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Scaling and optimal synergy: Two principles determining microbial growth in complex media
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High-throughput experimental techniques and bioinformatics tools make it possible to obtain reconstructions
of the metabolism of microbial species. Combined with mathematical frameworks such as flux balance analysis,
which assumes that nutrients are used so as to maximize growth, these reconstructions enable us to predict
microbial growth. Although such predictions are generally accurate, these approaches do not give insights on
how different nutrients are used to produce growth, and thus are difficult to generalize to new media or to
different organisms. Here, we propose a systems-level phenomenological model of metabolism inspired by
the virial expansion. Our model predicts biomass production given the nutrient uptakes and a reduced set of
parameters, which can be easily determined experimentally. To validate our model, we test it against in silico
simulations and experimental measurements of growth, and find good agreement. From a biological point of
view, our model uncovers the impact that individual nutrients and the synergistic interaction between nutrient
pairs have on growth, and suggests that we can understand the growth maximization principle as the optimization

of nutrient synergies.

DOLI: 10.1103/PhysRevE.91.062703

I. INTRODUCTION

The rapid development of high-throughput experimental
techniques and bioinformatics tools has made it possible
to obtain reliable metabolic reconstructions from genomic
data in a semiautomatic fashion [1-4]. The availability of
such reconstructions makes it possible, in turn, to investigate
metabolism from a systems point of view [5]. In particular,
the development of a mathematical framework to predict
cellular growth based on cellular function optimization has
significantly advanced our understanding of how the metabolic
state of an organism will change upon modifications in the
growth medium, the introduction of mutations, or the effect of
stress [6—12].

Unfortunately, our ability to calculate microbial growth
rates has not been paralleled by a substantial gain of insight into
metabolic processes, especially for what concerns the impact
of nutrients on growth. A number of mathematical models
have been developed aiming at predicting microbial growth
rates [13—18], but these models are only valid for a limited
number of specific nutrients and are not easily generalizable
because of the need to determine parameters empirically.

Here, we present a systems-level phenomenological model
that enables us to predict growth and, at the same time, provides
insights into the effective systems-level principles by which
nutrients are catabolized. Our approach does not predict which
nutrients will be uptaken from a given medium; rather, it
predicts, from the values of the uptakes, how each nutrient
will contribute to cellular growth. Despite the fact that we use
flux balance analysis (FBA) to develop, justify, and validate
our model (and that, as we discuss later in Sec. IV, FBA has
well known limitations), the model is ultimately independent
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of FBA and of any particular metabolic reconstruction; in this
sense, the model is also organism independent.

Our approach, which is analogous to a virial expansion,
reveals that cellular growth can be well approximated by the
contributions of each individual nutrient plus a synergy term
that considers nutrient-pair contributions. We demonstrate that
the predictions of the model are in good agreement with
empirical measurements of biomass production. Moreover,
our model provides insight into the effective contributions
to growth since we can express synergy contributions as
scaling functions that depend exclusively on four factors:
the type of nutrients considered, the pathways that catabolize
them, the ratio between their uptake fluxes, and the effective
carbon content of each nutrient. Uptake fluxes are allocated
among possible synergistic contributions in order to maximize
synergy, thus revealing the principles of nutrient use that lead
to the maximization of biomass production.

II. MODEL

Our goal is to express in closed form the steady-state growth
rates g of a bacterium given the nutrient uptakes from the
external medium, without taking explicitly into account any
microlevel information about the processes occurring inside
the cell. In [19] and [20], models to predict which nutrients
can produce growth and what constraints are necessary to
reproduce observed uptakes in rich media were already
developed. Here, we consider that the real uptake fluxes of each
nutrient are known and fall within the empirical range which
ensures that nutrient uptakes can be fully catabolized [9].

To validate our model, we use FBA predictions of biomass
production for Escherichia coli using the metabolic recon-
struction 1AF1260, which has been shown to yield a good
agreement with empirically measured growth rates [21]. Note
that we focus exclusively on the use of nutrients for biomass
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polymerization, discarding the role of ATP maintenance
(see [19] and Sec. IV). For simplicity, we focus on nutrients
that belong to one of the four main nutrient classes: sugars,
fatty acids, amino acids, and bases (see Appendix A for a
complete list).

Following a virial expansionlike formulation, we hypoth-
esize that, given a fixed vector of nutrient uptake fluxes ¢,
we can express the steady-state biomass production of an
organism as

E E
D@+ Y Bik(d i)

i=1

g(¢@) =

Jj<k

+ Z V(@i @ 1)+ -,

i<j<k

(D

where E is the number of uptakes.

A first order approximation is equivalent to considering
that each single nutrient contributes independently to g(¢) as
in [19]. In analogy to the ideal gas approximation, we call
this model idealized metabolism (IM). Note that because we
consider the nutrient use for stationary biomass production
exclusively, in the presence of a single nutrient uptake (i.e.,
¢; #0 for a single i and ¢ =0 for k # i) the scale of
our system is precisely given by ¢;. Therefore, the biomass
production must be proportional to ¢;, so that g(¢;) = &¢;,
where & is the biomass yield of nutrient i [9,19,22]. For the
first order terms, we thus write

E E
D aid) =) &
i=1 i=1

We evaluate &; for each nutrient i by computing the FBA
biomass production grpa(¢®) allowing for a single nutrient
uptake

8(¢) = 2

Vj#i,

where we use arbitrary units, since all fluxes are defined up
to a multiplicative constant in the FBA problem. Note that
in Eq. (2), only purines among bases can be accounted for
growth, since pyrimidines alone cannot be catabolized by
E. coli [19]. Previously, we found that &; is proportional to
the effective number of carbons C;, that is, the number of
carbons that are actually catabolized' in each metabolite i as

3)

with a slope a, that is nearly insensitive to the nutrient class ¢
[fatty acids, sugars, amino acids; see Fig. 1(a)]. Here, both the
vector & and the slopes a, are dimensionless quantities.

To assess the accuracy of the IM, we compare the
predictions of the model against FBA calculations for the
growth of E. coli on random complex media with a fixed
number of nonzero nutrient uptakes (Methods). Because g is
defined up to a multiplicative constant, the larger the total
uptake, the larger is the biomass production. We thus consider

¢ = ¢; = 1 arb. units,
" |¢; = 0 arb. units,

a; =a.C;,

For the nutrient classes we consider, the effective carbons equal
the actual carbons for all nutrients except for the bases.
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complex uptake vectors normalized to 1, to mimic physiologic
conditions. However, we note that we would obtain the same
relative errors for a fixed number of uptakes if we considered
non-normalized fluxes.

Figure 1(c) shows that despite its simplicity, the idealized
model is fairly accurate, with a relative error, A := M,
ranging from ~0-2% for one nutrient to 24% for 20 uptakes
Note that using Eq. (3) to predict growth lightly overestimates
single nutrient contributions to growth, as the corresponding A
for growth on one nutrient shows. This effect however is neg-
ligible when increasing the number of uptakes above E > 5.
It is also apparent that the IM systematically underestimates
FBA predictions for media with E > 2 nutrients, which
implies that when several nutrients are present, they contribute
synergistically to growth.

III. RESULTS

A. Scaling of second order terms

In order to capture nutrient growth synergies, we consider
next the second order terms in Eq. (1). Using FBA, we
numerically determine f;; by setting to zero all entries of
the exchange fluxes except ¢; and ¢; and computing the
difference,

Bij(#i.0)) = grea(@) — &g — &9, 4

where ¢/ is the vector ¢ such that ¢ = OVk #£1i,j
[Fig. 2(a)].

Since there is only one output in our system (biomass), the
scale of g is fixed by one of the uptake fluxes (for instance
¢;) and the dependency on the remaining uptake fluxes can
be expressed as dimensionless quantities, which are ratios of
uptake fluxes. As a consequence, we expect 8 to obey a scaling

property [Fig. 2(b)]:
_ ¢ )
; (G

5B =iy (1) =
?;
Remarkably, we find that B displays additional scaling
properties. For concreteness, consider the synergy between
sugars and fatty acids. We found that the 8 functions for any
sugar-fatty acid pair [Fig. 2(c)] collapse on the same curve
when the sugar and the fatty acid uptake fluxes ¢;, ¢; are
rescaled with respect to the effective number of carbons C;,
C; of the corresponding nutrient [Fig. 2(d)]. One thus has

, $iy_ 1, (Cid
ﬁsug,f,acid(d)_j) - Cj 'BU (C]¢j) ’

so that the introduction of the rescaled B’ function allows
us to have a systematic description of growth only given the
nutrient-pair classes, their carbon content, and the ratio of
their uptake fluxes. For each nutrient-class pair o, ¢’ it is
therefore possible to define a function g, that displays a
simple two-regime behavior [Fig. 2(d)], in which one of the
nutrients becomes the limiting factor in the contribution to
growth. Considering again the case of sugars and fatty acids,
when the ratio C;¢; /(C;j¢;) — 0 the function ,BSU, ¢ acid STOWS
linearly, while when C;¢;/(C;¢;) > 1 it reaches a plateau.
To capture these two regimes, we propose the generalized

(&)

(6)
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FIG. 1. (Color online) Idealized metabolism theory. (a) The & parameters introduced in Eq. (2), vs the number of effective carbons for each
of the nutrients considered in our study. We consider nutrients in four groups: sugars, fatty acids, bases, and amino acids. The & coefficients are
a linear function of the effective number of carbons whose slope depends very weakly on the nutrient class, except for bases [see panel (b)].
The dashed lines show linear fits for each class of nutrients, while the black dotted line is a fit considering all of them together. (b) The
coefficients a, introduced in Eq. (3). We show the values of a. obtained from the fits shown in panel (a). a. varies weakly with nutrient class.
(c) Predictions of the idealized metabolism theory, Eq. (2), vs FBA results for a selection of 100 random media with increasing number of
possible uptakes (see Methods). Filled red circles correspond to using exact « values, and empty blue squares to Eq. (3). (d) The relative error
A= W of the IM theory predictions for the two different choices of & averaged over 500 random media, for increasing number of
uptakes. A is relatively small in presence of a few nutrients only, but it increases roughly linearly. Note that the error performed when using
Eq. (3) in presence of one nutrient only is different from zero, meaning that Eq. (3) does not correctly capture single nutrient contributions to
growth. This effect however is negligible increasing the number of nutrients, as the two A curves overlap.

phenomenological model:

, ¢),’ _ ba,-aj Ci¢i
Bs.o, ((p_]) = by, 0, tanh (m) ) (N
where
_ B'(pi/P))
0i0j — ¢i/p;—0 ¢t/¢] ’ (8)
boyo = @/g,n_l)oo B (@i/95).

Here o; and o; are the classes of nutrient i, j, respectively,
while by, and by, are dimensionless parameters, since they
are defined as a flux ratio. These parameters can be interpreted

as the limiting synergistic contribution to the biomass yield
when one of the two nutrients is in excess of the other. In this
formulation, knowing the limiting contributions is thus enough
to compute the synergistic contribution to growth of any
sugar-fatty acid pair and for any value of the uptake fluxes. For
instance, the transition value 7'(sug,f-acid) = b, .. /Poyracia
marks the relative sugar-fatty acid uptake values at which
maximal synergy may be attained without waste of nutrients.

Figure 3 shows the averaged collapsed curves for all nutrient
class pairs we consider. Our calculations indicate that Eq. (7)
is a fairly good description for such averaged 8, although we
note that for each nutrient class pair 8’ has different parameters
(see Table I for a summary of the averaged parameters for
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FIG. 2. (Color online) Scaling of nutrient synergy contributions. (a) The function 8, Eq. (4), that expresses the gap between the linear
model predictions Eq. (2) and the FBA results for the growth rate of E. coli, when there are two nutrient uptakes different from zero. We show
here the simultaneous uptake of dodecanoate and butyrate (both fatty acids) as a typical example. § is a growing function of the exchange
fluxes of both nutrients. The circles and crosses correspond to the two (example) curves that are shown, once rescaled, in panel (b). (b) Scaling
property of B, Eq. (5). We plot the same data points of panel (a): each curve shows /¢, as a function of ¢, /¢,, for two different fixed values
of ¢. Such normalization allows us to collapse all points on the same curve. (c) The function Eq. (5) for a set of five sugar-fatty acid pairs, that
shows a characteristic linear-plateau behavior. (d) The rescaling property Eq. (6). We rescale the uptake fluxes of the nutrient pairs shown in
panel (c) with the number of carbons of each nutrient. All the points collapse on the same curve. The dotted line corresponds to the function

Eq. (7), where we set b, ,b,, . as the average of the set b_, b, .

each one of these curves). Note that, for nutrients in the same
class, it is not necessary to consider all pair permutations. One
can, for instance, sort nutrients in a given class o by their
carbon content and evaluate the parameters b,, only between
pairs 7, j such that C; < C;. This is the approach we follow in
evaluating the parameters b,,/, which, as a consequence, are
not symmetric when o = o’.

The phenomenological model in Eq. (7) captures very well
the behavior of 8’ for four of the nine cases: (fatty acid, sugar),
(fatty acid, fatty acid), (base, sugar), and (base, base) pairs
[Figs. 3(a), 3(d), 3(b), and (g)].2 For the (base, fatty acid) case
[Fig. 3(e)], we find that the phenomenological model in Eq. (7)
does not fully capture the behavior of the averaged 8. In such
case we still find that 8’ is roughly linear for ¢ /¢, <« 1 and
shows a plateau when ¢; /¢, > 1, as predicted by Eq. (7).

2Note that nutrients in the same class are ordered with their carbon
content and pair permutations are not considered. Thus in ,3’(%),
¢, always corresponds to the nutrient with the smaller number of
carbons. This implies that, for the 8’ within the same class, the average
slope and plateau values are not equal (see Table I). We also remind
that, in the base-base pair case, we only consider pairs of purines as
E. coli cannot catabolize pyrimidines by themselves.

for all the sugar-fatty acid pairs.

However, for C¢;/(C2¢,) >~ 1, the model overpredicts the
observed synergy. Despite this deviation, Eq. (7) is a good
trade-off between model simplicity and predictive power,
since the initial slope of B’ and the plateau value are well
predicted by taking the average of the parameter b over all
nutrient pairs.

Finally, for all pairs including amino acids
[Figs. 3(c), 3(f), 3(h), and 3(i)], we find that not all
curves collapse into a single one. In particular, we see that
when @oher/Paacia > 1 ({other : sugar, f_acid, base, a_acid}),
the scaling functions reach different plateau values, which
always lie either above or below a 10~2 threshold value,
respectively. Interestingly, for interclass interactions, any
given amino acid consistently reaches a plateau above or
below such threshold independent of the other nutrient
paired with it. We hence classify amino acids into two
groups, L (low synergy), H (high synergy), according
to whether they can attain a synergy below or above the
mentioned 10~ threshold, for interclass synergies. For amino
acid—amino acid interactions, we thus divide nutrients into
H and L and study intraclass L-H synergies. This allows
us to find two slope and plateau values respectively, each
related to the H or L amino acid limiting the interaction in
turn.
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FIG. 3. (Color online) Nutrient synergy contributions. We show the B’ function, Eq. (6), for pairs of four nutrient classes: sugars, fatty
acids, bases, and amino acids. Dashed lines correspond to the function in Eq. (7) where the parameters {b,,} are averaged over all pair of

nutrients in the corresponding pair of classes.

Using a logistic regression model, we find that the set of
metabolic pathways in which an amino acid participates deter-
mines to which group (H or L) it belongs (see Appendix D).
By minimizing the Bayesian information criterion [23], we
see that knowing whether the amino acid participates in
the set of six pathways listed in Table II is enough to
correctly assign all amino acids except MD-methionine to
either group H or L. Once the corresponding group is known,
we can use Eq. (7) to describe B’ by allowing two plateau
values when the nutrient pair involves an amino acid. In
this way, we can have close estimates of synergies through

the function Eq. (8) for nutrients pairs from all classes, by
only knowing their class and the pathways in which they
participate.

B. Competition for synergistic potentials

When a bacterium grows on a complex medium with
E > 2 nutrients, Eq. (1) yields a sum over E(E —1)/2
synergy contributions resulting in an overprediction of the
biomass production (see Appendix E). The reason for this is
that resources are limited by stoichiometry, thus besides the
independent nutrient contribution to growth of each uptake
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TABLE I. Average numerical values of the parameters of the phenomenological model in Eq. (7). We show here the average slope (b;2)
and plateau (b,,) values of the B’ functions for the cross interactions plotted in Fig. 3. For nutrient pairs involving an amino acid we obtain two
different plateau values, depending on the metabolic processes in which the amino acid participates (see text). If two amino acids are involved,
also an additional slope is needed. When the pair is inverted, for different nutrient classes, the values of the plateau and and slope are also
swapped. Note that we order nutrients according to their carbon content and do not consider pair permutations. For this reason, for pairs of the
same class (e.g., fatty acids—fatty acids), values by, and by, are not equal: b1 captures growth on media where the nutrient with more carbons

is in excess, while b;, renders the opposite situation.

2
1 Fatty acids Bases Amino acids
Sucars b1 24 x 1073 8.8 x 10~ 1.6 x 1073
gars ot 1.2 x 102 3.1%x10°2 2.9 %1072 3.6 x 102
T —4 -2 )
Fatty acids élZ 1.4 x 10_3 1.2 x 1()_2 1.2_;( 10 .
by 3.5 x 10 3.4 x 10 39x 1077 4.1 x 10
B b1 7.2 x 107 3.0 x 1072
ases et s . .
by 1.3 x 10 2.8 x 1077 1.3 x 10
7 —3 —5
Amino acids bz 2.% 1073 5.4 x 10
by 4.x 1073 3.3 x 1072

¢;, resources must be distributed in some way among the
E — 1 possible synergies. Two plausible flux allocations
are the following: (i) an equitative distribution of all {¢;}
among the synergies (equitative synergy model, ES); (ii) a
distribution among synergies that yields maximal synergy,
which we call optimal synergy model (OS). We find that while
the former underpredicts growth rates when increasing the
number of uptakes, the latter yields an accurate prediction
of FBA growth rates roughly independent of the number
of nutrients (Fig. 4 and Appendix E). Our results thus
suggest that, phenomenologically, one can understand the
growth maximization principle observed in microbes as the
optimization of nutrient synergies.

The OS theory exploits the fact that synergy contributions
are limited by the smallest uptake flux Eq. (7), so that only the
nutrients in excess can be used in other synergies. In order to
maximize the overall synergy, we hypothesize that an optimal
allocation of nutrients is adopted to produce the largest pair
synergies. We thus rank nutrient pair synergies and add up
each of them to the total synergy. After each addition, the
fluxes of the pair are rescaled such that the limiting one is not
considered further, while the nutrient in excess can contribute
to other synergies with the fraction of uptake not invested yet
(Methods).

TABLEIIL. The metabolic pathways included in the logistic model
to predict amino acids groups (H or L). We report in the first column
the pathway names, sorted for decreasing Bayesian information
criterion associated with the model. In the second column we list
the number of amino acids participating in each pathway.

No. a.

Metabolic pathway acids
1. alanine, aspartate, and glutamate metabolism 6
2. valine, leucine, and isoleucine degradation 2
3. phenylalanine, tyrosine, and tryptophan biosynthesis 3
4. sulfur relay system 2
5. glycine, serine, and threonine metabolism 7
6. arginine and proline metabolism 7

In a complex growth medium with E nonzero nutrient
uptakes, we thus express the OS growth rate as follows:

8(¢) = Za05¢5+ Z ba,{aj qu(jd)K

(e, ))=1

bO' lof KKJ KCK
X tanh(—’ Kq,”d) ), )
bmq,‘]/ ¢,C,

where the second sum runs over the P = E(E — 1)/2 ranked
pairs of nutrients, 7, is the ranking of the nutrient pair synergy
(x,7), and q,i” € [0,1] indicates the fraction of uptake flux
¢, yet to be allocated to this contribution. As before, Cy is
the effective number of carbons of nutrient £ and o, is the
nutrient class to which nutrient £ belongs, and coefficients b
have been reported in Table 1. The yields &, can either be
directly evaluated for each nutrient, or computed as in Eq. (3),
with parameters a reported in Fig. 1(b). Note that, when
available, it is preferable to use the exact & when dealing with
less than four nutrients, because Eq. (3) slightly overpredicts
single nutrient contributions to growth in this case (this effect
however vanishes when dealing with E > 5 nutrients).

Finally, we compare the biomass production predictions of
our OS model Eq. (9) against FBA predictions for E. coli in
media with a fixed number of nonzero random nutrient uptakes
normalized to 1 (Methods).

Figure 4(a) shows the OS model is able to predict with high
accuracy the growth rates computed by using FBA assumm%

1

known uptakes. The average relative error A := 'gFB‘; FBi““"de

computed over 500 different random growth media with a
fixed number of uptakes is systematically smaller for OS
model predictions than for those of the IM. Notably, the gap
between the two models increases with the number of uptakes,
due to the more synergistic contributions that are being
neglected by the IM model.

Since sugars are the main source of carbons and are
quite commonly included in experimental growth media, to
reproduce these media we always allow the uptake of one
sugar. For more random nutrient setups we find A of the OS
to be slightly larger, but still consistently smaller than the IM
theory (see Appendix E).

062703-6



SCALING AND OPTIMAL SYNERGY: TWO PRINCIPLES ...

(@)

0.70 F
1 Uptake
0.47 + T 1

2 Uptakes g

0.23 T 1

[arb. units]

< 0.70 1 1 1 1

°

Q 3 Uptakes >4 Uptakes

O 047+ + 8

0231 + :

023 047 070 023 047 0.70
gFBA [arb. units]

PHYSICAL REVIEW E 91, 062703 (2015)

(b)

0.25

0.20 -

0.15 -

0.10 -

0.05

0.00 ;
0 5 10 15 20

No. Uptakes

FIG. 4. (Color online) Second order equitative synergy theory. (a) Predictions of the optimized synergy model (OS) Eq. (9), empty blue
squares, vs the FBA results, compared with the IM theory Eq. (2), filled red circles, for 100 different random media at increasing number of
uptakes (see Methods and Appendix C for the details on growth media). Here, we use the exact values of parameter & and the average interclass
value of parameters b. (b) The relative error A = w vs the number of uptakes for the IM (filled red circles) and the OS model (empty
blue squares), averaged over 500 different random medla The relative error of the IM theory grows almost linearly, while it remains much
lower in the OS model and becomes roughly independent of the number of uptakes for E > 6.

C. Comparison with experiments

After validating our model in silico, we test here how well
the OS model predicts actual growth rates in vivo. To do so,
we compare our model with experimental measurements of
nutrient uptakes and growth for bacterial culture on complex
media. Note that obtaining such type of data is generally not
straightforward as measurement of multiple uptakes is typi-
cally hard. Additionally, to date, standard experiments used to
validate FBA generally focus on the simpler case of growth
media with a single source of carbon. Nevertheless, a very
interesting study on complex media where bacterial growth
rate and variation of nutrient concentration are measured was
published by Beg et al. [20]. The authors performed there
some E. coli batch culture experiments that allowed them to
estimate those quantities simultaneously as a function of time.
From their published data, we were able to recover the nutrient
uptakes corresponding to every measured growth rate (see
Appendix F) and to use such uptakes as inputs in our model.
This approach allowed us in turn to compare the predicted
growth rate with the experimental one.

The results are reported in Fig. 5, where we compare OS
model predictions with the experimentally measured growth
rates. Note that now that physiological uptake and growth
values are measured, we can use proper mmol gDW~!h~!
units for the former and A~! for the latter. When doing so,
model Eq. (9) reaches a remarkable accuracy, especially taking
into account that (i) the E. coli strain in the experiments differs
from the reconstruction at our disposal and (ii) we used the
b and a parameters we derived by calibrating the model with
FBA, rather than estimating them ad hoc, thus highlighting the
broad applicability of our model.

The excellent agreement we found between the growth
predicted by our model and the actual growth on a complex
medium supports that scaling and synergy really are two
principles regulating microbial growth in vivo besides their
role in modeling metabolism in silico.

IV. DISCUSSION: SCOPE AND POTENTIAL LIMITATIONS
OF OUR APPROACH

We have used FBA predictions under growth optimization
as a reliable source of growth rates, that is, as a substitute for
growth experiments with real bacteria. Thus, even though our
model is ultimately independent of FBA [in that Eq. (9) does

1
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FIG. 5. (Color online) Comparison of the OS model, Eq. (9) (y
axis), with the experimental growth of Beg er al. [20] (x axis);
the dashed diagonal line indicates perfect agreement. The uptakes
corresponding to each experimental growth rate were computed
(Appendix F ) and used as an input of the OS model to evaluate the
predicted growth. The x error bars are one standard error, the y error
bars indicate all feasible growths consistent with the uptakes plus or
minus their error. We find a fair agreement between our theory and
the experimental measurements, supporting that scaling and synergy
are two principles regulating also microbial growth in vivo.
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not rely in any way on FBA or on any particular metabolic
reconstruction], one may argue that our model is susceptible
to suffer the shortcomings of FBA. Here we discuss these
shortcomings, although the comparison to experimental data
in Fig. 5 demonstrates that, whatever limitations FBA may
have, our model is able to reproduce experimental growth
rates in a variety of realistic conditions.

The first issue is the determination of the so-called ATP
maintenance flux. This is an additional reaction flux that
FBA adds to the set of metabolic reactions and constraints
to reproduce the experimental growth rates. Such ATP flux
encompasses a series of external factors that affect microbial
growth rates, such as the uptake rate of nutrients, oxygen
availability, and regulation or temperature. But although ATP
maintenance rates obtained for a specific minimal medium
have been shown to reproduce accurate results in different
growth conditions for certain organisms [24], it cannot be
assumed that specific values are valid to make predictions
for different growth conditions in general. To overcome this,
we proceed as in [19] and first evaluate the ATP needed
for the polymerization of biomass components by using the
values experimentally determined (which are available in the
literature [24,25]) and then fix the ATP maintenance to this
baseline, removing any further ATP maintenance contribution.
In any case, it is always possible to rescale our findings a
posteriori in the same way ATP maintenance is fitted within
the FBA approach. Moreover, Fig. 5 suggests that the effect of
the maintenance flux is not very relevant.

Another caveat of FBA is that it systematically predicts
the simultaneous uptake of different sugars, while it is known
that microbes absorb their preferred sugar first [26]. For this
reason FBA will regularly overpredict biomass production in
the presence of multiple sugars [27]. In our approach this is
mostly irrelevant because we are concerned with determining
growth given the uptakes of nutrients. In any event, to avoid
validating our model against unrealistic settings, we focus on
complex growth media containing a single sugar (see Methods
and Appendix C).

Finally, it has been empirically demonstrated that under
certain conditions, unicellular organisms do not strictly follow
a maximal growth principle [12]. However, it has also been
shown that in many occasions the metabolic state predicted
by growth maximization is very similar to that of the
maximization of other functions [11], so that our formalism
could be applicable to these conditions.

V. CONCLUSIONS

In this work, we present a second order phenomenological
model of metabolism that, by relying on a very limited set of
parameters, is able to predict the biomass production of E. coli
in arbitrary complex growth media within 1% of the actual
value for growth in silico and with great accuracy for growth
in vivo.

Our model shows that nutrients within the same class
are effectively catabolized in a similar manner, so that the
contribution to growth in the presence of a given nutrient is
fully determined by the nutrient’s effective carbon content and
the class it belongs to. We find that the synergy developed by
the uptake of several nutrients increases the catabolic potential

PHYSICAL REVIEW E 91, 062703 (2015)

of the metabolic network. Such synergy between nutrients
pairs depends on the relative abundance of the nutrients and is
capped by the less abundant nutrient.

Our model shows that, effectively, nutrient contributions to
growth can be well approximated by the sum of the indepen-
dent contribution of each nutrient and a synergy contribution.
The synergy contribution depends exclusively on nutrient
pair synergies so that uptake fluxes are allocated among pair
synergies in order to maximize the synergy contribution with
the available resources. In this way, the function maximization
principle (usually growth) that determines the metabolic state
of a unicellular organism can be effectively understood as the
optimization of nutrient synergies.

VI. METHODS

A. Random flux uptakes generation

For each fixed number of uptakes E, we generate a vector
¢ of uptake fluxes that allows the bacterium to catabolize a
combination of fatty acids, amino acids, and bases, plus one
sugar only. To do so, only one of the entries of ¢ that do
correspond to sugar uptakes is chosen uniformly at random to
have a value different from zero. Such value is uniformly drawn
at random in the range (0,1) arb. units. All £ — 1 remaining
uptakes are uniformly chosen at random among entries of ¢
that do not correspond to a sugar. Again, the flux value is
drawn in the range (0,1) arb. units. After all the E nonzero
entries of ¢ are drawn, we normalize the uptakes so that the
total uptake is always equal to 1 (see Appendix E for results
in other complex media).

B. Optimal synergy model

Suppose we want to compute the growth of a vector ¢
of uptake fluxes with E nonzero entries according to the OS
model Eq. (9).

In order to allocate the uptake of fluxes to maximize synergy
we proceed as follows. First, we compute all E(E — 1)/2
synergies B’ and rank them according to their corresponding
contributions to growth from largest to smallest. Starting from
the largest, we evaluate which nutrient in the pair (ny,n;) is
in excess by comparing the flux ratio Cy, ¢, /(Cy,¢n,) to the
transition value T (n1,n2) = bpyn,/bnn, of the corresponding
B’ function. For instance, if C,, ¢y, /(Cy,dn,) < T(n1,n2), n2
is in excess. We then store this contribution, set the limiting
flux ¢,, to zero, and reduce ¢,, by its distance from the
transition value as ¢,, = ¢n, — Cy,/Cpn,¢n, T (n1,n,). Note
that this implies that ¢,, is not used in other synergies. All
the other fluxes are kept constant. These updated fluxes are
used to recompute the synergies occupying lower positions in
the rank, and the process is repeated for the second largest 3.
In this way synergies at position k in the rank are computed
with effective fluxes (@5 ,¢% ) that take into account both the
limitedness of resources and their optimal routing.

A slightly different version of our approach, where ranking
of synergies is computed after each step ¢} — ¢! is not as
accurate as the protocol described above (see Appendix E and
Fig. 4).
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TABLE III. The 63 uptake fluxes considered in our study. We include uptakes delivering sugars (22 reactions), fatty acids (6 reactions),

amino acids (26 reactions), and bases (9 reactions) to the bacterium.

Sugars Fatty acids Amino acids Bases
1. L-Arabinose 14. Maltose 1. Octanoate 1 Glycine 14.  D-Methionine 1. Allantoate
2. L-Lyxose 15. Melibiose 2. Decanoate 2 D-Alanine 15. L-Methionine 2. Cytosine
3. D-Ribose 16. Sucrose 3. Dodecanoate 3 L-Alanine 16. Ornithine 3. Uracil
4. D-Xylose 17. Trehalose 4. Tetradecanoate 4. D-Cysteine 17. L-Proline 4. Adenine
5. L-Xylulose 18. Maltotriose 5. Hexadecanoate 5. L-Cysteine 18. L-Valine 5. Guanine
6. D-Allose 19.  Maltotetraose 6. Octadecanoate 6 D-Serine 19. L-Arginine 6. Hypoxanthine
7. D-Fructose 20.  Maltopentaose 7 L-Serine 20. L-Histidine 7. Orotate
8. L-Fucose 21.  1-4-a-D-glucan 8 L-Asparagine  21. L-Isoleucine 8. Thymine
9. B-D-Galactose 22.  Maltohexaose 9 L-Aspartate 22. L-Leucine 9. Xanthine
10. Galactose 10. L-Homoserine 23. L-Lysine
11. D-Mannose 11.  L-Threonine  24. L-Phenylalanine
12. L-Rhamnose 12.  L-Glutamine  25. L-Tyrosine
13. Lactose 13.  L-Glutamate  26. L-Tryptophan
ACKNOWLEDGMENTS coupling the mass balance problem Eq. (B1) with an optmiza-

This work was supported by a James S. McDonnell
Foundation Research Award, Spanish Ministerio de Economia
y Comptetitividad (MINECO) Grant No. FIS2013-47532-C3,
European Union Grant No. PIRG-GA-2010-277166, Euro-
pean Union Grant No. PIRG-GA-2010-268342, and European
Union FET Grant No. 317532 (MULTIPLEX). L.A.N.A.
acknowledges the support of NSF Award No. SBE 0624318
and the W.M. Keck Foundation.

APPENDIX A: METABOLIC RECONSTRUCTION

We use the genome scale E. coli metabolic reconstruction
1AF1260 [24]. Such reconstruction features 1678 metabolites
and 2392 reactions, of which 299 are exchange reactions. The
minimal medium is composed by 18 essential nutrients Ca2,
cobalt2, Cu2, Zn2, Mn2, cbll, H,O, Pi, H, K, Cl, Fe2, Fe3,
mobd, Nal, Nh4, So4, Mg2 [24]. The fluxes of the reactions
that uptake these nutrients are always kept different from zero.
In our analysis we assume nutrient uptakes are known. Thus
we focus exclusively on the 63 exchange reactions delivering
sugars (22 reactions), fatty acids (6 reactions), amino acids
(26 reactions), and bases (9 reactions) to the bacterium (see
Table III), and keep all other exchanges locked to zero.

APPENDIX B: FLUX BALANCE ANALYSIS

Flux balance analysis (FBA) is a mathematical tool to
predict, under certain assumptions, the fluxes v and the
biomass production ggga of a metabolic network [9]. Given
the stoichiometry S of the network, FBA aims at finding
the solution of the metabolic mass balance equation under
steady state condition. Denoting by ¢ the vector of metabolic
concentration, FBA seeks thus to solve the system of linear
equations:

¢=Sv=0. (B1)

Since in real metabolic networks there are many more reactions
than in metabolites, the above system is underdetermined
and it allows several solutions. From the space of solu-
tions, physiologically relevant points are usually selected by

tion principle. Quite generally, thus, a FBA problem seeks
solutions to Eq. (B1) such that a linear objective function Z of

the form
Z = Zrkvk,
k

with r; some positive constants, is maximized. The objective
function is often related to the biomass production. In
our case we focus solely on the maximization of biomass
polymerization, so that we have one flux only appearing in the
sum Eq. (B2) (which expresses the biomass synthesis) and we
can assume Z = gppa. Finally, we note that when essential
nutrients are assumed to available in excess, Eq. (B1) specifies
a linear problem that is defined up to multiplicative constant:

(B2)

External medium

Fatty acids Amino acids

FIG. 6. (Color online) Illustration of how random media are
generated. Besides the minimal medium, we only consider growth
on sugars, fatty acids, amino acids, and bases. Each random medium
we generate only contains one sugar (the purple filled arrow), plus a
set of other nutrients. The sugar and the remaining nutrients are all
uniformly chosen at random. These nutrients and their uptake value
form a random vector of exchange fluxes ¢. In the figure we sketch
as filled arrows all the nutrients included in the random medium and
as empty arrows the ones not considered. For any random medium
considered, uptakes are normalized so that Zi ¢; = 1 arb. units.
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porphyrin and chlorophyll metabolism ————
methane metabolism —=—
phenylalanine, tyrosine, and tryptophan biosynthesis ————
glutathione metabolism ———
butanoate metabolism F———
folate biosynthesis ——
selenocompound metabolism F——
sphingolipid metabolism ———
novobiocin biosynthesis F——
nicotinate and nicotinamide metabolism F——
valine, leucine, and isoleucine biosynthesis ——
pantothenate and coa biosynthesis ——
purine metabolism ———
sulfur relay system F——
sulfur metabolism —H
glycerophospholipid metabolism ——
phenylalanine metabolism ————
tyrosine metabolism ——
lysine degradation |—
thiamine metabolism ——
tryptophan metabolism n
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FIG. 7. (Color online) Number of amino acids in sets H and L for each metabolic pathway. We see that the amount of amino acids in each
set is uneven in the majority of pathways, with most of them only featuring amino acids in the L set. We opted to exploit this characteristic to
predict to which set each amino acid belongs and automatically assign it a 8’ plateau value.

any solution to Eq. (B1) may be rescaled through a constant
factor and still be a valid solution. We therefore keep uptakes
in arbitrary units when validating our model against FBA.

APPENDIX C: GENERATION OF THE GROWTH MEDIA

We focus only on nutrients that can be uptaken by the
organism and produce growth [19]. The growth media we
generate therefore only contain sugars, fatty acids, amino
acids, and bases. Since multiple uptake of sugars is not
observed [26], we allow for the exchange of one sugar only
and randomly allow all other nutrients to be uptaken by the
bacterium. Summing up all the exchange fluxes listed in
Sec. V, each growth medium can therefore be composed of
42 nutrients at the most (i.e., one sugar and 41 other nutrients),
plus the 18 nutrients in the minimal medium.

As the minimal medium is always included, just considering
the 22 sugars and the 41 remaining nutrients, for each growth

medium we hence have a 63-dimensional random vector of
exchange fluxes ¢ which, for any fixed number of uptakes E,
is generated as follows (see Fig. 6 for a pictorial representation
of the growth media):

(1) Only one of the 22 entries delivering sugars is uniformly
chosen at random. We randomly fix its value uniformly in the
set ¢sue € (0.0,1.0) arb. units.

(i1) The remaining E — 1 uptakes are uniformly drawn at
random among the 41 entries of ¢ that do not correspond to
a sugar. The value of each flux is again uniformly drawn at
random in the set (0.0,1.0) arb. units.

(iii) The E nonzero entries of ¢ are normalized so that
> i ¢i = 1 arb. units.

In all the complex growth media we generate we always
include the essential nutrients, which are assumed to be present
in excess, i.e., they are uptaken at a rate 1 x 107 arb. units,
equivalent to the infinite uptake rate in the metabolic recon-
struction.
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APPENDIX D: SELECTION OF THE MINIMAL MODEL
FOR THE GROWTH ON AMINO ACIDS

When studying nutrient-class-wide pairwise interactions
involving amino acids, we noticed that the B’ functions
appearing in Fig. 3 tended to acquire two plateau values. We
hence divided the amino acids into sets H and L, according
to whether their corresponding 8’ plateau value was above or
below 1072, respectively.

By doing this, we observed that the pathways that process a
given amino acid correlate in some way with its associated 8’
plateau values. Indeed, as we show in Fig. 7, many metabolic
pathways feature either amino acids belonging to only one set,
or a far exceeding number of amino acids in one of the two
sets.

We thus opted to predict whether a given amino acid
belonged to group H (or L) by exploiting the minimum
information on the metabolic processes it participates in. We
developed a linear model r; for each amino acid i and used
logistic regression to estimate the probability P;(i € H|m;) for
metabolite i to belong to group H given model ;. Considering
a set M of n metabolic pathways, we assumed

=&+ ZE,/‘X!,
i=1 (D1)
1

Pii € Him) = oo
where the sum runs over the n pathways in M. In Eq. (D1) X/
is a binary variable taking value 1 if amino acid i participates to
pathway j and O otherwise. All coefficients {§;}_, have real
values. For each set M we estimate {§;}}_; by maximizing
the likelihood £ = [],_, P;. The coefficient & is related to
the probability that an amino acid i belongs to H while
not participating to any pathway in ;. As we aim to gain
the maximum predictive power by exploiting the minimum
information, we opted to seek for the smallest set M that
yields the largest rate of correct guesses, that is, which returns
P; larger than 0.5 for metabolites actually belonging to H
in the majority of cases. The minimum set may be found by
minimizing the Bayesian information criterion (BIC) [23], viz.

BIC = (n + 1)InN — 2InL, (D2)
where n = || M| is the size of the set M (i.e., the number of
included pathways), N is the number of amino acids, and £
is the likelihood that the observed H, L sets are generated by
models {r;}¥ .

To seek for the minimal M, we started out with zero
pathways and then used an iterative greedy approach that
at each step added the pathway that yielded the minimum
BIC, that is, that maximized the likelihood £. The result
of this iterative approach is shown in Fig. 8: the first point
features one metabolic pathway and renders a BIC close to 30.
Adding parameters (i.e., adding metabolic pathways) lowers
the BIC up to n = 6 where there is no more significative gain
in predictive power and adding more pathways only overfits
the model, so that the BIC starts to grow. The whole analysis
was performed using R (version 2.15.3 [28]).
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FIG. 8. (Color online) The Bayesian information criterion as a
function of the number of pathways n. Starting with zero pathways,
we iteratively incorporated into the model Eq. (D1) the metabolic
pathway that yielded the minimum BIC. This allows us to gain
predictive power and to lower the BIC up to n = 6 pathways
(black arrow). Inclusion of further information does not enhance the
predictive ability and only overfits the model.

Once we knew the profile of the BIC, we retained the set
M that minimized it. Such set is the best trade-off between
the likelihood L (i.e., the predictive power) and the number of
pathways included in the model. The six pathways included in
the final M yielded a BIC = 27.3 and are listed in Table 1V,
where we also report the BIC returned by all models featuring
n < 6 pathways and the number of amino acids participating
in each pathway included.

In Fig. 9, we show the probabilities P;(i € L|x;) as a
function of the number of pathways n in the model m;. In
our analysis we fix a threshold of 0.5 and assume metabolite
i belongs to H if P; > 0.5 and i € S otherwise. The green
shaded area in Fig. 9 indicates the region where we expect
P; to lie: for the vast majority of the amino acids only a
few parameters in the m; are sufficient to classify all amino
acids into sets L or H. For the case n = 6 pathways, which
minimizes the BIC, we see that there is only one amino
acid which is not correctly classified, namely D-methionine
(met_D). All the rest of the amino acids are correctly assigned

TABLE IV. The six pathways included in the model 7 that
minimizes the Bayesian information criterion. We report in each row
the name of the pathway, the number of amino acids participating in
it, and the BIC value of the model containing all pathways up to the
row, so that the last line has the minimum BIC value.

No. a.
BIC Metabolic pathway acids
34.0 alanine, aspartate, and glutamate metabolism 6
33.3 valine, leucine, and isoleucine degradation 2
31.3 phenylalanine, tyrosine, and tryptophan biosynthesis 3
29.8 sulfur relay system 2
29.1 glycine, serine, and threonine metabolism 7
27.3 arginine and proline metabolism 7
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FIG. 9. (Color online) The probabilities P;(i € H|x;) of each amino acid i varying the number of pathways n included in the model ;.
The shaded green area highlights the expected region where P; should lie, i.e., P; € [0,0.5] and P; € (0.5,1] for amino acids in sets L and H
respectively. For the majority of them, the inclusion of only a few pathways in 7; is enough to predict the correct set. When n = 6, that is,
when the BIC is minimum, we correctly capture the behavior of all amino acids except for D-methionine (met_D).

to either L or H by only inspecting whether they participate plateau will lie, we decided to model the 8’ functions through
in the metabolic pathways listed in Table I'V. their phenomenological form Eq. (8) and assign two possible

Since knowing whether a given amino acid participates to values to parameters b, which are evaluated by averaging 8’
these six pathways is sufficient to know where its associated 8’ corresponding to amino acids in the sets H and L separately.
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FIG. 10. (Color online) Second order model predictions. (a) Prediction of model bacterial growth against FBA results, for four models
(see text): IM, NES, ES, OS. The idealized metabolism (IM, red circles) captures reasonably well FBA growth predictions. Including maximal
synergy for all the nutrient pairs with a naive equitative synergy theory (NES, purple up triangles) largely overestimates the FBA growth.
Considering a uniform uptake for all nutrient pairs with the equitative theory (ES, green diamonds) improves the IM results. When the number
of uptakes is >>1, all these models produce worse results than the optimized synergy model (OS, blue squares). (b) The relative error A of the
different models as a function of the FBA growth grpa. The baseline is the first order IM theory (red circles), with a relative error that increases
roughly linearly with the number of uptakes. The NES model (purple up triangles) is clearly unrealistic, with a relative error that increases very
fast. The ES model (green diamonds), conversely, improves the IM results, although its A still increases with the number of uptakes. The OS
model error (blue squares) remains very low and depends very weakly on the number of uptakes, suggesting optimal allocation of synergies is

a robust explanation for maximal growth.

APPENDIX E: OPTIMAL SYNERGY IN THE SECOND
ORDER MODEL

As shown in Sec. II, the IM model systematically under-
predicts growth rates in the presence of multiple nutrients. As
a result we have to include a synergy term in our model. We
do so by introducing the B’ functions. However, we find that
an equal contribution of all synergisitc terms overpredicts the
growth rate in complex media (see Fig. 10). This is because
resources are limited and not all nutrient pairs can develop
such maximal synergy. We therefore call this a naive equitative
synergy (NES) model, that assuming maximal synergy among
all nutrients describes an unrealistic scenario.

In order to limit the overall synergy, we tested the equitative
synergy (ES) theory, where resources are equally distributed
across the nutrient pairs. We created complex growth media
as explained in Sec. V, with each medium « consisting of E,
nutrients and thus P, = E,(E, — 1)/2 possible pairs. We then
assumed that, for each nutrient i, the uptake ¢ was equally
invested in the E, — 1 synergies such a nutrient can develop.
Therefore, we computed the ES model growth on medium «
by correcting the IM theory with the B8’ contributions Eq. (7)
as

Ci#

Z¢> Cibo,o, tan p 2o C%7 a,a,ch”'

i<j

8ks = &im + (E1)

Here g7, is the IM theory growth, Eq. (2), o; is the class of
nutrient i, while the sum runs on the P, possible nutrient pairs.
Hence, with factor 1/(E, — 1), we equally spread ¢! across
the E, — 1 synergies.

The resulting model shows an improvement respect to the
IM theory, although the gain decreases when the number of
uptakes grows.

The decrease in accuracy for increasing E of both the NES
and the ES model suggests that the uptake of resources is
distributed in some optimal way. Since in the FBA approach
metabolism is aimed at growth optimization, we hypothesized
that uptakes are organized in such way to maximize the nutrient
synergistic contributions to growth. Specifically, such optimal-
ity must be reached by considering that nutrient uptakes that
are invested to attain a certain synergy may not contribute to
another synergy. In Fig. 3, one clearly realizes how this can be
taken into account. Indeed, the B'[C,, ¢, /(Cy,¢n,)] functions
shown in Fig. 3 typically have a growing regime followed
by a plateau. The appearance of the plateau means that the
synergy is not affected by a variation of the uptake of nutrient
ni, i.e., nutrient n; is in excess with respect to nutrient n,.
Conversely, in the growing region, the situation is reverted
and nutrient n, is in excess. The point T'(n,n2) = by1/b1>
marks the transition from one regime to the other. Thus, if
C,0n, < Cyy@n,b21/b12, nutrient ny is in excess: in such case,
n; has been completely invested and it cannot be used in
other synergies, while n, can only contribute further with
an effective flux Cn2¢,’,2 = Cy,n, — C,On, T(n,,n,),> that is,
with the surplus of its uptake.

We hence devised the following method to achieve opti-
mality in the case of limited resources on complex growth
media:

3
Cmd),/” = Cn|¢n| - Cn2¢nz/T(nl,n2)a
nutrient 2, is in excess.

¢n, =0 respectively if
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FIG. 11. (Color online) (a) Predictions of the OS model (blue open squares) vs the IM model (red filled circles), for complex media that
may not include sugars. To better capture nonsugar synergies we allow here two different slopes to the B functions. (b) The relative error A
of the OS model (blue empty squares) and the IM model (red filled circles). Also when sugars are not always uptaken the OS model has a

consistently smaller relative error than the IM model.

(1) For each pair of nutrients i, j and corresponding uptake
fluxes ¢;, ¢; compute the second order correction Ag;; to the
IM growth:

ba;cr/- Ci ¢i
bGjGi de)j

where o; and C; are the class and the carbon content of nutrient
i, respectively.

(2) Rank all Ag;; from largest to smallest. The first in
such rank will be the best contribution to accomplish optimal
growth.

(3) Add to the IM growth prediction the first correction in
the rank.

(4) Reduce fluxes ¢; and ¢;, so to take into account that
some uptake of nutrients i and j has been invested into their
synergy:

(a) For the nutrient in excess, say j, set ¢; — ¢; —
Ci/chsiba,vai/ba,-aj-

(b) Set ¢; — 0, as uptake of i has all been used to develop
synergy Ag;;.

(5) Remove from the rank all synergies involving nutrient
i, as its effective uptake is now zero.

(6) Recompute the synergies {Agy;} with the new uptake
flux ¢;.

(7) Optimal synergy (OS) model: go to step V.

The process is iterated until no uptake flux can be
diminished further.

The above strategy to pinpoint optimal allocation of
resources is really effective. The OS model gives very accurate
results even for a large number of uptakes and we thus opted
for it.

Note that the results presented are derived assuming that
a sugar is always present in the medium. One can generalize
and also work with sugar-free complex growth media. Because
B’ (x) functions for (fatty acid, base), (fatty acid, amino acid),
and (amino acid, amino acid) interactions are not perfectly
captured by Eq. (7) when x ~ 1, this scenario is better captured
allowing for two different slopes of the § functions: results for

Agij = Cj¢jbo'/.o’i tanh (EZ)

the OS model are slightly less accurate than in the presence of
sugars, but still far better than the IM, as shown in Fig. 11.

APPENDIX F: COMPARISON WITH THE EXPERIMENTS

Beg et al. [20] published a few years ago a study that
proves to be an excellent means to contrast our model against
experimental results. In their work, the authors measured at
high frequency the growth rate of a batch culture of E. coli and
the corresponding variation of nutrient concentration in the
medium, simultaneously. Additionally, they included in their
paper measurements of the culture optical density and other
quantities of interest. All the relevant measurements for our
analysis are reported in Ref. [20], Figs. 2(a) and 2(b): in the fol-
lowing, we explain how to integrate such data in our approach.

The first step to make the results of Beg et al. useful in
our framework is to calculate, for each nutrient i, the uptakes
¢; given the time evolution of nutrient concentration c;(z)
reported in Fig. 2(b) of Ref. [20]. For each nutrient i, the
uptake ¢; is related to the time derivative of the nutrient
concentration ¢; as

1
¢i(t) = Vw———¢i(1),

D(t)m; (FD

where m; is the molar mass of nutrient i, D(¢) is the microbial
dried mass at time ¢, and Vy is the working volume, which
is provided by the authors in the supporting material of
Ref. [20] (note indeed that concentrations are provided per
unit volume in [20]). This relation properly yields uptakes in
mmol gDW ' h~!, the units commonly applied in metabolic
reconstructions and that we use in our model.

From Eq. (F1), we see that, to compute ¢;(¢), first the
derivatives ¢; must be evaluated from the provided curves
¢;(t), for each nutrient i. This is straightforward and can be
accomplished with, e.g., centered differences. For each value
¢;(t) we also compute the error oy, (¢) evaluating the maximum
and minimum slopes compatible with the given error bars of
¢;(1), also reported in Fig. 2(b) of Ref. [20].
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FIG. 12. (Color online) (a) The experimental uptakes ¢ computed via Eq. (F1), for the five nutrients considered in Fig. 2(b) of Beg
et al. [20]. Glucose is almost totally consumed first, the rest of the nutrients are consumed for 7 > 3.5 h. Note that the dried weight, which
normalizes the plotted values, steadily grows in time. The grey shaded area is the purely exponential growth time window [1gexy(f) 2 11, where
we pick the points plotted in Fig. 5. (b) Comparison of the growth rate g..,(¢) calculated via Eq. (F2) (Calc., red circles) and the values directly
published in Fig. 2(a) of Ref. [20] (Publ., blue squares). The two quantities are fully consistent, all points but one being within one standard
error. We use the values corresponding to the red circles to validate our model in Fig. 5, as they are also related to the dried weight employed
to compute the nutrient uptakes. The shaded area once again denotes the pure exponential growth region.

The second quantity to evaluate in order to calculate
the uptakes is the dried weight D(z). We assume it to be
proportional to the optical density O(¢), which is given in
Fig. 2(a) of Ref. [20]. Knowing the initial optical density O(0)
and dried weight D(0) (which is specified tobe 6.75 x 1073 g),
we are hence able to compute the whole D(¢) curve, with its
own error op(t) (evaluated from the known error on the optical
density).

After the above step, we are able to compute the uptakes
¢:(t) and their associated errors oy, (t) [propagating o (¢)
and op(t)], for each nutrient i and time ¢. Note that we do
not allow negative uptakes (corresponding to nutrient release,
really) and we discard noisy fluctuations of ¢;(z) allowing
for unexpected multiple nutrient uptakes at # < 3.5 h. Conse-
quently, ¢; (r) = 0 with zero uncertainty for all nutrients except
glucose when ¢ < 3.5 h. The resulting uptakes are plotted in
Fig. 12(a).

Knowing all uptakes for each time 7, we finally com-
pute the growth gos(#) predicted by the OS model by
using Eq. (9). We also derive an associated error ()
by evaluating the growth rates yielded by the mini-
mum Puin(t) = {¢;(t) — 04,(¢);i € nutrients} and maximum
Omax(t) = {¢i(t) + 04,(2);i € nutrients} possible uptake vec-
tors, respectively. Therefore, in turn, o, (1) = gos(Pmax(t)) —
80s(Pmin(1)).

Albeit the experimental growth rate is partially provided
in Fig. 2(a) of Ref. [20], we opt to calculate the experimental
growth rate gexpi(#) resulting from our estimate of the exper-
imental dried weight curve D(¢). The rationale is to have a
Zexpt(t) consistent with the D(¢) values used to compute the
uptakes. Note indeed that in Fig. 2(a) of Ref. [20] the entire
time series of the experimental growth rate is not available
(i.e. time window t = O to t = 1.5 h is missing), so we cannot
proceed the other way around and estimate D(¢) integrating
back the growth rate. Hence, we evaluate gexpi(f) from the

differential equation:

D(1)

DO’ (F2)

gexpt(t) =

1
0.8 | ]
. 06} .
[}
°
g
o 04} R
02} o o=Eq.(3)
O o Exact
0 L L L L
0 0.2 0.4 0.6 0.8 1
-1
gexpt i
FIG. 13. (Color online) Model prediction of experimental

growth rates. We compare here the accuracy of model Eq. (9) at
predicting experimental bacterial growth rates when using Eq. (3) to
estimate the & parameters (red circles) and by using the exact values
of & (blue squares), which are evaluated by estimating the nutrients
yield. Equation (3) performs fairly well, its predictions being only
slightly worse than the ones obtained with the exact &s. This is
remarkable, as it implies that, when dealing with physiological
values, one can accurately predict growth rates by only knowing
the slope a. of each nutrient class and the carbon content of each
nutrient, respectively, rather than the exact yield.
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TABLE V. The OS model b parameters for synergies with organic
acids (org-ac in the table). Interactions with amino acids again
allows for two different plateau values of the B’ function. Nutrients
are always sorted for increasing carbons: organic acids intraclass
interaction does not consider pair permutations and yields thus two
different b values: borg_acotmer COrresponds to growth on a medium
where large carbon content organic acids are in excess, while Doherorg_ac
captures the opposite situation.

Other bnrgﬁcmher bmhemrgju:
Sugars 3.0 x 1073 1.7 x 1073
Fatty acids 3.4 %1073 1.1 x 1072
Organic acids 2.7 x 1073 4.0x 1073
Bases 2.4 %1073 2.4 x 1072
Amino acids 3.0 x 1073 3.0x 1073 1.8 x 1072

that fixes the evolution of the dried weight in the exponential
growth condition. Again we estimate D(¢) from D(t) with
centered differences and its error op(¢) analogously to what
was done for o:(7). Finally, we compute the error oy, (¢)
for gexpi(?) by propagating o (t) and op(t). The growth rates
Zexpt(t) we find are entirely consistent with the ones originally
published in Fig. 2(a) of Ref. [20], as shown in Fig. 12(b).
However, as said, such geyp(¢) values are more coherent with
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the dried weight we used in Eq. (F1) to compute the uptakes,
so these are the ones we plot in Fig. 5.

Having computed gos(f) and gexp(?), we finally compare
them in Fig. 5, finding an excellent agreement. To obtain these
accurate results, we use Eq. (3) to estimate the value of each &.
In Fig. 13 we show how results change when using the exact
& values instead: the predictions are only slightly better. This
finding is remarkable, because to use Eq. (3) we only need to
use the slopes a. [Fig. 1(b)] and the carbon content of each
nutrient, rather than the actual yield. The a. values hold for all
nutrients in a given class, while the carbon content of nutrients
is generally known, so that Eq. (3) can be readily applied to
diverse situations without having to reevaluate single nutrient
contributions to growth.

Note that in these two validations against experimental
results we only focus on the truly exponential growth phase,
i.e., where tgexpi(f) 2 1, which is the shaded region in Fig. 12.

A final remark on the fact that the experimental growth
medium contains lactate and glycerol, which do not belong to
nutrient classes we discuss presently. Again, one can proceed
as we outline in Secs. II and I1I A to evaluate parameters a and
b for the classes corresponding to these nutrients. For organic
acids, the class lactate belongs to, we find @org_oc = 1.5 X 1072,
while b parameters for all cross interactions are reported in
Table V. For glycerol, we opt instead to use the same a and b
parameters we derived for fatty acids, which do yield accurate
results already.
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