tension of the RNA
molecule during the experiments was ¢ =~ 9.78 pN. This is
the tension associated to the handles at the critical elongation
value, whereas the remaining 5.22 pN are the apparent internal
tension of the hairpin during the unfolding and folding process.

In Fig. 3 we show the spatiotemporal numerical solution of
Eq. (13) for different shapes of the potential (also shown). For
constant external tensions, stationary distributions are obtained
that perfectly agree with Eq. (14). Their shape depends on the
shape of the free energy and can be bimodal or single-modal
depending on the value of the external tension.

However, in the case of stochastic resonance that involves
the external time-dependent tension, t(¢) = t[1 + d sin(wt)],
the resulting probability densities are time dependent with
no stationary limiting behavior. Oscillations of each maxima
of the distributions are clear and its amplitude depends on
the amplitude of the externally applied force. For bimodal
distributions there are two oscillations coupled, that of the
maxima with respect to an average value and that of the
alternating change of the populations between the two possible
states, folded and unfolded; see Fig. 3. For single-modal
distributions, only the first oscillation takes place. This is an
important feature since if time averages are not taken over
sufficiently large time windows, they can lead to an incorrect
determination of a bimodal distribution and therefore to an
incorrect determination of the free-energy landscape.

062714-5



I. SANTAMARIA-HOLEK et al.

PHYSICAL REVIEW E 91, 062714 (2015)

TABLE I. Mean transition times and rates from the folded to unfolded states obtained from Eq. (20) for the fitted energy profiles reported

in Ref. [6].

Case xp[nm] xy[nm] x7[nm] 7s[s] ke[1/s] 7, (5] k,[1/s]

1 1.93 7.28 3.71 3.9 x 1074 2564.10 5.9 x 1074 1694.91

2 1.84 7.20 3.85 3.5x107* 2857.14 4.4 %1074 2272.72

3 1.96 7.11 3.92 4.6 x 1074 217391 45x%x 1074 22222

4 2.13 6.29 3.6 1.7 x 107* 5882.35 11 x 107 909.09

5 2.00 7.41 391 3.9 x 107* 2564.10 5.8 x 107 1724.13

6 2.04 6.90 3.89 49 x 107 2040.81 6.1 x 107* 1639.34
The probability distributions obtained in this subsection [xf,x] is given by

show more readily the main features of the nature of the

elongation’s fluctuations we already discussed in the previous P(x) = P(x f)e_[Fe(X)_Fe(Xf)]/kBT

subsection. For instance, if the external tension is above . .

but near the bistable region of the force-extension curve, _ie—Fe(X)/ksT / eFe@/ksT g (16)

then the elongation of the RNA molecule is single valued D x

(the free energy has only one minimum), but its distribution
shows a large asymmetry that indicates a non-Gaussian
distribution for the fluctuations of the molecule’s elongation.
Such a situation is shown in the left panel of Fig. 3 and
is in good agreement with the histogram of Fig. 1(c) (not
shown). Hence, at the edge of the bistable zone, these results
clearly show a break of the classical condition for equilibrium
fluctuations.

This effect is more dramatic when considering the case
when the tension takes values in the portion of the force-
extension curve with negative slope. The distribution of these
fluctuations is stationary and bimodal. The main implication of
this result is that the collective behavior reaches a stationary
state characterized by a non-Gaussian distribution showing
two peaks. These two peaks imply the two most probable
elongations of the molecule that do not correspond with the
average elongation of the system, just at the center of the
distribution. Hence, it is much less probable to find the system
with the average elongation than in an extreme configuration.
This fact contradicts the statistical condition of equilibrium,
which is consistent with the condition of thermodynamic
equilibrium: the average value of the elongation in the single-
peaked probability distribution is equal to the most probable
value of the same variable [19].

A. Transition rates and mean first-passage times

Two important quantities characterizing the hopping dy-
namics of the RNA molecule between the folded an unfolded
states are the transition rates and their inverse, the mean
first-passage times. In the present case, the transition rates
can be calculated using the Fokker-Planck Eq. (13) in the
nonequilibrium stationary case [31]. As usual, the Fokker-
Planck Eq. (13) is written in the form % = —%j, in which
the current j is defined as

__[Dar, 0P
/= kgT dx ax |’
where j is assumed to be a constant different from zero and

D =kgTy. If we define x; as the elongation of the folded
state, then the complete solution of this equation in the interval

5)

-

Solving Eq. (16) for j and evaluating the result in x,, the
elongation of the unfolded state, we obtain

P(xf)eFe(xf)/kBT — P(x,)efetu)/ksT
fx“ EF"(Z)/kBTdZ
xf

j=D =Jr = Ju» (A7)

where jr and j, are the forward and backward currents,
respectively. For sufficiently large energy barriers, F, max >>
kpT, one may assume fast local equilibration of the system
in each well and write P(x) and P(x,) in terms of Eq. (14).
In addition, the integral in the denominator of Eq. (17) can
be calculated by extending the limits of the integration from
[—00,00] and assuming that F,(x) > F,(x.) — 3F, (x —
x.)?, where F, e/c is the second derivative of F,(x) evaluated
at x,, the local maximum of the free energy. These operations
give the following expressions for the forward and backward
currents:

7 172
jr= DQ;‘ [ﬁ} o~ Fee)/kaT

e 1/2

ju=DO [ﬁ} e Fel)/ksT

where O and Q, are the normalization factors of the folded

and unfolded states, respectively. Finally, the transition rates
are defined as ky = js/ny and k, = j,/n,, where

P —-1/2
ny= Qfl e.f o Fele)/ ks T
I\ 2wkgT '

-1/2

} e_Fﬂ(Xu)/kBT'

F,/
-1 e,u
e[

(18)

19)
27TkBT

Here, we evaluated the normalization factors by assuming the
usual quadratic approximation of the free energy around each
well, for instance: F(x) ~ F(x;)+ %Fe’f(x —xs)% Then,
after substituting into the definition of the rates we obtain the
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final expressions [31,32]:

" "
F, fFe.C Fe(xe)=Felr )
Ve fte, ol

ky =y ,

2 20)
k= y e

2

These quantities may be evaluated explicitly after fitting the
free-energy profiles reported in the literature [6]. Table I
shows the values of the transition rates and the corresponding
transition times evaluated for some cases. All these results fall
within the same order of magnitude of the transition times
reported in Ref. [6].

IV. CONCLUSIONS

As asummary, in this work we have proposed an irreversible
thermodynamics of single-molecule experiments subject to
external constraining forces of a mechanical nature. Our
work is a powerful extension of Onsager’s formalism to the
case of systems under nonequilibrium external constraints.
Using this formalism we were able to calculate the entropy
production of a small system in contact with a bath and
to derive the general nonlinear kinetic equations for the
variables involved. A more fundamental justification of our
formalism can be given by postulating the existence of
a partition function of the biological small-system in the
presence of external constraints and the validity of the
thermodynamic stability criterion. Using these postulates, an
analytic continuation of the free energy into the unstable region
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allows one to relate the free-energy barrier with the entropy
produced by the single system during its time evolution.

As an illustration, we have analyzed the folding-unfolding
dynamics of RNA molecules subject to tension. We showed
that a single macromolecule evolves far from equilibrium,
executing critical oscillations when it is forced by the external
constraints to remain in the unstable region of its free energy.
Since this free energy contains anharmonic contributions,
these critical oscillations are not a simple Gaussian process.
This is a manifestation of the unequilibrated nature of this
process for which the entropy produced during hopping events
was calculated.

The approach we propose uses global thermodynamic
variables for the single small system in similar way as
Onsager’s nonequilibrium thermodynamic theory. This fact
enables us to derive nonlinear differential kinetic equations
governing the dynamics of the system in both the deterministic
and stochastic cases [21,23]. Unlike Onsager’s original theory,
we have shown the validity of this description for systems
far from equilibrium (nonlinear regression in the presence
of external forces) and not only near equilibrium without
external forces (linear regression of spontaneous fluctuations).
This opens many possibilities for the theoretical analysis and
prediction of the behavior of single-molecule experiments.
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