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Roles of factorial noise in inducing bimodal gene expression
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Some gene regulatory systems can exhibit bimodal distributions of mRNA or protein although the deterministic
counterparts are monostable. This noise-induced bimodality is an interesting phenomenon and has important
biological implications, but it is unclear how different sources of expression noise (each source creates so-called
factorial noise that is defined as a component of the total noise) contribute separately to this stochastic bimodality.
Here we consider a minimal model of gene regulation, which is monostable in the deterministic case. Although
simple, this system contains factorial noise of two main kinds: promoter noise due to switching between gene
states and transcriptional (or translational) noise due to synthesis and degradation of mRNA (or protein). To
better trace the roles of factorial noise in inducing bimodality, we also analyze two limit models, continuous
and adiabatic approximations, apart from the exact model. We show that in the case of slow gene switching, the
continuous model where only promoter noise is considered can exhibit bimodality; in the case of fast switching,
the adiabatic model where only transcriptional or translational noise is considered can also exhibit bimodality
but the exact model cannot; and in other cases, both promoter noise and transcriptional or translational noise can
cooperatively induce bimodality. Since slow gene switching and large protein copy numbers are characteristics of
eukaryotic cells, whereas fast gene switching and small protein copy numbers are characteristics of prokaryotic
cells, we infer that eukaryotic stochastic bimodality is induced mainly by promoter noise, whereas prokaryotic
stochastic bimodality is induced primarily by transcriptional or translational noise.
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I. INTRODUCTION

Gene expression is a complex biochemical process, involv-
ing gene-state switching (i.e., transitions between promoter
activity states), transcription, translation, regulation, etc. [1–4].
Stochastic fluctuations generated in each of these biochemical
subprocesses can affect the expression level, leading to varia-
tions (or factorial noise) in mRNA or protein abundance. Here,
by factorial noise we mean that it is a component of the total
noise. The resulting expression noise consisting of factorial
noises can carry out some important biological functions.
In unicellular organisms, noise improves fitness by inducing
phenotypic differences within a clonal population of cells, thus
enabling a rapid response to a fluctuating environment [5,6].
In multicellular organisms, noise plays an important role
in development, e.g., allowing identical progenitor cells to
acquire distinct phenotypes for better survival [7,8]. Because
of the functional importance of noise, an important task in the
post-genome era is to understand how different mechanisms
of noise control variations in mRNA and protein levels across
a population of genetically identical cells.

Diverse sources of noise in gene expression may complicate
its mechanistic modeling, e.g., for an isolated genetic system
inside a cell, possible origins of noise in protein include
promoter noise due to stochastic switching between gene
states, and transcriptional and translational noise due to the
synthesis and degradation of mRNA and protein, respectively.
In spite of this complexity, sources of noise can be in
general classified as intrinsic or extrinsic [9,10]. Intrinsic
noise results from the stochasticity of chemical kinetics,
whereas extrinsic noise originates from other reactions or from
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fluctuations in rate constants, and is often the dominant source
of variability in the underlying system [9,11]. The former can
be described by the probability master equation (PME), and
in essence represents the deviation of known reactions with
known rates from their results predicted by classical chemical
kinetics [12]. In contrast, the latter may result from any process
not represented in the network model itself and therefore
may be more complex. Several techniques are available to
separate intracellular noise from extracellular noise [9,13],
but experimental methods to identify different sources of
intracellular noise are far less developed [14] (in fact, the
experimental identification is very difficult). Therefore, it
would be of particular interest to use stochastic models of gene
expression to identify different sources of noise and elucidate
their roles in controlling phenotypic switching.

Expression noise in prokaryotic and eukaryotic cells can
exhibit different characters, which would lay foundations
for efficiently approximating some relevant PMEs [15]. In
prokaryotes, transcriptional or translational noise is in general
large since the mRNA or protein number is very small [16,17].
An experiment quantifying the mean expression of more than
1000 Escherichia coli genes showed that the most frequent
average protein number in a prokaryotic cell is of order of
10, while the most frequent average mRNA number is even
of the order of 1 [18]. Because of no nucleus existing in
prokaryotic cells, gene switching is thought to be very fast,
implying that promoter noise is negligible but transcriptional
or translational noise is important. Based on this, Hornos
et al. [19] proposed a so-called adiabatic model in which only
transcriptional or translational noise is considered (also see
Refs. [20,21]). In contrast, promoter noise in eukaryotic cells
is often more important [22] since gene switching between on
and off states is in general slow. It is believed that in eukaryotic
cells, promoter DNA wrapped around nucleosomes is very
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stable [23] and has a typical lifetime that is longer than the
time scale of transcription. Lots of eukaryotic experiments
have verified that mRNA is synthesized in bursts [24]. In
addition, the mean number of mRNAs or proteins is much
larger in eukaryotes than in prokaryotes. All these indicate
that transcriptional or translational noise in eukaryotic cells
may be neglected, and the corresponding gene models can
be approximated by continuous models [25]. Min et al. [26]
analyzed an enzymatic reaction for which they assumed that
the dissociation of substrate is much faster than its catalysis.
This assumption implies that the dissociation can be treated as
a deterministic process, whereas the catalysis can be treated
as a stochastic process. Additionally, cell-cycle transcriptional
regulator gene SWI6 in yeast is an example where expression
noise originates almost only from gene switching, while
transcriptional or translational noise is negligible [27]. We
will adopt two approximate models (i.e., continuous and
adiabatic models) to trace sources of noise in a two-state
model of gene expression with autoregulation and elucidate
the roles of promoter noise and translational noise in inducing
bimodality.

On the other hand, bimodality of gene expression, as a
mechanism contributing to phenotypic diversity, can enhance
the probability that cells survive in fluctuating environments.
For a genetic system with deterministic bistability, the stochas-
tic trajectories exhibit random jumps between different steady
states, thus diverging qualitatively from the deterministic
trajectories [28]. Correspondingly, the mRNA or protein
distribution exhibits two distinct peaks. It has been shown
that to produce deterministic bistability, a genetic system
needs a nonlinear positive feedback, a mutual suppressing
negative feedback, or a multiple feedback with or without
cooperative binding of transcription factors [29–32]. However,
the noncooperative binding of transcription factors can also
give rise to bimodality in an open-loop system with only one
deterministic stable state, e.g., noise can induce a bimodal
response in a genetic system where the gene is positively
regulated via the noncooperative binding of transcription
factors on its promoter [33]. A biological example with this
property is the developmental decision pathway of bacterial
phage λ [34]. Some experimental studies have confirmed
this functional effect of molecular noise [35]. In particular,
some theoretical studies have shown that the noncooperation
of transcriptional factors can induce bimodality in genetic
systems with only one deterministic stable state [36]. In spite
of these, it is unclear how sources of noise in gene regulatory
networks, which may be complex due to diverse regulation
mechanisms, contribute to the appearance of bimodality. We
address this issue by analyzing a minimal model of gene
regulation.

To clearly elucidate the mechanism of how expression
noise induces bimodality and to better trace the effects of
factorial noise on bimodality, we first assume that the gene
product (in fact, protein) as a transcription factor regulates gene
expression in an noncooperative way, i.e., we consider only
linear self-feedback, so that the corresponding deterministic
system has only one stable state (i.e., the system is monostable)
and analytical results can be derived. Then, we assume that
the gene has only one active (on) state and one inactive (off)
state, although it is highly possible that a gene has many

activity states, particularly in eukaryotic cells [37]. Finally,
we assume that the gene produces proteins directly [19,20].
This assumption is reasonable since the half-life of mRNA
is in general much shorter than that of protein. Thus, there
are only two kinds of noises in our model: promoter noise
and translational noise. We show that in the case of slow
switching, the promoter noise in the continuous model can
induce bimodality, whereas in the case of fast switching,
the translational noise in the adiabatic model can also in-
duce bimodality but the total noise (consisting of promoter
noise and translational noise) in the exact model cannot induce
bimodality. In other cases, both factorial noises in the exact
model can cooperatively induce bimodality. These results
indicate that different factorial noises (i.e., promoter noise and
translational noise) play different roles in inducing bimodal
expressions. Since transcriptional or translational noise is
in general important in prokaryotic cells [16,17], whereas
promoter noise is often dominant in eukaryotic cells [38],
our results imply an interesting yet important biological fact;
that is, eukaryotic stochastic bimodality is induced mainly by
promoter noise, whereas prokaryotic bimodality primarily by
transcriptional or translational noise.

II. MODEL AND HYPOTHESIS

First, we simply describe our biological model and state
relevant hypotheses. Then, we establish a PME for the
underlying network of biochemical reactions.

Assume that a gene has two activity states: “on,” where
transcription from DNA to mRNA is permissive and highly
efficient; and “off,” where transcription is also permissive
but less efficient (this case is called promoter leakage [39]).
In principle, the mRNAs transcribed from DNA are further
translated into proteins, but for analysis convenience and
to derive nice analytical distributions, we integrate tran-
scription and translation into a single-step process. This
simplification, which has been extensively made in previous
studies [1,19,20,40–42], is reasonable as long as the half-life of
protein is much longer than that of mRNA. In fact, Shahrezaei
and Swain [20] did a survey of ∼2000 genes in budding yeast
and showed that most genes indeed satisfy this condition.
Additionally, we assume that there are stochastic transitions
between on and off states, which results in promoter noise. In
spite of these assumptions, the corresponding gene model still
captures important events taking place in gene expression and
therefore has been extensively used.

Gene expression inevitably involves regulation, e.g., due
to the recruitment of transcription factors. In particular, gene
self-regulation is a very common element of many gene
regulatory networks, e.g., almost 40% of E.coli transcription
factors regulate the expression of their own genes [43]. In
fact, gene autoregulatory circuits are fundamental building
blocks of more complex gene regulatory networks [44]. In
addition, there is strong experimental evidence to support that
for some genetic systems, transcription factors do not affect
transcription rates but may increase the probability that protein
is at high levels [45]. Here, we assume that a transcription
factor regulates the switching rate from off to on states. Our
interest is mainly in how factorial noise induces or contributes
to stochastic bimodality, so we consider only linear feedback.
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FIG. 1. (Color online) Schematic representation of a two-stage
model of gene expression with positive autoregulation, where the
promoter is assumed to stochastically switch between state 1 (on)
and state 2 (off). It is also assumed that the switching rate from state
2 to state 1 is regulated by the transcription factor (protein). Note that
the greater the amount of protein, the faster the switching.

More precisely, we assume that proteins as transcription factors
regulate only the transiting rate from off to on states in a
noncooperative manner (a similar assumption was also made in
Refs. [46,47]), so that the corresponding deterministic system
is monostable.

Schematic Fig. 1 integrates all the above considerations
including assumptions. In this figure, state 1 represents the on
state, whereas state 2 represents the off state. For convenience,
let I and A denote these two states, respectively, and X

represent protein. Then, our gene model can be described by
the following set of biochemical reactions:

I
λ−→←−
f

A, A
k1−→ A + X,

(1)
I

k2−→ I + X, I + X
h−→ A + X, X

γ−→ φ,

where k1 and k2 are the transcription rates of protein at A

and I , respectively. Parameter γ is the decay rate, which is
practically a compound parameter consisting of both the net
protein degradation rate and the cell division rate. Parameter
λ is a rate describing the process of protein binding to
DNA, whereas parameter f is another rate describing the
release of protein from the bound DNA. Parameter h describes
the regulatory effect of the transcription factor, and actually
represents feedback strength. In general, h may be a function of
the copy number of proteins taken as transcription factors [48],
but here we assume that it is a constant, implying that our
feedback regulation is linear. Note that the larger the protein
copy number, the stronger the feedback.

Next, we introduce a PME based on the above reactions
to trace the time evolution of the probability of the protein
copy number. For this, we let P1(n,t) and P2(n,t) represent
the probability of having n proteins at time t at A and I states,
respectively (each called a factorial probability). Then, the
PME for the full reaction network takes the following form:

∂P1(n,t)

∂t
=−f P1(n,t) + λP2(n,t) + k1[P1(n − 1,t)

−P1(n,t)] + hnP2(n,t)

+ γ [(n + 1)P1(n + 1,t) − nP1(n,t)],

∂P2(n,t)

∂t
= f P1(n,t) − λP2(n,t) + k2[P2(n − 1,t)

−P2(n,t)] − hnP2(n,t)

+ γ [(n + 1)P2(n + 1,t) − nP2(n,t)]. (2)

On the right-hand side of the equation of P1(n,t), the
first two terms describe the transition between active and
inactive states [see the reversible reaction in Eq. (1) from top
to bottom], the third term describes the synthesis of protein
(the second reaction), the fourth term describes regulation (the
fourth reaction), and the final term describes the degradation
of protein (the final reaction). Similar interpretations are for
the equation of P2(n,t). For convenience, Eq. (2) will be
called the exact model throughout this paper. Note that this
model contains two different sources of noise (or two different
factorial noises): promoter noise due to stochastic switching
between gene states and translational noise due to random birth
and death of proteins.

We point out that similar models were also introduced
and analyzed in previous studies [46,47,49,50]. There are
similarities and differences between this study and the previous
studies. A similarity is that our model is a special case
of the models in Refs. [46,47] and is very similar to the
models in Refs. [49,50], and that analytical distributions are
derived for all the models. A difference is that we take a
different method to derive analytical distributions. A bigger
difference is that a main interest of the previous studies is
in how analytical distributions are derived, whereas the focus
of this paper is on how promoter noise and translational noise
contribute separately to the appearance of bimodal expression,
a previously unexplored question.

III. ANALYTICAL RESULTS

First, we derive the analytical expression for the steady-state
distribution of protein. Then, we introduce three approxima-
tions to the PME, which are respectively used to show that
the deterministic system is monostable and how the promoter
noise and the transcriptional noise can separately induce
bimodality.

A. Exact steady-state distribution

In order to solve Eq. (2) at steady state, we introduce two
factorial probability-generating functions

Gi(z) =
∞∑

n=0

Pi(n)zn, (3)

where i = 1,2. Thus, Eq. (2) can be transformed into the
following coupled ordinary differential equations:(

z − 1 −hz

hz z − 1

) (
G′

1
G′

2

)

=
(

k1(z − 1) − f λ

f k2(z − 1) − λ

) (
G1

G2

)
, (4)

where all the parameters have been normalized by the protein
decay rate γ , i.e., f

γ
→ f, λ

γ
→ λ, h

γ
→ h, k1

γ
→ k1,

k2
γ

→ k2.
Without loss of generality, we can set γ = 1.
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To solve Eq. (4), we introduce two transformations of
functions G1(z) and G2(z), i.e., G1(z) = e(k1−k)zW (ω) and
G2(z) = e(k2−k)zW̃ (ω) with ω = [(h + 1)z − 1] k−hk2

(h+1)2 and k =
k1 − k2. Then, it follows from Eq. (4) that function W (ω)
satisfies the following confluent hypergeometric equation of
the standard form [51]:

ωW ′′(ω) + (β − ω)W ′(ω) − αW (ω) = 0, (5)

where α = 1 + (kλ)/R, β = 1 + [(k + f + λ)/(h + 1)] −
R/(h + 1)2 with R = k − hk2, which are all constants depend-
ing on reaction rates. This equation is solvable and its solution
can be expressed using confluent hypergeometric functions.
With the analytical solution combined with the conditions
that P1(n) → 0 for n → ∞ as well as with the fact that the
mean number of protein molecules must be finite, we can
reach the following analytical expressions for two factorial
probability-generating functions G1(z) and G2(z):

G1(z) = Aek2z
1F1

(
α,β; [(h + 1)z − 1]

k − hk2

(h + 1)2

)
,

(6)
G2(z) = Aek2z[C1F1(α − 1,β − 1; hB) − 1F1(α,β; hB)],

where C = k+f +λ

λ
− R

λ(h+1) , B = k−hk2

(h+1)2 , A is a normalization

constant given by A = e−k2 [C1F1(α − 1; β − 1; hB)]−1, and
1F1(α,β; z) is a confluent hypergeometric function defined as

1F1(α,β; z) = ∑∞
k=0

(α)k
(β)k

zk

k! with (a)n being the Pochhammer
symbol defined as (a)n = 	(a + n)/	(a).

Furthermore, using the relationship between proba-
bility distribution and generating function, i.e., Pi(n) =
(1/n!)[∂nGi(z)/∂zn]|z=0, we obtain the following analytical
expressions for two steady-state factorial distributions P1(n)
and P2(n):

P1(n) = A

n!

n∑
m=0

(
n

m

)
kn−m

2 [(h + 1)B]m

× (α)m
(β)m

1F1(α + m,β + m; −B),

(7)

P2(n) = A

n!

n∑
m=0

(
n

m

)
kn−m

2 [(h + 1)B]m

×
[
C

(α − 1)m
(β − 1)m

1F1(α + m − 1,β + m − 1; −B)

− (α)m
(β)m

1F1(α + m,β + m; −B)

]
,

where (nm) is the common binomial coefficient. Thus, we
finally obtain the analytical expression for the total probability
distribution defined as P (n) = P1(n) + P2(n) that corresponds
to the total generating function G(z) = G1(z) + G2(z),

P (n) = AC

n!

n∑
m=0

(
n

m

)
kn−m

2 [(h + 1)B]m
(α − 1)m
(β − 1)m

1F1

× (α + m − 1,β + m − 1; −B). (8)

This result can reproduce distributions of gene products
in simplified cases, e.g., without promoter leakage [19,20],
without regulation [52,53].

Although complex in form, the above analytical results
provide, in principle, the complete information on stochastic
properties of the underlying gene regulatory system, including
the information on sources of noise. For example, the mean
and variance of protein can be easily calculated by 〈n〉 =
G′(1) and σ 2

n = G′′(1) + G′(1) − [G′(1)]2, respectively, and
in particular, the expression noise intensity defined as the ratio
of variance over mean square is given by

η2
n = {G′′(1) + G′(1) − [G′(1)]2}/[G′(1)]2, (9)

where

G′(1) = Aek2 [Ck2 1F1(α − 1,β − 1; hB) + k 1F1(α,β; hB)],

G′′(1) = Aek2 [Ck2 1F1(α − 1,β − 1; hB)

+ 2kk2 1F1(α,β; hB) + D 1F1(α + 1,β + 1; hB)]

(10)

with D = [k(kλ + R)(h + 1)]/[(h + 1)(k + λ + f + h + 1)
− R]. Similarly, Eq. (9) can reproduce a previous formula
for the noise strength in the case that promoter leakage is not
considered [39].

In particular, the analytical distribution can be used to
explicitly trace the sources of expression noise. For example, if
there are neither regulation (i.e., h = 0) nor promoter leakage
(i.e., k2 = 0), then the intensity of the expression noise can be
analytically expressed as

η2
n = γ (λ + f )

λk1
(translational noise)

+ γ 2f

λ(γ λ + γf + λf )
(promoter noise), (11)

where all the original parameters have been recovered. The first
term on the right-hand side of Eq. (11) describes translational
noise, whereas the second term describes promoter noise.
Equation (11) indicates that the noise in protein is the sum
of promoter noise and translational noise. For a more general
case, we also have a similar decomposition. The analytical
decomposition is omitted because of complex form.

B. Deterministic approximation

To derive the deterministic model, one needs to make some
assumptions. If both the switching between gene states and the
evolution of the copy number of proteins are extremely rapid,
then the gene states are in a rapid preequilibrium and a rescaled
protein dynamics follows the mean-field rate equations in
terms of a continuous variable x defined as the ratio of the
protein copy number over the typical protein number (given
by M = k1/γ ) at the fully induced state. Owing to linear
feedback, this rescaled protein level x obeys the following
ordinary differential equation:

dx

dt
= G(x) − γ x with G(x) = k1(λ + hx) + k2f

λ + hx + f
. (12)
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At steady state, the corresponding algebraic equation has only one positive root given by

x̃ = (k1h − λγ − f γ ) +
√

(k1h − λγ − f γ )2 + 4γ h(k1λ + k2f )

2γ h
. (13)

This implies that the deterministic system is monostable in
the biologically feasible range of system parameters.

In the following, however, we will show that molecular
noise can induce bimodality. In particular, to better trace
distinct sources of this functional noise, we will introduce
two different kinds of approximations to the above PME. Each
approximate model is derived based on dominant promoter
noise (or switching noise) or based on dominant translational
noise.

C. Continuous approximation: In the limit of fast translation

If the fluctuations in the protein copy number are nearly
negligible compared to those generated from stochastic switch-
ing between promoter states (e.g., in eukaryotic cells), then
the full PME given by Eq. (2) can be reduced to a simpler
model (called the continuous model). In this simplified model,
dynamics of the protein copy number at each gene state follows
a deterministic law of mass action but the protein synthesis rate
is still fluctuating due to stochastic switching between gene
states. Using a similar model, switching noise was analyzed
previously [54]. If the characteristic number of proteins is very
large, as that in the deterministic case (i.e., M = k1/γ 	 1),
then the ratio (or concentration) x = n/M may be considered
as a continuous variable, which follows equations

dx

dt
= k1/M − γ x (State 1),

(14)
dx

dt
= k2/M − γ x (State 2).

This will define a time continuous piecewise Markov
process. Two factorial discrete probabilities P1(n,t) and
P2(n,t) are now replaced by two factorial continuous functions
P1(x,t) and P2(x,t), which satisfy the following differential
equations [25,55]:

∂

∂x
[(k1/M − γ x)P1(x,t)]

= −f P1(x,t) + λP2(x,t) + h̃xP2(x,t),
(15)

∂

∂x
[(k2/M − γ x)P2(x,t)]

= f P1(x,t) − λP2(x,t) − h̃xP2(x,t),

where h̃ = hM . Equation (15) will be called the continuous
model throughout this paper. By solving Eq. (15), we find
that the total steady-state probability given by P (x) = P1(x) +
P2(x) can be analytically expressed as [56]

P (x) = C exp

(
h̃x

γ

)
(1 − x)(f/γ )−1

× (x − k2/k1)[(h̃k2+λk1)/γ k1]−1, (16)

where C is a constant determined by
∫ 1

0 P (x) = 1.

Note that in this continuous approximation, the only noise
existing in the gene network is caused by stochastic switching
between gene states. It is interesting that if two gene switching
rates satisfy the constraint, both f /γ < 1 and λ/γ < 1 (i.e.,
slow switching), then the underlying genetic network can
exhibit binary or graded responses to the change of feedback
strength (referring to Figs. 3 and 4). On the contrary, if
both f /γ > 1 and λ/γ > 1 (i.e., fast switching) hold, then
the system exhibits only a graded response to the change of
feedback strength (referring to Figs. 5 and 6). In fact, we can
analytically verify that in the case of slow switching, feedback
can lead to a transition from bimodality to unimodality,
whereas in the case of fast switching, the protein distribution
is always unimodal.

D. Adiabatic approximation: In the limit of fast gene switching

Once the protein copy-number fluctuations become signif-
icant compared to those from switching between promoter
activity states (e.g., in prokaryotic cells), the full PME (2) can
be reduced to another simpler model, where all the gene states
are simply integrated by fast equilibrium. In this simplified
model, the dominant noise is the translational noise, which is
generated due to the stochastic birth and death of protein.
Moreover, the probability of protein copy number P (n,t)
evolves according to the following differential equations:

∂p(n,t)

∂t
= k(n − 1)p(n − 1,t) − k(n)p(n,t)

+ γ̃ (n + 1)p(n + 1,t) − γ̃ (n)p(n,t),
(17)

∂p(0,t)

∂t
= −k(0)p(0,t) + γ̃ (1)p(1,t),

where k(n) = [(hn + λ)k1 + f k2]/(hn + f + λ) is the fast-
equilibrated protein synthesis rate, and γ̃ (n) = nγ is the fast-
equilibrated protein decay rate. Equation (17) will be called
the adiabatic model throughout this paper.

Let P (n) denote the steady-state probability. Then, the net
probability flow between two neighboring states n and n + 1
at steady state is equal to zero, i.e.,

P (n)k(n) − P (n + 1)γ̃ (n + 1) = 0 (18)

from which we can obtain the analytical expression of P (n) in
the form

P (n) = P (0)
n−1∏
i=0

k(i)

γ̃ (i + 1)
, (19)

where P (0) is determined by the normalization condition∑∞
n=0 P (n) = 1. Numerical calculation verifies that with

the above adiabatic approximation, the protein probability
distribution is always unimodal if the promoter switching rates
are less than 1 but may be bimodal if the switching rates are
larger than 1 (referring to Figs. 3–5).
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IV. NUMERICAL RESULTS

Before presenting the main results of this paper, let us
simply introduce our numerical method. First, as is pointed
out above, the total noise in protein (or the expression noise)
in the exact gene model contains two components (or sources):
promoter noise and translational noise. To clearly show how
these factorial noises induce and/or affect bimodality in the
exact model, we introduce an index, which will be called
the noise ratio and is defined as the ratio of the strength
(or level) of promoter noise over that of translational noise.
That is,

Ratio = promoter noise level

translational noise level
. (20)

Apparently, promoter noise is dominant if Ratio 	 1,
whereas translational noise is dominant if Ratio 
 1. Thus, the
former corresponds to the continuous approximation, whereas
the latter to the adiabatic approximation. Then, for three
PMEs corresponding, respectively, to the full PME [Eq. (2)],
the continuous model [Eq. (15)], and the adiabatic model
[Eq. (17)], we will adopt the Gillespie stochastic simulation
algorithm [57] or directly use the analytical distributions
above, to perform numerical calculations.

Before presenting the roles of factorial noise in inducing
bimodal expression, let us give a reasonable explanation of
how bimodality can appear in the exact model but cannot
appear in the deterministic model. For this, we work out,
based on Ref. [58], a phase diagram describing the appearance
of the bimodality by plotting the extrema of the probability
density, referring to Fig. 2. From this figure, we observe
that the deterministic system is always monostable whenever
switching is fast or slow. However, the stochastic system can
exhibit two stable states (high and low), one of which is
induced by noise or stochasticity. Moreover, the system can
switch between these two states due to noise driving (see the
following contents). Note that this switching behavior never
takes place in the deterministic case [34,35].
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FIG. 2. (Color online) Phase diagrams describing the generation
of stochastic bimodality: (a) slow switching, where f = 0.5, λ =
0.5; (b) fast switching, where f = 20, λ = 2. In (a) and (b), the
gray curve represents the monostable state given by Eq. (13) in the
deterministic case, and blue, dashed green, and dot-dashed red curves
each representing the noise-induced stable state in the stochastic case
correspond, respectively, to the high state where the protein number
is large, the middle state where the protein number is moderate
(corresponding to the valley between two peaks of the distribution),
and the low state where the protein number is small.

A. The continuous model can exhibit bimodality:
The case of slow switching

Here, we use the above continuous model to show how
promoter noise or switching noise contributes to bimodality in
the case of slow switching. For this, we change the feedback
strength while keeping the other parameters fixed. This will
change the noise “Ratio” defined by Eq. (20) since this ratio
is a function of feedback strength. We compare numerical
results obtained using three models: the exact model (2), the
continuous model (15), and the adiabatic model (17). The
numerical results are shown in Fig. 3, where the first column
corresponds to the exact model, the second column to the
continuous model, and the third column to the adiabatic model.
Note that by slow switching we mean that the relative switching
rates f/γ and λ/γ are small. In numerical simulation, they are
set as less than 1 but γ is fixed at γ = 1.

From Fig. 3, we observe that the total noise in the exact
model and the factorial noise (i.e., promoter noise) in the
continuous model can all induce bimodality for a large noise
ratio, referring to the first and the second columns in Fig. 3,
but the factorial noise (i.e., translational noise) in the adiabatic
model cannot induce bimodality for any noise ratio, referring
to the third column in Fig. 3. The leftmost diagram of the
first row in Fig. 3 shows a three-dimensional pseudodiagram
for probability distribution in the exact model, where the
horizontal axis represents the protein number, the vertical
axis represents the noise ratio defined by Eq. (20), and
different colors represent the change of probability distribution
(see color bar on the right). This subfigure along with four
subfigures below it (these subfigures correspond, respectively,
to four different feedback strengths 0, 0.1, 0.3 to 1 from top
to bottom or, respectively, to different noise ratios 5, 3.2, 0.4
to 0.03, also from top to bottom) clearly shows how the total
noise can induce bimodality in the case of slow yet symmetric
switching. More precisely, for a pair of small relative switching
rates (e.g., f/γ = 0.5 and λ/γ = 0.5), the total protein noise
consisting of both promoter noise and translational noise and
the promoter noise each can induce bimodality for a large noise
ratio (e.g., Ratio = 5.0 or 3.2) but only the translational noise
cannot solely induce bimodality for any noise ratio. Moreover,
the bimodality will disappear with the increase of feedback
strength (e.g., from 0.3 to 1) or with the decrease of the noise
ratio in this case (e.g., from 0.4 to 0.03).

We also observe, by comparing three diagrams from
bottom to top in the first and second columns of Fig. 3,
that the total noise can induce bimodality but the promoter
noise cannot for the same feedback strength (orange line in
Fig. 3). This implies that only when the feedback strength
is below a certain threshold, can the promoter noise induce
bimodality. Moreover, the threshold of feedback strength for
the total noise-induced bimodality is different from that for the
promoter noise-induced bimodality. More precisely, the former
is larger than the latter, which is in accord with our intuition
since the total noise is always higher than the promoter noise.
The difference between them can be offset by the feedback
strength. In addition, we can show that in the case of symmetric
yet slow switching, the smaller the feedback strength, the larger
the noise ratio (data are not shown). This point can be partially
seen from the setting of parameter values used in Fig. 3.
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FIG. 3. (Color online) The total noise and the promoter noise can separately induce bimodality in the case of slow and symmetric switching,
where the first column corresponds to the exact model, the second column to the continuous model, and the third column to the adiabatic
model from left to right. Two switching rates are set as f = λ = 0.5, the protein’s synthesis rates at on and off states as k1 = 20 and k2 = 0,
respectively, and the decay rate as γ = 1. The top subfigures of each column are pseudodiagrams for distribution, probability density, and
distribution from left to right. Four subfigures of each column below the first row, which show four particular distributions, correspond,
respectively, to feedback strengths 0, 0.1, 0.3, and 1 from top to bottom. Note that the size of “Ratio” is determined uniquely by feedback
strength if the other parameters are fixed, so if the feedback strength changes from 0, 0.1, 0.3, and 1, then the “Ratio” changes from 5, 3.2, 0.4
to 0.03.

Note that the results shown in Fig. 3 actually correspond to
the case of symmetric switching due to the specific setting of
parameter values. Next, we consider the case of asymmetric
switching. The numerical results are shown in Fig. 4, where

two switching rates are set as f = 0.9 and λ = 0.5, which are
not equal, meaning that switching is asymmetric. In addition,
we observe from the first column of Fig. 4 that only when
the noise ratio is in a certain range or equally only when the
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respectively.
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feedback strength is in a certain range, can the total noise
induce bimodality. In other words, to guarantee that the total
noise can induce bimodality, feedback strength cannot be too
large or too small.

In addition, we observe from the first diagram of the first
column (from top to bottom) in Fig. 4 that bimodality exists
only in the case that the positive feedback strength is within
the interval of 0.1 and 1. If the feedback strength is larger than
1, however, the protein distribution will become unimodal for
all the three models (data are not shown). Note that a small
noise ratio corresponds to a large feedback strength or vice
versa if the other parameters are fixed. With the increase of
the feedback strength, the promoter noise becomes quickly
decreasing and the translational noise becomes dominant.
In this case, the shape of the exact protein probability (see
the cyan curve in the first column of Fig. 4) is almost the
same as that of the protein distribution in the adiabatic model
(see the dashed cyan curve in the third column of Fig. 4).
Thus, we conclude that if the translational noise is much larger
than the promoter noise, then the appearance of unimodal
distribution in the exact model is mainly due to the stochastic
birth and death of protein.

Then, let us observe characteristics of the diagrams in the
second column of Fig. 4 (corresponding to the continuous
model). The first subfigure of this column beginning at the
top is a pseudodiagram for probability density function,
where the horizontal axis represents the normalized protein
concentration, the vertical axis represents the noise intensity,
and the color bar shows the change of probability density
function. This subfigure clearly shows that the promoter noise
can solely induce bimodality but the feedback strength must
be in a suitable range (neither too large nor too small). Note
that the probability distribution in the exact model is unimodal
in the absence of feedback (see the dot-dashed red line in
Fig. 4). In this case, we can see from the change of the noise
ratio that promoter switching is the main source of expression
noise. Moreover, the shape of probability distribution in the
exact model is similar to that of probability distribution in the
continuous model.

Next, let us turn to analyzing the diagrams in the third
column of Fig. 4, which corresponds to the adiabatic approxi-
mation (or the adiabatic model). The first subfigure of the third
column beginning at the top is a pseudodiagram for probability,
where the horizontal axis represents the protein number, the
vertical axis represents the noise intensity, and the color bar
shows changes in the probability size. This subfigure clearly
shows that translational noise cannot induce bimodality for
any feedback strength in the case of slow yet asymmetric
switching. Note that if the feedback strength is larger than 0.5,
then the shape of unimodal probability distribution in the exact
model is almost the same as that of probability distribution in
the adiabatic model (cyan line in Fig. 4).

For clarity and understanding, here we provide a brief
summary for the above analysis. The promoter noise in the
continuous model can induce bimodality in the case of slow
switching. The threshold of feedback strength corresponding
to this functional noise is in general different from than that of
the feedback strength for the total noise-induced bimodality. In
the case that feedback strength is not very large, the shape of the
distribution induced by the total noise in the case of asymmetric

switching is similar to that of the distribution induced by
the promoter noise in the case of asymmetric switching, and
the change trends in the shape of distribution with feedback
in the two cases are the same (i.e., from unimodality to
bimodality and finally back to unimodality). Moreover, this
change tendency is determined mainly by promoter noise that
can be regulated by feedback. The shape of distribution in
the adiabatic model is almost kept invariant (more prcisely,
independent of feedback). In addition, the noise ratio is not
a monotonic function of feedback strength in the case of
asymmetric switching but first increases and then decreases
as the feedback strength increases from 0 to 1.

Finally in this section, we give a simple biological inter-
pretation and simply discuss the biological implications of our
results. As is well known, promoter noise is important in eu-
karyotic cells [38,59–61], where transitions between on and off
states are much less frequent. An analysis of gene expression
in mammalian cells showed that mRNAs are often produced in
bursts during periods of time when the gene is transcriptionally
active [52]. The characteristic number of mRNAs or proteins is
in general much larger in eukaryotic cells than in prokaryotic
cells, so transcriptional or translational noise in eukaryotic
cells may be neglected in many cases [25,55], or considered in
a diffusion approximation [33,62]. A biological example is the
cell-cycle transcriptional regulator gene SWI6 in yeast, where
expression noise originates almost only from gene switching
but transcriptional noise is negligible [27]. According to these
facts, combined with our analysis, we can infer that stochastic
bimodality in eukaryotic cells is induced mainly by promoter
noise.

B. An adiabatic model can exhibit bimodality:
The case of fast switching

Here, we show how translational noise can induce bi-
modality in the case of fast switching. Similar to the case
of slow switching, we change the feedback strength while
keeping the other parameter fixed. This will change the noise
“Ratio” defined by Eq. (20). We also compare numerical
results obtained using three models: the exact model (2), the
continuous model (15), and the adiabatic model (17). Note
that by fast switching we mean that the relative transition
rates f/γ and λ/γ are larger than 1. In prokaryotic cells,
gene activation and deactivation are thought to be very fast
due to small volume, implying that transcription factors more
easily contact and more frequently bind to gene promoters.
In most cases, the transition rates between on and off states
are not equal (asymmetric). In fact, the rate switching from
on to off is much larger than that from off to on [23].
Therefore, we set f/γ and λ/γ all more than 1 but unequal
in numerical simulation. In addition, we can set γ = 1
without loss of generality. We point out that in the case
of fast switching, numerical simulation verifies that if the
switching rates are equal or if the switching rate from off
to on is larger than that from on to off, then the probability
distributions in the three models are all unimodal (data are not
shown).

We show numerical results by distinguishing two cases:
both strong feedback and fast switching; both weak feedback
and fast switching. The results for the former are shown in
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FIG. 5. (Color online) The total noise and the translational noise both can induce bimodality in the case of both strong feedback and fast
switching, where the first column corresponds to the exact model, the second column to the continuous model, and the third column to the
adiabatic model from left to right. Two asymmetric switching rates are set as f = 20 and λ = 2, the protein synthesis rates as k1 = 5 and k2 = 0,
and the protein degradation rate as γ = 1. The top subfigures of each column are pseudodiagrams for distribution, probability density, and
distribution from left to right. Four subfigures of each column below the first row, which show four particular distributions, correspond,
respectively, to feedback strengths 8, 12, 18, and 20 from top to bottom. Correspondingly, the promoter noise strength in the second column is
0.029, 0.007, 0.0025, and 0.0019, respectively, and the translational noise strength in the third column is 0.3, 0.27, 0.247, and 0.242, respectively,
so the noise ratio is 0.07, 0.026, 0.01, and 0.008, respectively.

Fig. 5, whereas the results for the latter are shown in Fig. 6. In
the case of both strong feedback and fast switching, the total
noise and the translational noise both can induce bimodality.
In the case of both weak feedback and fast switching, however,
only the translational noise can induce bimodality (but the total
noise cannot).

Specifically, when the promoter switching rates are larger
than 1, the probability distribution in the continuous model is
always unimodal no matter how the other parameter values are
selected (second column in Fig. 5). However, the probability
distribution in the adiabatic model is always bimodal in spite
of the change of feedback strength (the third column in
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FIG. 6. (Color online) The translational noise can induce bimodality but the total noise cannot in the case of both weak feedback and fast
switching, where the first column corresponds to the exact model, the second column to the continuous model, and the third column to the
adiabatic model from left to right. Two asymmetric switching rates are set as f = 20 and λ = 2, the protein synthesis rates as k1 = 5 and
k2 = 0, and the protein degradation rate as γ = 1. The top subfigures of each column are pseudodiagrams for distribution, probability density,
and distribution from left to right. Four subfigures of each column below the first row, which show four particular distributions, correspond,
respectively, to feedback strengths 0, 0.2, 0.8, and 1 from top to bottom. Correspondingly, the promoter noise strength in the second column is
0.435, 0.429, 0.406, and 0.397, respectively, and the translational noise strength in the third column is 1.83, 1.98, 1.08, and 0.94 respectively,
so the noise ratio is 0.23, 0.211, 0.37, and 0.42, respectively.

Fig. 5). Similarly, the probability distribution in the exact
model is always bimodal as feedback strength increases (the
first column in Fig. 5). Moreover, the shape of distribution in
the adiabatic model is fundamentally similar to that in the exact
model (comparing the first and the third columns in Fig. 5).
How noise (including the total noise and the translational
noise) induces bimodality can be also seen clearly from three

subfigures in the first row of Fig. 5, where the first and
third subfigures from left to right are two pseudodiagrams for
probability, whereas the second subfigure is a pseudodiagram
for probability density function.

As is well known, the noise caused by stochastic gene
switching is typically low since promoter switching rates are
relatively large in prokaryotic cells. Due to the small number of
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mRNAs or proteins, gene expression noise in prokaryotic cells
originates mostly from transcription or translation events [18].
Thus, we can infer from Fig. 4 that in prokaryotic cells, the
appearance of bimodality in the exact model is determined
mainly by the noise from the random birth and death of protein
(i.e., translational noise), implying that promoter noise has
hardly any contribution to noise-induced bimodality in the
case of strong feedback.

Next, we turn to the case of both weak feedback and
fast switching. We have seen that in the case of slow gene
switching, if two switching rates are equal or if the switching
rate from off to on is smaller than that from on to off, then
bimodality can appear not only in the exact model but also
in the continuous model. Therefore, to present reasons why
noise-induced bimodality can appear in a two-stage gene
model, we consider only the case that the gene switching rates
are asymmetric, i.e., the promoter inactive rate is much larger
than the active rate. In this case, we find an interesting fact, that
is, the translational noise can induce bimodality but the total
noise cannot, referring to Fig. 6. This result implies that only
in the case that the noise ratio is small enough, can the role of
translational noise in inducing bimodality be apparent. Note
that this role of translational noise cannot appear in the case of
weak feedback. In fact, for weak feedback, translational noise
cannot be small but promoter noise may be very large, leading
to the fact that the noise ratio is not small.

Now, we describe some details. From Fig. 6, we observe that
in the case of asymmetric and fast switching (two switching
rates are set as f = 20 and λ = 2 in simulation), translational
noise cannot induce bimodality if the feedback strength is very
small (e.g., less than 0.2) but can if the feedback strength is
beyond a threshold (larger than 0.2). In all the cases, neither the
total noise nor the promoter noise can induce bimodality. Three
subfigures in the first row of Fig. 6 show panoramas of how
noise influences probability or probability density function
in three models with only the feedback strength parameter
changing.

In particular, we can give, based on Figs. 5 and 6, conditions
under which the noise can induce a bimodal distribution in
the exact model. If the two-stage model neglects translational
noise, then the protein distribution is always unimodal (see
the second column in Fig. 5). If the noise ratio is small
enough (e.g., less than 0.07), then the bimodal distribution
can appear (see the red dot-dashed curve in the first column
of Fig. 5). If the feedback strength is smaller than 0.8, then
the protein distribution is always unimodal in the exact model
but bimodal in the adiabatic model (the orange line and the
dashed cyan line in Fig. 6). On the other hand, bimodality can
still be sustained whenever the feedback strength continues to
increase (Fig. 6). This is in full accordance with the pattern
of probability distribution in the adiabatic model (see black,
orange, and dashed cyan lines in the first and third columns of
Fig. 5).

In addition, we find in the case of fast switching, only when
the production rate of protein is small enough (e.g., less than
10), can the exact and adiabatic models exhibit a bimodal
distribution simultaneously. In other words, only when the
translational noise is so large that the noise ratio is very small,
can the bimodality appear in both models. Moreover, the shape
of two distributions is similar in the case of strong feedback.

In this case, the effect of promoter noise is negligible and the
synthesis and decay of protein is a main source of noise that
induces bimodality.

Similar to the case of slow switching, here we also provide
a brief summary for the above analysis. If gene switching is
fast, then the translational noise can solely induce bimodality
but the promoter noise cannot. In the case of translational
noise-induced bimodality, the total noise may or may not
induce bimodality, depending on either its level or on feedback
strength. More specifically, in the case of strong feedback, the
translational noise and the total noise can all induce bimodality
and the shape of both bimodal distributions is similar, but the
promoter noise cannot induce bimodality; in the case of weak
feedback, the translation noise can still induce bimodality but
neither the total noise nor the promoter noise can. Note that
the conclusion obtained in the case of both weak feedback and
fast switching is different from that obtained in the case of
both strong feedback and fast switching.

Finally in this section, we give a simple biological inter-
pretation and simply discuss the biological implications of our
results. As is well known, transcriptional or translational noise
is characteristic of prokaryotic cells in which the mRNA or
protein number is in general very small [16,17,63]. Recently,
Taniguchi et al. [18] showed that the most frequent average
protein number is of the order of 10, whereas the most
frequent average mRNA number is even of the order of 1.
The gene switching in prokaryotic cells is thought to be
very fast and gene regulation is frequently considered as an
adiabatic process [19] where only mRNA transcription or
protein translation, or both, is important [10,20,21]. According
to these facts combined with our analysis, we can infer that
stochastic bimodality in prokaryotic cells is induced mainly
by transcriptional or translation noise.

C. Promoter noise and translational noise can cooperatively
induce bimodality: A general case of switching

In the previous two sections, we have discussed the effects
of noise on the expression spectrum in the two limit cases, fast
switching and slow switching, and have shown that promoter
noise and translational noise can solely induce bimodality.
Here we consider a general case of gene switching, i.e., we
consider that the levels of promoter noise and translational
noise are of almost the same order of magnitude. The numerical
results are shown in Fig. 7, where the first column corresponds
to the exact model, the second column to the continuous model,
and the third column to the adiabatic model.

From Fig. 7, we observe that the promoter noise and the
translational noise cannot induce bimodality separately but
the total noise can. The first subfigure from the left of the
first row clearly shows how the total noise in the exact model
can induce bimodality, where the horizontal axis shows the
protein number and the vertical axis shows the ratio of the
promoter noise level over the translational noise level, which is
only a function of feedback strength under the hypothesis that
the other reaction rates are fixed and is therefore determined
uniquely by feedback strength. Four diagrams below this
subfigure show the images of four particular distributions,
which correspond, respectively, to feedback strengths 3, 4,
5, and 9 from top to bottom. We see that noise-induced
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FIG. 7. (Color online) Both promoter noise and translational noise (i.e., the total noise) can cooperatively induce bimodality but the single
factorial noise cannot, where the first column corresponds to the exact model, the second column to the continuous model, and the third
column to the adiabatic model from left to right. Two switching rates are set as f = 20 and λ = 2, the protein synthesis rates as k1 = 10 and
k2 = 0, and the protein degradation rate as γ = 1. The top subfigures of each column are pseudodiagrams for distribution, probability density,
and distribution from left to right. Four subfigures of each column below the first row, which show four particular distributions, correspond,
respectively, to feedback strengths 3, 4, 5, and 9 from top to bottom. Correspondingly, the noise ratio is 0.82, 0.35, 0.18, and 0.04, respectively.

bimodality can appear only in the cases of moderate feedback
strengths. The latter two subfigures in the first row clearly
show that promoter noise and translational noise cannot induce
bimodality separately. The combination of all these subfigures
indicates that only the cooperation of promoter noise and
translational noise can induce bimodality. In addition, we
observe that increasing the feedback strength can shift the

peak of distribution in the continuous model and takes it away
from the origin (see the second column) but cannot impact
the shape and the peak location of distribution in the adiabatic
model.

It should be pointed out that for a small feedback strength
(e.g., less than 1), each of three kinds of noises (total
noise, promoter noise, and translational noise) cannot induce
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bimodality in the cases that two gene switching rates are
moderate (data are not shown).

V. CONCLUSION AND DISCUSSION

That gene expression noise can induce bimodality is a
known yet interesting fact [35,36], and this bimodality would
be important for cellular survival in fluctuating environ-
ments [35]. On the other hand, complexity of gene expression
would imply that expression noise is of multicomponents.
Tracing different sources of noise and quantifying the effect
of factorial noise on the expression spectrum is fundamentally
important for understanding intracellular processes. Here, we
have analyzed a representative gene model, the two-state
model with autoregulation. This mode ignoring transcription,
although simple, contains two representative sources of noise:
gene switching and translation (i.e., birth and death of protein).
We have shown that promoter noise and translational noise can
play different roles in inducing bimodality. Specifically, only
the promoter noise itself can induce bimodality in the case
of slow switching; the translational noise can independently
induce bimodality in the case of both fast switching and weak
feedback; in the case of both fast switching and low protein
synthesis, the appearance of bimodality is determined mainly
by the translational noise if feedback is strong (Fig. 5), but
if feedback is weak, then the adiabatic model can exhibit a
bimodal distribution, whereas the exact model cannot (Fig. 6)
(in other words, only for both a small mean protein number
and strong feedback, does the translation noise play a decisive
role in noise-induced bimodality); both the promoter noise and
the translational noise can cooperatively induce bimodality in
other cases. Our results indicate that factorial noise would be
important and cannot be deliberately neglected.

For a probability master equation describing the stochastic
behavior of the two-state gene model with autoregulation,
we have proposed two simplified models to trace the effects
of factorial noise—continuous and adiabatic models—and
derived analytical distributions in these limit models. These
approximations, which are effective under suitable hypotheses
(see Sec. III), can be easily extended to other more complex
cases. In particular, the continuous approximation is in
general effective for eukaryotic cells, whereas the adiabatic
approximation is generally effective for prokaryotic cells. This
is because gene switching is slow and the protein copy number
is large in a eukaryotic cell but the former is fast and the latter
is small in a prokaryotic cell. Thus, we can infer an interesting
fact, that is, eukaryotic stochastic bimodality is induced mainly
by promoter noise, whereas prokaryotic stochastic bimodality

is primarily induced by transcriptional or translational noise.
This inference indicates that mathematical models are a strong
tool for understanding complex biological phenomena.

Gene expression is a complex biochemical process. Except
that several biochemical subprocesses such as switching
between gene states and both synthesis and degradation of
protein have been considered here, there would be many other
biochemical subprocesses, such as RNA nuclear retention
[64–66], alternative splicing [67,68], and more complex
transition patterns among promoter states (i.e., a gene has many
activity states) [37,69]. Each of these detailed processes may
in principle lead to fluctuations in mRNA and protein, thus
contributing to the resulting expression noise. Investigating
how each factorial noise carries out its biological function
as done in this paper would be interesting and is worth
being further investigated. For a gene model with many on
states or off states, or both, one can also use the continuous
approximation proposed here to trace the effect of promoter
noise due to stochastic transitions among gene activity states
on expression level. In particular, for a gene model with the
multi-on mechanism, which may produce multimodality [37],
the promoter noise would modify this multimodality, e.g., it
would make it become unimodal (data are not shown here),
but for a multi-off gene model, we have previously shown that
the multi-off mechanism always attenuates expression noise
and can modulate the noise to the lowest level [53].

Deterministic bistability can occur in many systems with
positive feedback loops [29,31,70]. A feedback loop may
be formed by binding of transcription factors to DNA. This
binding may be linear (e.g., the case that has been considered
here) but also nonlinear [31,70]. In addition, some bistable
systems can become monostable when the system parameters
(i.e., reaction rates) are changed. In the case of nonlinear
feedback, a similar conclusion to that obtained in this paper can
be also obtained but new phenomena can take place (results
will be published elsewhere).

Finally, it should be pointed out that the investigation in this
study primarily gives us insight about the design principles of
gene regulatory systems as well as about how the cooperative
effect of gene switching and feedback impacts expression
noise.
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