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Colored noise and memory effects on formal spiking neuron models
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Simplified neuronal models capture the essence of the electrical activity of a generic neuron, besides being
more interesting from the computational point of view when compared to higher-dimensional models such as the
Hodgkin-Huxley one. In this work, we propose a generalized resonate-and-fire model described by a generalized
Langevin equation that takes into account memory effects and colored noise. We perform a comprehensive
numerical analysis to study the dynamics and the point process statistics of the proposed model, highlighting
interesting new features such as (i) nonmonotonic behavior (emergence of peak structures, enhanced by the
choice of colored noise characteristic time scale) of the coefficient of variation (CV) as a function of memory
characteristic time scale, (ii) colored noise-induced shift in the CV, and (iii) emergence and suppression of multi-
modality in the interspike interval (ISI) distribution due to memory-induced subthreshold oscillations. Moreover,
in the noise-induced spike regime, we study how memory and colored noise affect the coherence resonance (CR)
phenomenon. We found that for sufficiently long memory, not only is CR suppressed but also the minimum of
the CV-versus-noise intensity curve that characterizes the presence of CR may be replaced by a maximum. The
aforementioned features allow to interpret the interplay between memory and colored noise as an effective control
mechanism to neuronal variability. Since both variability and nontrivial temporal patterns in the ISI distribution
are ubiquitous in biological cells, we hope the present model can be useful in modeling real aspects of neurons.
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I. INTRODUCTION

The current consensus is that neurons are the fundamental
units where information is processed in the nervous system.
The celebrated Hodgkin-Huxley (HH) model mathemati-
cally translates into a four-dimensional ordinary differential
equation the detailed biophysical features of a neuron and
nicely explains the generation of an action potential. Besides
its relatively high dimensionality, another downside of the
HH model rests on the fact that there are approximately
20 parameters to be determined. Consequently, a clear and
intuitive understanding of the fundamentals of neuronal
dynamics becomes difficult and one is often restricted to
computer simulations. Also, this high dimensionality implies
high computational costs when one aims at simulating a large
population of neurons.

If an accurate low-dimensional description of neuron
activity could be found, it would certainly have advantages
over high-dimensional approaches, both in terms of simulation
and understanding of the fundamental principles. In addition,
the understanding of neuronal mechanisms resorting to simple
models could be useful in the engineering of artificial neural
devices designed to reproduce a given real biological feature.
In that sense, several alternative approaches have been created
along the years, like the spike-response class of models. Two
notable examples in this class are the integrate-and-fire [1]
and the resonate-and-fire models [2]. These kinds of models
are typically characterized by a differential equation whose
solution describes the time evolution of the subthreshold
membrane potential and an ad hoc rule according to which
when the potential reaches the threshold (i) a spike is produced
and (ii) the potential is reset to a certain value. Additionally,
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a refractory period, that is natural in the HH model, can be
postulated in such models.

The precursor of the integrate-and-fire model was intro-
duced by the French physiologist Louis Lapicque in 1907,
long before the introduction of the HH model [3]. In 1965,
Richard Stein introduced the so-called leaky integrate-and-fire
(LIF) model [4], which became very popular from the 1990s,
when it started to be used (along with its generalizations) in
neural-networks studies [5,6]. Essentially, the integrate-and-
fire model is constructed based on analogies with electrical
circuits. We can picture the standard LIF model as a parallel
resistive-capacitive (RC) circuit subjected to a deterministic
external input. In addition to this deterministic input, there are
several sources of fluctuation that influence the dynamics of the
neuron potential. We can name at least three of these sources
that stand out. The opening and closing of the ion channels
behave stochastically [7], the release of neurotransmitters by
chemical synapses is a Poissonian process, and the synaptic
input from other neurons (of the order of 104 synaptic junctions
per neuron [8]) can also be well modeled as a stochastic
process [9]. Stochastic versions of neuron models have been
strongly motivated by in vivo studies, since in this case the ran-
dom time intervals of input synaptic impulses have to be taken
into account. A prominent example in this class is the diffusive
(or stochastic) leaky integrate-and-fire (SLIF). The main char-
acteristic of the SLIF model is the explicit description of the
randomness of synaptic inputs through the presence of a noise
term in the equation of motion of the membrane potential v.

Far from being just a mathematical device to dictate how
the environment manifests itself in the effective dynamics
of the system, the presence of noise in neural dynamics has
proven fundamental in neurophysiological processes [8]. Ex-
perimental evidence supports the idea that noise is intrinsically
necessary to mechanisms responsible for signal detection, de-
cision making, perception, and short-term memory [8,10–12].
Therefore, detailed studies connecting stochastic processes
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and neuronal dynamics at all levels (i.e., single neurons,
networks, and continuum field approaches) are necessary for a
better understanding of the complexity of the nervous system.

The subthreshold dynamics of the SLIF model is phe-
nomenologically described by the following stochastic differ-
ential equation, already written in the dimensionless form [1]:

τ
dv(t)

dt
+ v(t) = μ +

√
2σ 2η(t), (1.1)

where v(t) is the membrane potential at time t , τ corresponds
to the membrane time scale, and μ is a constant average input if
synaptic inputs are considered homogeneous. In Eq. (1.1), η(t)
is to be interpreted as a Gaussian white-noise term [〈η(t)〉 = 0
and 〈η(t)η(t ′)〉 = δ(t − t ′)] and σ is the noise intensity.

Equation (1.1) corresponds to the simplest possible formu-
lation of the SLIF model and may lose sight of some relevant
biological features. In view of this, several generalizations
have been proposed in the literature, many of them supported
by experimental evidence. For example, Stevens and Zador
suggest that the variability of output spike times of cortical
neurons in the awake brain could be accounted for the
existence of correlations in the arrival times of input at different
synapses [13]. In Ref. [14], Salinas and Sejnowski highlight
the necessity to take into account the impact of temporal cor-
relations. Their motivation comes from experimental studies
showing that cortical neurons can exhibit an input correlation
time of the same order of magnitude as the mean interspike
interval of the correspondent response. A practical way to
implement a finite correlation time is to promote the term η(t)
in Eq. (1.1) to a colored-noise term.

Many other studies have been developed in order to achieve
a more realistic (yet effective and simplified) approach to
neuronal dynamics [15–18], and we would like to go a step
further. In a broader perspective, we can draw an analogy
between neuronal dynamics and the nonequilibrium statistical
theory of open systems. We can interpret a given neuron
(or even a given neuronal tissue) in whose dynamics we are
interested as the “system.” Since this system interacts with its
surrounding medium, we have to account for the environment
feedback into the system in order to obtain an accurate
description of the system dynamics. In the early times of the
development of the theory of open systems, the usual approach
to describe the effective dynamics of these systems was to
model the problem resorting to a phenomenological Langevin
equation. The original Langevin equation is characterized by
Gaussian white noise and time-local dissipative terms. The
main limitation of this approach is that the usual Brownian
motion implicitly assumes that the environment interacts
instantaneously with the system. This assumption is valid
only in very restricted and particular limit cases. If a more
realistic description of a given open system is required, it is
necessary to take into account that information exchange (e.g.,
linear momentum exchange among massive particles, ionic
current exchange among neurons, and so on) takes place during
finite-time intervals, which must lead to finite-memory effects
and colored noise. In view of this, some phenomenological [19]
and microphysical [20–23] approaches have been developed
in order to elucidate how a more realistic effective equation
of motion emerges when the environment degrees of freedom

are coarse-grained. From this more fundamental perspective,
a generalized theory of Brownian motion arose, which can be
described by a generalized Langevin equation (GLE). In such
an equation, nonlocal dissipative terms and correlated noise
reflect finite-time effects.

In this paper, we argue that it would be a step toward a more
realistic modeling of effective neuronal dynamics to rewrite
the equation that describes the membrane potential using the
generalized Brownian motion framework. We thus propose to
enrich intrinsically phenomenological neuron models to reflect
a crucial aspect that characterizes first-principles models:
the concomitant presence of memory effects and colored
noise. This mathematical framework ensures causality and is
particularly a requisite when the processes that take place in
the system and environment have comparable characteristic
time scales. We thus introduce and characterize a first-passage
time model whose subthrehold dynamics obeys the Langevin
equation of generalized Brownian motion.

From the biophysical point of view, it is empirically known
that the distribution of the interspike intervals (ISI) of real
neurons (e.g., pallidal and ganglion cells) can exhibit nontrivial
patterns, like a bimodal or multimodal structure depending
on the input [24–27]. Neither the standard nor the stochastic
LIF model is able to produce such a multimodal distribution.
Even though the original resonate-and-fire model is capable
of providing multimodality under some conditions [28–30],
it does not have an intrinsic dynamical mechanism to control
the emergence and the shape of multimodality. We show that
the memory term introduced by our model plays the role
of a variability control mechanism. Adjusting the memory
parameter, which reflects a property of the input, one enables
smooth transitions between unimodal and multimodal regimes.

The paper is organized as follows: in Sec. II we introduce
our model based on a first-passage-time (FPT) problem for the
generalized Brownian motion and review some analytical re-
sults on the subthreshold dynamics to guide the understanding
of the numerical analysis, presented in Sec. III. The results and
discussions are the subject of Sec. IV. In Sec. V, the conclusion
of this paper is given.

II. A GENERALIZED RESONATE-AND-FIRE MODEL

The SLIF model is a useful tool to mimic the potential
dynamics of the so-called nonresonant cells. The response
of this kind of cell to an external excitatory stimulus is
characterized by a monotonic relaxation toward its resting
state. This behavior becomes even clearer if we draw an
analogy between Eq. (1.1) and the equation of motion of
an overdamped harmonic oscillator. In recent decades, a
substantial amount of experimental data has shown that
neurons can also exhibit damped subthreshold oscillations at
a given frequency [31–35]. From a dynamical viewpoint, this
occurs when the neurons operate close to an Andronov-Hopf
bifurcation [36]. The specific case in which there is no
bistability and the rest state is the global attractor corresponds
to a supercritical Andronov-Hopf bifurcation. Several models
that aim at accounting for the aforementioned subthreshold
oscillations have been constructed [28,31,37,38]. Our starting
point is an archetypal second-order model [28] for the
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subthreshold dynamics, written in dimensionless form as:

λ
d2v(t)

dt2
+ γ

dv(t)

dt
+ ω2v(t) = μ +

√
2σ 2η(t), (2.1)

where η(t) is again taken as white Gaussian noise. In terms of
the analogy between neuronal dynamics and electrical circuits,
the second-order derivative in the left-hand side of Eq. (2.1)
emerges when an inductor is plugged in parallel with both R

and C in the LIF circuit. From the physiological point of view,
the inductor emulates the presence of long-term processes,
like calcium currents [39,40]. An important feature of the
model given by Eq. (2.1) is that for γ < 2ω

√
λ (underdamped

case) the typical behavior of a resonant neuron is recovered.
Analogously, γ > 2ω

√
λ corresponds to the overdamped case.

In particular, in the limit case when λ = 0 (usually referred
to as the overdamped limit) the SLIF neuron that mimics
the behavior of a nonresonant cell is recovered. Therefore,
Eq. (2.1) can be thought of as a generalization of the SLIF
model. Here we are interested in the case λ �= 0.

A more general approach corresponds to rewriting Eq. (2.1)
using the framework of the generalized Brownian motion
which, after rescaling the parameters in terms of λ, reads:

d2v(t)

dt2
+ γ

∫ t

t0

dt ′K(t − t ′)
dv(t ′)
dt ′

+ g′[v(t)] = ξ (t), (2.2)

where t0 is the time instant when the reset rule was last
performed, K(t − t ′) is the memory kernel whose integral
is normalized to the unit and whose characteristic time scale
is denoted by 1/
, and ξ is a Gaussian colored noise with
characteristic time scale 1/
ξ . The presence of colored noise
is particularly relevant in situations where the characteristic
time scales of fluctuations are comparable to the system
time scale. The deterministic parameter μ in Eq. (2.1) was
absorbed in g′(v), which is a linear or nonlinear function of
the membrane potential. The prime in g′(v) means derivative
with respect to v. If the neuron worked strictly as a RLC circuit
and if the only source of fluctuation were of thermal origin,
then a fluctuation-dissipation relation would be expected to
hold exactly (Nyquist noise): 〈ξ (t)ξ (t ′)〉 = K(t − t ′). Here, as
mentioned above, we are motivated by other sources of noise
as well and do not impose beforehand such a perfect matching
between noise and memory time scales.

Equation (2.2) is the central equation of this paper. Once the
memory kernel is defined (see Sec. III for a convenient choice),
it describes the subthreshold evolution of the membrane
potential. The establishment of a fire-and-reset rule completes
the model. Here we adopt the following rule: If v(t) = vth,
then (i) a spike is considered to have occurred at time t

and (ii) v → vr and v′ → 0. Generally speaking, the reset
rule reflects the biophysical fact that subsequent to a spike
is the return of all the neuron state variables (e.g., in the
Hodgkin-Huxley model) to a small region in phase space.
The reset rule corresponds to the simplification that replaces
that small region by a single point. Since the equation for the
subthreshold dynamics, Eq. (2.2), is of second order for the
variable v, it can be rewritten as a (two-dimensional) first-order
equation for the variables v and dv/dt . These are the state
variables of our model and, accordingly, must be both reset.
The specific choice of the value zero for the reset of dv/dt

does not have any special meaning and implies no loss of
generality.

We can recover the standard first-order SLIF model from
Eq. (2.2) by applying two approximations. The first one is the
Markovian approximation, whose validity tends to be assured
when the time scale of the system T ∼ v/v̇ is such that T 	
1/
 (additionally, T 	 1/
ξ if the white-noise limit is also
required), and for large times, when t/T 	 1. The nonlocal
term can be then rewritten as [22,41]

γ

∫ t

t0

dt ′K(t − t ′)v̇(t ′) ≈ γ

∫ t

t0

dt ′ 2δ(t − t ′)v̇(t ′) = γ v̇(t).

(2.3)

At this point, we recover the second-order model Eq. (2.1)
with λ = 1, which will be referred to as the Markovian
approximation and compared to our proposed model Eq. (2.2)
in Sec. IV. Going a step forward and performing a second
approximation by imposing λ = 0, we recover the first-order
SLIF model. The term g′(v) can be interpreted in mechanical
terms as the derivative of an effective potential. For a linear
choice of g′(v), we can define g(v) = ω2v2/2 − μv, with
minimum given by vc = μ/ω2. For any v(t = 0) < vth < vc,
given a sufficiently long time interval, the probability of spike
occurrence is 1, in both the deterministic and in the stochastic
cases. This regime is usually known as mean-driven or tonic
firing regime. On the other hand, if v(t = 0) < vc < vth, the
probability of occurrence of spikes in the overdamped regime
is non-null only in the stochastic case. The same occurs
in the underdamped regime if the maximum value of the
time-dependent amplitude of oscillation around vc is smaller
than vth when the noise is switched off. One refers to these
cases as the fluctuation- or noise-induced firing regime.

If we consider a linear version of Eq. (2.2), standard Laplace
transform techniques can be used to assess the subthreshold
dynamics of the model [42]. This procedure will be useful as a
check for the numerical code and also to assist the FPT analysis
in the next sections, when the fire-and-reset rule is turned on.
Imposing a linear g′(v) function defined as g′(v) = ω2v − μ

in Eq. (2.2), we obtain:

v̄(s) = v̇(0) + [s + γ K̄(s)]v(0)

s2 + sγ K̄(s) + ω2
+ μ̄(s)

s2 + sγ K̄(s) + ω2

+ ξ̄ (s)

s2 + sγ K̄(s) + ω2
, (2.4)

where it was assumed t0 = 0 and the definition of the Laplace
transform operator,

L{f }(s) = f̄ (s) =
∫ ∞

0
dt exp (−st)f (t), (2.5)

was used. The formal solution for the time evolution of the
membrane potential is then given by:

v(t) = L−1{v̄}(t)

= ϕ(t) +
∫ t

0
dt ′h(t − t ′)μ(t ′) +

∫ t

0
dt ′h(t − t ′)ξ (t ′),

(2.6)
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where we have again resorted to the convolution theorem and
defined

ϕ(t) = L−1

{
v̇(0) + [s + γ K̄(s)]v(0)

s2 + sγ K̄(s) + ω2

}
(t), (2.7)

as well as

h(t) = L−1

{
1

s2 + sγ K̄(s) + ω2

}
(t). (2.8)

Noting that the noise term ξ is of zero mean, we can obtain
the average dynamics of the potential v(t):

〈v(t)〉 = ϕ(t) +
∫ ∞

0
dt ′h(t − t ′)μ(t ′). (2.9)

For the case of a constant μ, Eq. (2.9) reduces to

〈v(t)〉 = ϕ(t) + μL−1

{
1/s

s2 + sγ K̄(s) + ω2

}
(t). (2.10)

Once the form of the memory kernel K(t − t ′) is specified,
we can easily evaluate Eq. (2.10) numerically or algebraically.
For example, if we assume a Gamma kernel (which has as a
particular case the exponentially decaying kernel) [43,44] or
an exponentially damped harmonic kernel [45,46], analytical
solutions are possible [42,47]. Since they involve very long
expressions, we refrain from writing them explicitly here. The
standard deviation σv =

√
〈v2〉 − 〈v〉2 of the membrane po-

tential can be straightforward obtained considering Eq. (2.10)
and by noting that

〈v(t)2〉 = ϕ(t)2 + 2ϕ(t)
∫ t

0
dt ′h(t − t ′)μ(t ′)

+
[ ∫ t

0
dt ′h(t − t ′)μ(t ′)

]2

+
∫ t

0
dt ′′h(t − t ′′)

∫ t

0
dt ′h(t − t ′)〈ξ (t ′)ξ (t ′′)〉.

(2.11)

Like in the case of the first moment, the second moment
given by Eq. (2.11) can also be analytically obtained if,
additionally to the memory kernel, a suitable correlation
function for the noise term is provided.

We point out that Karmeshu and Kadambari (Ref. [44])
proposed a different approach to introduce memory effects and
also obtained interesting results. They generalized the standard
first-order SLIF model by introducing a distributed delay in
the following way:

dv

dt
= −β

∫ t

0
dt ′K(t − t ′)v(t ′) + μ +

√
2σ 2η(t), (2.12)

where η(t) has the properties of a Gaussian white noise.

III. NUMERICAL APPROACH AND SPIKE TRAIN
STATISTICS

A. Numerical scheme

One of the main sources of information about the dynamics
of a single neuron or an ensemble of neurons is the ISI
distribution. The problem of obtaining such a distribution
is formally known as an FPT problem [48,49]. Despite the

indisputable success of the standard formulations in obtaining
closed or approximated expressions for the FPT in the most
diverse systems, the corresponding tools are not suitable
to describe systems whose relaxation time is larger than
the typical FPT [28,50]. This is precisely the case of the
present model and also other models that are able to produce
subthreshold oscillations.

In Refs. [28,50], Verechtchaguina et al. considered a
resonant-and-fire model subjected to colored noise and found
a closed-form solution for the first term of the mean FPT equa-
tion, which in turn is formulated in terms of a sum of integrals.
Despite the breakthrough developments of Verechtchaguina
et al., to improve the reliability of the approximation more
terms need to be calculated semianalytically, and then the
computational cost for obtaining the approximated result
rapidly approaches the one for simulating the dynamical
equation. This is no less the case of the model introduced in this
paper which, besides colored noise, also considers the presence
of memory. For this reason, here we choose to perform an
extensive numerical analysis of the problem.

There are several methods in the literature to address
integrodifferential equations like Eq. (2.2) [42,51,52]. For the
memory kernel and noise correlation we use here, it is enough
to adopt the method described in Ref. [52]. The objective
is to map the nonlocal Langevin equation into a system of
local stochastic differential equations. For this purpose, we
introduce the auxiliary variable W , defined by

W (t) = −
∫ t

t0

dt ′K(t − t ′)v′(t ′). (3.1)

We consider the simplest case for the memory kernel, a
decaying exponential function also known as the Ornstein-
Uhlenbeck kernel:

K(t − t ′) = 
 exp [−
|t − t ′|]. (3.2)

For the noise term, we impose that its time evolution obeys
the Ornstein-Uhlenbeck stochastic differential equation:

ξ̇ (t) = −
ξξ (t) −
√

2
2
ξ σ

2
ξ ηξ (t), (3.3)

where ηξ (t) is a white Gaussian noise satisfying

〈ηξ (t)〉 = 0, 〈ηξ (t)ηξ (t ′)〉 = δ(t − t ′). (3.4)

We use the stationary solution of Eq. (3.3) which, together
with Eq. (3.4), yields the following correlation function for the
noise:

〈ξ (t)ξ (t ′)〉 = σ 2
ξ 
ξ exp [−
ξ |t − t ′|]. (3.5)

Now we can use the definition Eq. (3.1) and the differential
equation Eq. (3.3) in order to rewrite the integrodifferential
Eq. (2.2) in terms of the following system of first-order local
differential equations:

v̇(t) =y(t),

ẏ(t) =μ − ω2v + γW (t) + ξ (t),
(3.6)

Ẇ (t) = − 
W (t) − K(0)y(t),

ξ̇ (t) = − 
ξξ (t) −
√

2
2
ξ σ

2
ξ ηξ (t).
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The numerical model is completed upon a specification of
the fire-and-reset rule. Here it reads: If v(t) = vth, then (i) a
spike is considered to have occurred at time t and (ii) v → vr ,
y → 0, and W → 0.

We have used a standard fourth-order Runge-Kutta method
with a time-step size varying between t = 10−2 and t =
10−3 to obtain the numerical results shown in the following.
This numerical scheme was found to be enough both for
numerical stability and numerical precision.

B. Standard measuring tools

Neuronal dynamics can be characterized by several quan-
tities [1,53–55] and here we define some of them that will be
useful in the analysis we perform in the next sections. The
spike time is defined as the time instant when the membrane
potential reaches the threshold value. Given a time window
tW = tf − t0 and a trial (say, the ith trial), a neuron produces
a finite set of spikes, whose temporal distribution can be
accounted for by

yi(t) =
Ni∑

j=1

δ
(
t − t ij

)
, (3.7)

with t i1 > t0 and t iNi
< tf . The distribution yi(t) is called spike

train, and the sum runs discretely over each spike time t ij , from
j = 1 to j = Ni . A consistency relation between yi(t) and Ni

can be written. The number of spikes in a given trial can be
evaluated as

Ni =
∫ tf

t0

dtyi(t). (3.8)

In n trials, the total number of spikes is defined as N =∑n
i=1 Ni . We define the firing rate as an average over time:

r = N
ntW

. (3.9)

The time interval between two successive spikes (T i
j =

t ij+1 − t ij ) is called the ISI. This definition allows us to
concatenate the ISI’s of all n trials and then define the following
quantities: the average ISI (denoted by 〈T 〉),

〈T 〉 = 1

N − n

n∑
i=1

Ni−1∑
j=1

T i
j , (3.10)

and the coefficient of variation (CV), denoted by cv in the
equations:

cv = [〈T 2〉 − 〈T 〉2]1/2

〈T 〉 , (3.11)

where 〈T 2〉 is defined analogously to Eq. (3.10). The CV is,
of course, a measure of the regularity of the spike train. From
Eq. (3.11), one can infer that a time uniform spike train leads
to cv = 0, while a Poissonian spike train is characterized by
cv = 1.

IV. RESULTS AND DISCUSSIONS

In the following numerical simulations, we have considered
statistics based on at least n = 104 trials where each trial is

characterized by an observational time window tW = 103.
These choices were made in order to obtain a sample space
composed of at least 106 spikes. In all cases, we set a
threshold value vth = 0.1 and a reset value vr = −0.05. We
distinguish between two characteristic regimes: In Sec. IV A
we analyze the neuron dynamics when μ/ω2 > vth (tonic
spiking regime, μ = 0.2), and in Sec. IV B we analyze
the situation where μ/ω2 < vth, the so-called noise-induced
spiking regime (μ = 0.08). We considered in all cases γ = 5
and ω = 1, corresponding to the overdamped case. Therefore,
when present, the subthreshold oscillations are due to the
presence of memory.

A. Tonic spiking regime

We start by illustrating the dynamics provided by Eq. (3.6)
showing in Fig. 1 some sample trials in a reduced time window
for different memory parameter 
.

In Fig. 2, we test the limiting behavior of our numerical
code. As expected, for large values of 
 and 
ξ , we observe
a good agreement between the non-Markovian dynamics and
the Markovian approximation, given by Eq. (2.1) with λ = 1:
In the left panel of Fig. 2 we show this agreement for the
probability density function of the interspike intervals. In the
right panel, we show the approach of the coefficient of variation
to its counterpart in the Markovian limit for large values of 
.

In the inset plot of Fig. 2, we call attention to the
nonmonotonic behavior of the non-Markovian CV as a
function of the memory parameter. In the long memory limit
(
 = 
ξ � 1), the CV is near zero, which characterizes a
very regular spike train. If we proceed increasing 
, the
value of CV also increases until a local maximum is reached
(
 = 
ξ ≈ 0.5). After that, the value of CV starts to decrease
until it reaches the Markovian limit (
 = 
ξ 	 1). In Fig. 3
(left panel) we observe that increasing the noise intensity shifts
the CV curves toward a higher level of variability and also
causes a softening effect on the shape of the CV peak. On
the right panel of the same figure, we show the impact of
noise on the mean firing rate r: Increasing σξ results in an
appreciable decrease of the firing rate in the approximated
range 0.1 < 
 = 
ξ < 0.8 and in an increase of the firing rate
for 
 = 
ξ > 0.8, approximately.

The nontrivial behavior induced by memory described
above, which is also present in the noise-induced spike regime
(Sec. IV B), can be seen as an effective representation of
some underlying mechanism that acts controlling the firing
variability and rate of a given neuron. A number of such
mechanisms have been reported in the literature. For instance,
it has been suggested that GABAergic autaptic transmission
(GAT) is responsible for the regulation of spike-timing
precision in the so-called fast spiking interneurons, leading to
the suppression of variability [56,57]. In the case of our model,
the memory is introduced to reflect a property of the input. This
has a strong analogy with the experimental results reported
in Refs. [58] and [59], which show that the overall activity
level of the network that embeds a given neuron modifies the
integrative properties and the performance of that single cell.

It is important to note that it is the presence of memory
rather than that of colored noise the determinant factor that
induces the emergence of a peak in the cv-versus-
 curve. If
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FIG. 1. Sample trials of the potential v(t) obtained from Eq. (3.6) in the tonic spiking regime using σξ = 0.1.

we ease the restriction 
 = 
ξ (used only to reduce the number
of free parameters) and consider Eq. (3.6) in the white-noise
limit (
ξ → ∞), we obtain the result shown in the left panel
of Fig. 4: the dotted line, which essentially coincides with the

ξ = 100 curve (full line), still exhibits the local maximum
of the CV as a function of 
. Note that, in sharp contrast,
no maximum occurs for the CV as a function of 
ξ when
we consider the memoryless limit (
 → ∞) of the dynamical
equation (approximated by the 
 = 100 curve on the right
panel of Fig. 4). Looking again at the left panel of Fig. 4, one
notes that the value of 
ξ determines how smooth the peak
structure is. The smaller the value of 
ξ , the sharper the peak,
and even a double-peak structure can emerge in the cv-versus-

curve (dashed line, 
ξ = 0.1). The larger the value of 
ξ (until

it saturates in the white-noise limit), the smoother the shape
of the peak. Also, increasing 
ξ implies a global upward shift
in the neuron variability, a situation that tends to be slightly
violated only in the vicinity of the peak when 
ξ 	 1, since
the peak becomes increasingly smooth as 
ξ is increased.

A joint analysis of the subthreshold evolution of Eq. (3.6)
and the ISI histograms for a given time scale 
−1 is useful to
shed light on the mechanism that leads to the emergence of the
peak in the cv-versus-
 curve. In Fig. 5 we take a closer look
at the case σξ = 0.1 by showing a sequence of snapshots for
fixed values of 
 = 
ξ . In Fig. 5(a), we set 
 = 
ξ = 0.3, a
value to the left of the maximum 
 = 
ξ ≈ 0.5 (see Fig. 3),
and it can be noted that the ISI distribution exhibits a very
sharp unimodal structure, which is characterized by a small
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FIG. 2. (Color online) Convergence to the Markovian dynamics. Left: Probability density function for the interspike interval obtained using
Eq. (3.6) and its Markovian approximation. Right: The coefficient of variation (CV) as a function of 
. The inset plot shows a detailed view
of the CV for shorter values of 
. Note the nonmonotonic behavior of CV as we increase 
 (Markovian case: 
 = 
ξ → ∞). In both plots,
σξ = 0.1 and μ = 0.2.
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FIG. 3. The behavior of the CV and the firing rate r as a function of 
 = 
ξ in the tonic spiking regime (μ = 0.2).

value of CV, as shown in Fig. 3. These findings can be easily
understood if one looks at the inset plot, which shows the
mean membrane potential trajectory [Eq. (2.10)] crossing the
threshold value at a very early time instant due to memory-
induced oscillations. The amplitude of these oscillations is so
large that noncrossing trajectories become unlikely already
after the first peak of the mean potential. When 
 = 
ξ = 0.5
[Fig. 5(b)], we can note a decrease in the height of the first ISI
peak and the emergence of a second one. This configuration
of the ISI distribution characterizes the maximum CV, since
trajectories that are able to avoid the threshold crossing at the
first oscillation do not possess a significantly dominant most
probable interspike interval, since the emergent mode does not
exhibit a sufficiently pronounced peak. Setting 
 = 
ξ = 0.8
[Fig. 5(c)], the second mode becomes well defined, since its
height is now comparable to the one of the first peak. Thus,
in this configuration, we can infer a decrease in the CV value,
which is corroborated by Fig. 3. This decreasing behavior of
the CV persists from this panel to the last one. Note that for
larger values of 
 = 
ξ , we have a continuous suppression of
the bimodality, as can be seen in Figs. 5(e) and 5(f). However,
even though both [Figs. 5(a) and 5(f)] ISI distributions exhibit
a single-peaked structure, they yield different values of the

CV: As the system moves toward the Markovian limit (
 =

ξ 	 1) plateau exhibited in the right panel of Fig. 2, the
CV decreases, but it saturates in a value larger than the one
obtained when 
 = 
ξ � 1.

The same analysis can be performed to clarify the double-
peak structure in the cv-versus-
 curve that is exhibited in the

ξ = 0.1 case of Fig. 4. In Fig. 6 we show the ISI distribution
for representatives values of 
. From Fig. 6(a) to Fig. 6(b),
we note the transition from a sharp, unimodal distribution to a
distribution with two dominant modes. Figure 6(b) represents
the maximum CV configuration for this particular case. In
Fig. 6(c), we fix 
 = 0.7 (the minimum between the two
peaks in Fig. 4) and a suppression of the first mode occurs,
thus decreasing the CV value since only one dominant mode
remains. The next panel corresponds to the second peak shown
in Fig. 4), and from this panel to the last one, we note a decrease
in the CV value until the memoryless limit is reached and the
CV assumes an approximately constant value.

As a last remark in this subsection, we illustrate in Fig. 7
how the coefficient of variation behaves as a function of the
noise intensity σξ . The results are intuitive, since we can note
a monotonic increase in the value of the CV as the noise
intensity increases. The dotted red curves that are present in
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FIG. 4. Dissociated effects of memory and colored noise. Left: CV as a function of 
 for different values of 
ξ . Right: Suppression of the
peak in the memoryless limit, 
 	 1. In both panels, μ = 0.2 and σξ = 0.1.
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FIG. 5. Emergence of bimodality in the ISI distribution. In all panels, μ = 0.2 and σξ = 0.1.

all panels correspond to the Markovian approximation (
 =

ξ → ∞). As expected, for large values of 
 = 
ξ [Fig. 7(c),

ξ = 100 case], the Markovian dynamics becomes a reliable
approximation for the non-Markovian dynamics.

B. Noise-induced spike regime and coherence resonance

Now let us turn to the analysis of the noise-induced spike
regime, where the external input μ and the parameter ω are
defined such that μ/ω2 < vth.

In this regime, the qualitative behavior of both the CV and
rate as functions of (
 = 
ξ ) is similar to their counterparts in
the tonic spiking regime (Fig. 8). However, if we take a closer
look at the ISI distribution in this case (Fig. 9, where the σξ =
0.1 case of Fig. 8 is depicted), we can note the emergence of a
multimodal structure that results from the memory-induced
subthreshold oscillations. Like in the previous subsection,
for 
 = 
ξ � 1 [long memory limit, Fig. 9(a)] and for

 = 
ξ 	 1 [Markovian limit, Fig. 9(f)], the ISI distribution is
unimodal, and for a critical value 
 = 
ξ ≈ 0.1 [Fig. 9(b), log
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FIG. 6. Emergence of bimodality in the ISI distribution: Analysis of the double-peak structure in the 
ξ = 0.1 case of Fig. 4. In all panels:

ξ = 0.1, μ = 0.2, and σξ = 0.1.

scale], we obtain a multimodal ISI distribution that maximizes
the value of CV. It is important to note that we adopted
the standard definition of the noise-induced spike regime,
thus taken from the memoryless model perspective. Since
memory is able to induce oscillatory behavior in the potential
dynamics, it can eventually cause deterministic threshold
crossing depending on the amplitude of the oscillations. For
example, Figs. 9(a) and 9(b) show sufficiently small values
of 
 = 
ξ such that memory provides a transition from
noise-induced to tonic spike regime. From Fig. 9(c) onward,

the spike regime becomes noise-induced in the standard sense.
Also, from Fig. 9(b) to Fig. 9(e), we observe a decrease in the
CV value until it reaches the Markovian limit value in Fig. 9(f).
In this panel, we recover the typical unimodal ISI histogram
of overdamped models.

Now we discuss an interesting phenomenon known as
coherence resonance (CR) [60], which can be present not
only in neuronal systems [61,62] but also in optical systems,
plasma discharge dynamics, and others [63–65]. Like in
stochastic resonance (SR) [66,67], CR can be interpreted
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FIG. 7. (Color online) The behavior of the CV as a function of the additive noise intensity σξ in the tonic spiking regime.

as a nondeleterious behavior induced by the presence of
noise. But unlike SR, where setting an appropriate amount
of noise can improve the ability of neurons to detect external
subthreshold signals (e.g., periodic inputs), the constructive
role of noise in the CR phenomenon is characterized by the
emergence of order under the presence of a stochastic source
only. Specifically in the neuronal dynamics case, a critical
level of noise intensity can maximize the regularity (i.e., the

coefficient of variation reaches a minimum) of a spike train.
We now investigate how the introduced memory effects and
colored noise affect the CR mechanism. For that purpose, in
Fig. 10 we plot the CV as a function of the noise intensity. The
dotted red line in Fig. 10(a) shows the result for the Markovian
limit (
 = 
ξ 	 1) of Eq. (3.6). An interesting result is that
for sufficiently long memory (
 = 
ξ = 0.1 case), CR is
suppressed: The minimum in the cv-versus-σξ curve is replaced
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FIG. 8. The behavior of the CV and the firing rate r as a function of the 
 = 
ξ in the noise-induced spike regime.
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FIG. 9. Emergence of multimodality in the ISI distribution. In all panels: μ = 0.08 and σξ = 0.1.

by a maximum. Therefore, instead of the existence of a critical
value for σξ such that the ISI regularity is maximized, for long
memory we have a critical value of the noise intensity such that
the ISI regularity is minimized. Therefore, memory is able to
not only suppress CR but also can induce an opposite situation,
thus characterizing an “incoherence resonance” phenomena.
This behavior is a manifestation of the deterministic threshold
crossing induced by memory oscillations, as mentioned above.
For the curves with 
 = 
ξ = 0.1 and 0.05, the oscillation
amplitude is sufficiently large such that a transition to the
tonic spike regime occurs and then completely changes the

qualitative aspect of the cv-versus-σξ curve. It is worth noting
that the authors of Ref. [61] also describe an interesting
coherence-incoherence maximization mechanism regulated by
the noise level in the context of a SLIF that includes an absolute
refractory period.

In Fig. 10(b), we call attention to the fact that, again,
memory shows up as the fundamental ingredient that leads
to the qualitative change in the cv-versus-σξ curve, since the
characteristic time scale of the colored noise is not able to
change the qualitative aspect of the curves, neither in the

ξ < 1 cases nor in the 
ξ 	 1 cases.
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FIG. 10. (Color online) The behavior of the CV as a function of the noise intensity σξ in the noise-induced spike regime: Coherence
resonance can be suppressed by memory effects.

V. CONCLUSIONS AND FINAL REMARKS

We have proposed a generalization of the stochastic
resonate-and-fire model to the context of the generalized
Brownian motion framework. We analyzed in detail the conse-
quences of the concomitant presence of memory (distributed
delay) and colored noise on the membrane potential dynamics.
The model shows a remarkably rich dynamics, exhibiting a
nontrivial behavior of the coefficient of variation as a function
of the memory characteristic time scale 1/
, thus suggesting
that memory can be seen as an effective mechanism for
generating and controlling neuron variability. Also, the present
model is able to produce ISI distributions that exhibit multi-
modality, a feature whose temporal pattern can be controlled
by adjusting the memory time scale and then allowing smooth
transitions between unimodal and multimodal distributions.
This is a very desirable mechanism, since real neurons are
able to exhibit such nontrivial patterns in the ISI distribution.
Additionally, we have discussed the role played by colored
noise in the membrane potential dynamics. We have shown
that (i) by adjusting the noise intensity it is possible to shift

the cv-versus-(
 = 
ξ ) curve and to smooth its peak structure
and (ii) by adjusting the noise time scale 1/
ξ a double-peak
structure can emerge in the cv-versus-
 curve. Finally, we
have studied how memory and colored noise effects modify
the establishment of the coherence resonance phenomenon.
We found that long memory is able to suppress the presence
of CR, and for a given range of 
 and 
ξ , a maximum in the
cv-versus-σξ is present instead of the usual minimization of CV
that characterizes the coherence resonance. Given the variety
of dynamical regimes provided by the proposed theoretical
framework, we think that the present formulation could be
useful to shed some new light on the modeling of dynamical
aspects of real neurons. Also, the results presented here could
be promptly extended to the context of other kind of noises,
like the 1/f , for example.
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