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Curvature elasticity of a grafted polyelectrolyte brush
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The curvature elasticity of a polyelectrolyte brush monolayer attached to curved surface is investigated
theoretically. An analytical method based on the strong-stretching theory for a Gaussian chain is developed
to calculate the elastic modulus induced by a polyelectrolyte brush. In particular, the scaling relations for the
bending or Gaussian modulus with respect to system parameters related to the electrostatic interaction (degree
of ionization and salt concentration) are derived. Using the numerical self-consistent-field theory, the inner
structural, free-energy, and elastic moduli are computed for the polyelectrolyte brush with excluded-volume
interactions. Compared to the analytical result, the curvature elasticity has a weaker dependence on the system
parameters, which is attributed to the linearization for the Poisson-Boltzmann equation in the analytical treatment.
Furthermore, our results are compared to the curvature elasticity of a bare charged surface, wherefrom the unique
polyelectrolyte brush effect on the surface elasticity is clarified clearly. The scaling relations derived in our paper
can serve as a guide to experimental studies on the related systems.
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I. INTRODUCTION

Bending rigidity represents one of the most important
mechanical properties of an interface or surface (such as a
membrane) [1]. It determines the stability or deformation of
the membrane, as well as the self-assembly of block copolymer
micelles or vesicles. The curvature energy of an interface or
surface is given by the Helfrich free energy [2]

f = f0 + K

2
(c1 + c2 − 2c0)2 + K̄c1c2, (1)

where f0 is the free-energy density of a planar surface, c1 and c2

are principal curvatures of the surface orthogonal to each other,
and c0 is spontaneous curvature. The bending modulus K and
the Gaussian modulus K̄ are two parameters characterizing the
curvature elasticity: K represents the ability of the membrane’s
resistance to bending and K̄ indicates whether the formation
of a saddle point on the membrane is favorable.

Polymer chains are usually densely grafted on the mem-
brane surfaces to achieve certain purposes, while the interac-
tions between chains induce the change of bending rigidity
[3–5]. For example, neutral poly(ethylene glycol) chains are
grafted onto both sides of a lipid bilayer and stiffen the
supporting membrane [6,7]. Another case is the interface
consisting of self-assembled diblock copolymer monolayers,
which forms a micelle or vesicle in a solution. Shape
deformation may be observed when the bending rigidity of
the interface is modified [8,9]. Xu et al. [10] prepared an
amphiphilic diblock copolymer poly(dimethyl methacrylate)-
b-poly-N -isopropylacrylamide (PDMA-b-PNIPAM), which
forms a core-corona structure in solution. The charged PDMA
in a corona is sensitive to pH and induces an obvious shape
change of the micelle at a certain pH value.

The important issue is how a brush (densely grafted
polymer layers) affects the curvature elasticity of the surface.

*Corresponding authors: shuangyang@pku.edu.cn and eqchen@
pku.edu.cn

Much effort has been put forth to study the bending rigidity
induced by a neutral polymer brush [1,11–19]. Milner and
Witten [14], followed by Wang and Safran [13], analytically
derived the relation between bending rigidity and systematic
parameters such as chain length N , grafting density σ , and
excluded-volume parameter u0 based on the strong-stretching
theory (SST). By expanding the free-energy density in power
of the curvature, they obtained K ∼ N3σ 7/3u

4/3
0 . Hiergeist and

Lipowsky [20] and Zhulina et al. [21] separately obtained the
same scaling relation but with a different prefactor by using
a scaling argument. Szleifer et al. [12] developed a molecular
mean-field theory, where the equilibrium area per molecule is
determined by the lateral pressure from the polymer brush, to
calculate the curvature elasticity of monolayers and bilayers
of typical surfactant molecules. They applied this method to
investigate the stability of a liposome grafted by polyethylene
glycol chains [3,22]. Other methods, such as the numerical
self-consistent-field lattice approach [23,24], local-density-
functional theory [25], and molecular-dynamics simulation
[26], were also developed to calculate the elastic properties
of a membrane induced by a polymer brush. In our previous
work [27] we applied the numerical self-consistent-field theory
(SCFT) to calculate the change of the bending modulus
induced by a neutral polymer brush monolayer. Our results
reveal that it is important to take into account the effect of
solvents explicitly when the grafting density is high enough.

In contrast to the comprehensive understanding for the
neutral brush system, there are only a few theoretical studies on
the curvature elasticity of a charged polymer monolayer. When
polymer chains carry charges, the added salt or pH value of the
solution has a significant influence on the conformation as well
as the physical properties of grafted polyelectrolyte chains.
The long-range electrostatic interaction and the presence of
multiple scales make the situation rather complicated. Previous
theoretical studies focused on the equilibrium structure of a
quenched polyelectrolyte brush (the number and position of
charges on the chain are both fixed). A deep understanding of
their properties has been achieved [21,28–41]. However, less
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is known about the elastic properties of a charged polymer
layer. Apparently, the curvature elasticity is dependent on
different factors in a complex way. The investigation of a
bare charged plane, a similar but simpler system, based on the
linear [42–44] or nonlinear [45,46] Poisson-Boltzmann (PB)
equation, provides some useful insights. One may be curious
how the bending rigidity will be changed when charges are
moved from the surface to a soft polymer shell in the vicinity
of the surface.

Zhulina et al. [21] analyzed the conformation of a
polyelectrolyte chain end grafted to convex spherical and
cylindrical surfaces by use of a generalized Daoud-Cotton
model and a nonlocal approximation model. In their method,
the chain conformational entropy was handled with a strong-
stretching approximation and the electrostatic contribution
from charged brushes was specified under the assumption of
the local electroneutrality approximation (the Donnan rule).
This assumption considers that the local excess charges from
mobile ions inside the brush compensate for the charges
from polymer segments. In the limit of small curvature,
they expanded the thickness and free energy in powers of
the curvature. In fact, the curvature elasticity of the charged
polymer brush can be derived from the curvature expansion.
The first work about the curvature elasticity of a weak
polyelectrolyte brush was reported by Victorov [47], who
gave an analytical estimation for the elastic constant of both
a swollen polyelectrolyte brush and a membrane formed by
charged diblock copolymers and focused on the effects of
salinity and pH of the medium. In Victorov’s mean-field
model, he employed a boxlike brush model and the local
electroneutrality approximation. The approximations simplify
the problem considerably, but inevitably it can only give a
qualitatively rather than quantitatively accurate prediction.

In this paper we calculate the bending moduli induced
by a polyelectrolyte brush using both the SST and SCFT.
The SST is only applied to a Gaussian chain system so
that we can derive the analytical expressions of K and K̄ .
Our method is a direct extension of the classical works of
Zhulina et al. [33,34], which analytically investigate a charged
polymer brush by use of the SST. Without adopting the local
electroneutrality approximation, we apply the Debye-Hückel
approximation (the linearized PB equation) to deal with the
electrostatic interaction and assume the parabolic form for
the electric potential when the grafting surface is slightly
bent. Since several approximations are involved, the validity
of the analytical results obtained is limited. Meanwhile, we
apply the numerical SCFT to solve this problem. In this
method the excluded-volume interactions of polymer segments
are considered explicitly. We only consider the case with
a moderate grafting density, so the second virial model is
sufficiently accurate to describe the system. The SCFT can
offer rather accurate predictions and is applicable in a large
parameter space. However, this method requires a great deal
of calculation and the physical mechanism behind the results
is not clearly elaborated. Therefore, the combination of the
SST and SCFT provides a good way to understand the elastic
properties of the polyelectrolyte brush monolayer.

To obtain the bending rigidities induced by a tethered
polymer monolayer, we calculate the free energy per unit
area for a slightly bent brush on cylindrical and spherical

surfaces. The free-energy density is then expanded in powers
of the curvature (to second order) with respect to the flat
case. However, if the curvature of the grafting surface is large,
one has to deal with the inwardly or outwardly grafted brush
separately due to the different spatial confinement effect [48].
For a cylindrical brush, the curvatures are c1 = 1/R and c2 = 0
in Eq. (1) and the free energy per unit area is written as

f c = f0 + Ac

R
+ Bc

R2
. (2)

Similarly, the curvatures are c1 = c2 = 1/R in the spherical
case and the free energy is given by

f s = f0 + As

R
+ Bs

R2
. (3)

The expressions of the bending modulus and the Gaussian
modulus can be deduced from the coefficients of the second-
order term in terms of Eq. (1) [27,49]:

K = 2Bc, K̄ = Bs − 4Bc. (4)

The rest of the paper is organized as follows. We introduce
the SST to deal with a charged brush consisting of Gaussian
chains. We solve the linearized PB equation for planar,
cylindrical, and spherical brushes, respectively. Then we derive
the analytical expressions for the thickness of the brush as
well as the free energy as a power of 1/R. The moduli
are deduced from the expansion coefficients. We apply the
continuous SCFT to handle the charged polymer brush with
excluded-volume interactions. The free energy is calculated
numerically as a function of surface curvature and the moduli
are obtained by fitting. The calculated moduli are found to obey
some interesting scaling law with respect to the systematic
parameters. We compare and discuss the different results from
the two methods and then compare them with the case of a pure
charged plane. A summary is given at the end of the paper.

II. STRONG-STRETCHING-THEORY TREATMENT

A. Charged polymer brush grafted on a flat surface

In this section our SST method follows Zhulina and
Borisov’s classical work [33] for the polyelectrolyte brush.
The polymer brush is weakly charged (quenched case), where
the polymer chain can be treated as a Gaussian chain. The
excluded-volume interaction is neglected for the convenience
of the analytical treatment, which corresponds to the system in
the θ solvent condition. Here np polymer chains are uniformly
grafted at one end on an impenetrable neutral surface of area
A. The grafting area per chain is s = A/np and the grafting
density is defined as σ = 1/s. The brush is assumed to be
monodisperse with a natural end-to-end distance R0 ≡ bN1/2,
where b is the Kuhn segment length and N is the number
of segments per chain. Positive charges are loaded on each
polymer chain and are smeared uniformly along the polymer
backbone. Here α represents the degree of ionization of
segments (we call it the charge fraction) and keeps constant for
a quenched polyelectrolyte, i.e., the total charge of each chain
is eαN , where α is assumed to be small so that the electrostatic
stiffening effect can be ignored. The polyelectrolyte brush is
in contact with a semi-infinite reservoir of monovalent salt
solution with concentration c0. The distributions of segments
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and ions are functions of the z coordinate, which is normal
to the grafting surface, assuming a rotational symmetry in the
(x,y) plane parallel to the grafting surface. Here h0 is set as
the thickness of the planar brush. The segments are distributed
in the range 0 � z � h0.

The free energy per chain is a summation of three parts:

F = Fpolymer − Sion + Fel, (5)

where Fpolymer is the contribution from the nonelectrostatic in-
teraction. It includes conformational entropy loss for stretched
polymers and the excluded-volume interaction between seg-
ments (we neglect this part here). In addition, Sion represents
the translational entropy of mobile ions and Fel consists of
all the electrostatic interactions in the system. Throughout the
paper, we set kBT as the unit of energy. In terms of the SST,
Fpolymer can be written as [50,51]

Fpolymer = 3

2b2

∫ h0

0
g(z′)dz′

∫ z′

0
E(z,z′)dz, (6)

where g(z′) is the normalized density distribution of free
ends. The function E(z,z′) = dz/dn characterizes the local
stretching at z when the chain end is located at z′(z′ > z).
Here E(z,z′) obeys the normalization condition

N =
∫ z′

0

dz

E(z,z′)
. (7)

The density of segments is expressed as

ρp(z) = 1

s

∫ h0

z

g(z′)
E(z,z′)

dz′. (8)

This density should also satisfy the conservation condition

s

∫ h0

0
dz ρp(z) = N. (9)

The translational entropy term of mobile ions Sion can be
given in terms of the concentrations of positive and negative
ions (c+ and c−) by

− Sion

s
=

∫ ∞

0
dz

[
c+ ln

(
c+(z)

c0

)
+ c− ln

(
c−(z)

c0

)

− [c+(z) + c−(z) − 2c0]

]
. (10)

The electrostatic free energy Fel follows as

Fel

s
= 1

2

∫ ∞

0
dz �(z)ρe(z) = 1

8πlB

∫ ∞

0
dz|∇z�(z)|2,

(11)

where lB = e2/εkBT is the Bjerrum length specifying the
relative strength of the electrostatic interaction to the thermal
energy (e is the elementary charge and ε is the dielectric
constant of the solution). The dimensionless electrostatic
potential �(z) is related to the electrostatic potential ψ(z) in
space via �(z) = eψ(z)/kT . Here ρe(z) represents the spatial
distribution of excess charge

ρe(z) = αρp(z) + c+(z) − c−(z) (12)

and �(z) and ρe(z) satisfy the Poisson equation

∇2
z �(z) = −4πlBρe(z). (13)

In order to deduce the equilibrium distributions of segments
and mobile ions, one can minimize the free energy F [Eq. (5)]
with respect to the unknown functions g(z), E(z,z′), c+(z), and
c−(z). At the same time, the variation method is also applied on
both sides of Eq. (13). Considering the constraint conditions
of Eqs. (7)–(9), the equilibrium distributions of segments and
ions can be derived. The details can be found in the Appendix
of Ref. [33]. The only difference between their work and ours
is the way the electrostatic interaction is dealt with. In our
case the variation is executed by the Poisson equation (13)
and Eq. (11) and then the integration by parts is applied with
the boundary condition ∂�/∂z|z=0 = ∂�/∂z|z=∞ = 0. One
arrives at results similar to Eq. (A20) in Ref. [33]. Thus it is
easier to get the equilibrium distributions. For mobile ions we
have c+(z) = c0 exp[−�(z)] and c−(z) = c0 exp[�(z)]. With
these distributions Eq. (13) becomes the PB equation.

The most important result in the SST derivation is that, due
to the specific boundary condition for the chain trajectory of
the polymer brush, the external field acting on each polymer
chain [here the field is the reduced electrostatic potential �(z)]
will be a harmonic potential with a parabolic shape

�(z) = A − Bz2, (14)

where the coefficient B is determined as B = 3π2/8b2N2α.
To determine the coefficient A, we apply the Debye-Hückel
approximation, where the potential is assumed to be rather
small (� � 1), leading to the linearized PB or the Debye-
Hückel equation

d2�(z)

dz2
=

{−4πlB[αρp(z) − 2c0�(z)], 0 � z � h0

8πlBc0�(z), z � h0.

(15)

From Eq. (14) one finds ∂2�/∂z2|z=h0 = −2B in the brush
range 0 � z � h0, therefore, from Eq. (13), the density of
excess charge within the brush remains constant ρe(z) =
B/2πlB . We define the effective surface charge density in the
brush region as Q = sh0B/2πlB . According to the Gauss the-
orem, the boundary condition is ∂�/∂z|z=h0 = −4πlBQ/s.
For simplicity, we introduce the Debye screening strength as
κ2 = 8πlBc0. For the z � h0 region, Eq. (15) can be solved
easily with the boundary condition at infinity, leading to

�(z) = 2Bκ−1h0 exp[−κ(z − h0)], z � h0. (16)

The potential must satisfy the continuous condition at
z = h0, i.e., �(h0) = A − Bh2

0. The coefficient A is therefore
determined to be

A = 2Bh0κ
−1 + Bh2

0. (17)

The segment density ρp(z) in the range 0 � z � h0 is
also determined from Eq. (15). Until now, the only unknown
variable is the brush thickness h0. It can be solved by using
the conservation condition (9),

κh0 + κ2h2
0 + κ3h3

0

3
= 2πlBNακ

Bs
. (18)

The solution of Eq. (18) reads

κh0 =
(

1 + 6πlBNακ

Bs

)1/3

− 1. (19)

062602-3



ZHEN LEI, BING MIAO, SHUANG YANG, AND ER-QIANG CHEN PHYSICAL REVIEW E 91, 062602 (2015)

When κh0 � 1, Eq. (19) can be simplified as

h0 =
(

16lBb2

π

)1/3

Nα2/3σ 1/3κ−2/3. (20)

The scaling relation in Eq. (20) is consistent with Pin-
cus’s strong-screening limit [28]. In general cases, the salt
concentration is not so low and the brush thickness for long
chains is much larger than 1/κ . The condition κh0 � 1 always
holds.

B. Polyelectrolyte brush grafted on a cylindrical surface

To calculate the elastic moduli, we now consider the
charged polymer brush grafted onto the outward surface of
a cylinder with a large radius R. Similarly, all the variables are
only dependent on the radial coordinate r due to the rotational
symmetry. The coordinate r is related to the normal distance
x to the surface via r = R + x. The brush thickness becomes
h after bending. The free-energy expressions of each term
become

Fpolymer = 3

2b2

∫ R+h0

R

g(r ′)
(

r ′

R

)
dr ′

∫ r ′

R

E(r,r ′)dr, (21a)

−Sion

s
=

∫ R+∞

R

dr

(
r

R

)[
c+ ln

(
c+(r)

c0

)
+ c− ln

(
c−(r)

c0

)
− [c+(r) + c−(r) − 2c0]

]
, (21b)

Fel

s
= 1

2

∫ R+∞

R

dr

(
r

R

)
�(r)ρe(r) = 1

8πlB

∫ R+∞

R

dr

(
r

R

)
|∇r�(r)|2. (21c)

Since the surface is bent slightly, we still assume that the
distribution of the reduced electrostatic potential is parabolic

�(r) = A1 − Bx2. (22)

The expression of coefficient B is the same as in the planar
case and the coefficient A1 needs to be determined. For a
cylindrical brush the conservation condition becomes

s

∫ R+h

R

ρp(z)
r

R
dr = N. (23)

The linearized PB equation is written as

∂2�(r)

∂r2
+ 1

r

∂�(r)

∂r

=
{−4πlB [αρp(r) − 2c0�(r)], R � r � R + h

8πlBc0�(r), r � R + h.
(24)

Using the boundary condition that the potential is zero at
an infinite distance, the above equation can be solved in the
range r � R + h and the solution reads

�(r) = 4πlB
σe

κ

K0[κr]

K1[κ(R + h)]
, (25)

where K0 and K1 are the modified Bessel functions of zeroth
and 1th order, respectively, and σe is the effective surface
charge density of the cylindrical brush layer (in units of
elementary charge). It corresponds to the integral over the
distribution of excess charge in the range R � r � R + h,

σe =
∫ R+h

R

ρe(r)
r

R
dr = 4c0B

κ2

(
h + h2

R

)
. (26)

The coefficient A1 is determined in terms of the continuity
condition of �(r) at the edge of the brush r = R + h,

A1 = Bh2 + 4πlB
σe

κ

K0[κ(R + h)]

K1[κ(R + h)]
. (27)

Applying the series expansion of Bessel functions

lim
z→∞ K0(z) =

√
π

2z
e−z

[
1 − 1

8z
+ 9

128z2
+ · · ·

]
,

lim
z→∞ K1(z) =

√
π

2z
e−z

[
1 + 3

8z
− 15

128z2
+ · · ·

]
,

Eq. (27) can be expanded to the second order of 1/R. The
coefficient A1 can be written as

A1

B
= h2 + 2h

κ

[
1 + 1

R

(
h − 1

2κ

)
+ 1

R2

15

64κ2

]
. (28)

The conservation condition (23) leads to the equation for
the brush thickness h,

A1h + A1

2R
h2 − B

3
h3 − B

4R
h4 + 2B

κ2

(
h + h2

R

)
= N

s

α

2c0
.

(29)

To proceed we seek a series solution for Eq. (29) and expand
the brush thickness h to the second order of 1/R,

h = h0 + h1
1

R
+ h2

1

R2
, (30)

where h0 is the brush thickness for a flat surface. Upon
substituting Eqs. (28) and (30), Eq. (29) is expanded as a
power series of 1/R. The zeroth-order term gives the equation
for the planar brush thickness h0 [Eq. (18)]. Applying the
requirement that both the first- and second-order terms must
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be zero, we find

h1 = −4h2
0 − 12κh3

0 − κ2h4
0

8(1 + κh0)2 , (31a)

h2 =
[−(15/64)h2

0 + (κ/4)h3
0 − (κ2/2)h4

0

] − [
κh0 + (9κ2/2)h2

0 + (κ3/2)h3
0

]
h1 − (κ2 + κ3h0)h2

1

κ + 2κ2h0 + κ3h2
0

. (31b)

It is assumed that during the tiny bending process of the surface (R � 1), the change of free energy per unit area
mainly comes from the electrostatic interaction and the translational entropy of mobile ions, while the stretching energy
remains almost constant with changing R (the variation of conformational entropy is rather small). Using the Debye-Hückel
approximation and ignoring the stretching energy, the free energy per unit area f c of a cylindrical brush is given
by

f c = F

s
≈ 1

2

∫ R+h1

R

αρp(r)�(r)
r

R
dr. (32)

Here f c is also expanded to the second order of 1/R as

f c = f0 + f c
1

1

R
+ f c

2
1

R2
. (33)

After straightforward algebra, one arrives at the final expression of f c with the zeroth-order term

f0

c0B2
= 4

κ3
h2

0 + 16

3κ2
h3

0 + 8

3κ
h4

0 + 8

15
h5

0, (34)

which is exactly the result for the planar case. The expression of the second-order term is

f c
2

c0B2
= h0

5h1 + 16

3
h3

0h
2
1 + 8

3
h4

0h
2
2 + 15

16κ5
h2

0 + 7

8κ4
h3

0 − 4

κ4
h0h1 − 11

8κ3
h4

0 + 12

κ3
h2

0h1 + 4

κ3
h2

1

+ 8

κ3
h0h2 + 15

2κ2
h5

0 + 116

3κ2
h3

0h1 + 16

κ2
h0h

2
1 + 16

κ2
h2

0h2 + 1

κ
h6

0 + 55

3κ
h4

0h1 + 16

κ
h2

0h
2
1 + 32

3κ
h3

0h2. (35)

When κh0 � 1, Eq. (31) can be simplified as

h1 = −h2
0

8
, h2 = 3h3

0

64
. (36)

The second-order term is then simplified to

f c
2 = c0B

2 h7
0

12
. (37)

With the solution in the cylindrical coordinates, the bending modulus induced by a charged brush is obtained from Eq. (4) as

K = c0B
2

6
h7

0 = 3 × 2−14/3

(
b

π

)2/3

N3α8/3σ 7/3c
−4/3
0 . (38)

C. Polyelectrolyte brush grafted on a spherical surface

We further consider a slightly bent polyelectrolyte brush grafted on a spherical outward surface of radius R. All the variables
depend only on the radial coordinate r , which is related to the normal distance x to the surface via r = R + x. The brush thickness
is h. The free-energy expressions is given by

Fpolymer = 3

2b2

∫ R+h0

R

g(r ′)
(

r ′

R

)2

dr ′
∫ r ′

R

E(r,r ′)dr, (39a)

−Sion

s
=

∫ R+∞

R

dr

(
r

R

)2[
c+ ln

(
c+(r)

c0

)
+ c− ln

(
c−(r)

c0

)
− [c+(r) + c−(r) − 2c0]

]
, (39b)

Fel

skBT
= 1

2

∫ R+∞

R

dr

(
r

R

)2

�(r)ρe(r) = 1

8πlB

∫ R+∞

R

dr

(
r

R

)2

|∇r�(r)|2. (39c)

The conservation condition in spherical coordinates becomes

s

∫ R+h

R

ρp(z)

(
r

R

)2

dr = N. (40)
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The reduced electrostatic potential is assumed to be a parabolic form

�(r) = A2 − Bx2. (41)

The linearized PB equation now is given by

∂2�(r)

∂r2
+ 2

r

∂�(r)

∂r
=

{−4πlB[αρp(r) − 2c0�(r)], R � r � R + h

8πlBc0�(r), r � R + h.
(42)

The solution to Eq. (42) in the range r � R + h follows as

�(r) = 4πlBσe

R + h

1 + κ(R + h)
, (43)

where the surface charge density σe is obtained as

σe = 4c0B

κ2

(
h + 2

h2

R
+ h3

R2

)
. (44)

According to the continuity condition �(r) at r = R + h, one can obtain the coefficient A2 in the form

A2 = Bh2 + 4πlBσe

R + h

1 + κ(R + h)
. (45)

Equation (45) can be expanded as a power series of 1/R with substitution of Eq. (44). To second order the result reads

A2

B
= h2 + 2h

κ

[
1 + 1

R

(
2h − 1

κ

)
+ 1

R2

(
h2 − h

κ
+ 1

κ2

)]
. (46)

In terms of the conservation condition in Eq. (40), the equation for the brush thickness is obtained as

A2

R2

(
R2h + Rh2 + h3

3

)
− B

R2

(
R2h3

3
+ Rh4

2
+ h5

5

)
+ 2B

κ2R2
(R2h + 2Rh2 + h3) = N

s

α

2c0
. (47)

Expanding h to the second order of 1/R gives

h = h0 + h1
1

R
+ h2

1

R2
. (48)

Substituting Eq. (48) into Eq. (47), we have

h1 = −4h2
0 − 12κh3

0 − κ2h4
0

4(1 + κh0)2 , (49a)

h2 = −5h2
0 + 5κh3

0 − 10h0h1κ − 20h4
0κ

2 − 45h2
0h1κ

2 − 5h2
1κ

2 − 2h5
0κ

3 − 5h3
0h1κ

3 − 5h0h
2
1κ

3

5κ(1 + h0κ)2 . (49b)

Ignoring the stretching energy of polymer chains, the free energy per unit area f s can be written as

f s = F

s
≈ 1

2

∫ R+h1

R

αρp(r)�(r)

(
r

R

)2

dr. (50)

This expression is expanded to the second order of 1/R; after some algebra we have

f s = f0 + f s
1

1

R
+ f s

2
1

R2
. (51)

The zeroth-order term is the free-energy density in planar case and the second-order term reads

f s
2

c0B2
= 8

105
h7

0 + 2h5
0h1 + 16

3
h3

0h
2
1 + 8

3
h4

0h2 + 4h2
0

κ5
− 8h0h1

κ4
− 16

3

h4
0

κ3
+ 24h2

0h1

κ3
+ 4h2

1

κ3
+ 8h0h2

κ3

+ 562h5
0

15κ2
+ 232h3

0h1

3κ2
+ 16h0h

2
1

κ2
+ 16h2

0h2

κ2
+ 36h6

0

5κ
+ 110h4

0h1

3κ
+ 16h2

0h
2
1

κ
+ 32h3

0h2

3κ
, (52)

When κh0 � 1, Eq. (49) is simplified as

h1 = −h2
0

4
, h2 = −17h3

0

80
. (53)
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The second-order term of the free-energy density is given by

f s
2 = −c0B

2 23h7
0

35
. (54)

Based on Eqs. (4), (37), and (54), the Gaussian modulus induced by the polyelectrolyte brush is obtained in the form

K = f s
2 − 4f c

2 = c0B
2

(
−104

105
h7

0

)
= −624

35
× 2−14/3

(
b

π

)2/3

N3α8/3σ 7/3c
−4/3
0 . (55)

III. SELF-CONSISTENT-FIELD THEORY

A. The SCFT for a polyelectrolyte brush

In this section we perform the SCFT calculation to
investigate the curvature elasticity. The SCFT is based on
Edward’s Gaussian chain model. The short-range many-body
interaction between polymer segments is considered, which
is represented by the excluded-volume parameter u0. When
u0 = 0, the system is equal to that we treated in the SST.
Within the framework of the SCFT, the segment density is
defined as

�

ρ(r) =
n∑

α=1

∫ N

0
δ[r − rα(t)]dt, (56)

where t represents the contour length variable along the
polymer backbone and varies from 0 at the grafted end to N at
the free end. The space curve rα(t) denotes the configuration
of the αth chain. The Hamiltonian of the system is expressed
as

H = 3

2b2

∑
i=1

∫ N

0
dt

(
∂Ri

∂t

)2

+ u0

2

∫
drρ̂p2

p(r)

+
∫

dr
[
ρ̂e(r)φ(r) − 1

8πlB
|∇φ(r)|2

]
. (57)

The first term is the conformational entropy of the polymer
chains. The second term gives the excluded-volume interac-
tion, and the third term describes the electrostatic interaction.
Then the partition function of the system follows as

Z =
∏

i

D{Ri(t)}
∏
j

rj exp(−H ). (58)

In the SCFT, all interactions are replaced by an effective
field. The statistics of the system is reduced to a single-
chain problem in the effective field w(r) = wp(r) + we(r),
where wp(r) and we(r) originate from the excluded-volume
interaction and the electrostatic interaction, respectively. They
are related to the ensemble-average segment density ρp(r) and
reduced electrostatic potential �(r) = eφ(r)/kBT as

wp(r) = u0ρp(r), we(r) = �(r). (59)

The segment density satisfies the conservation condition∫
V

dr ρp(r) = NAσ. (60)

The concentrations of positive and negative mobile ions are
given by the Boltzmann distributions

c+(r) = c0 exp[−�(r)], c−(r) = c0 exp[�(r)], (61)

where c0 is the salt concentration in bulk solution. The average
charge density at any point r follows as

ρe(r) = αρp(r) + c+(r) − c−(r). (62)

Combining with the distribution of mobile ions, the PB
equation of the system is given by

∇2�(r) = −4πlBρe(r). (63)

The central quantity is the chain propagator G. It represents
the probability of finding a chain of length t with its ends fixed
at rα(0) = r′ and rα(t) = r under the mean field w(r). It is
given by

G(r,t ; r′) =
∫ r(t)=r

r(0)=r′
D[rα(·)]

× exp

{
−

∫ N

0

[
3

2b2
ṙ2
α(t) + w[rα(t)]

]
dt

}
. (64)

One has to solve G from the diffusion equation

∂

∂t
G(r,t ; r′) =

[
b2

6
∇2 − w(r)

]
G(r,t ; r′). (65)

The initial condition of G is G(r,0; r′) = δ(r − r′). The
boundary condition is G(r,t ; r′) = 0 with r or r′ is on the
surface. With the given propagator, the average segment
density can be obtained by

ρ(r) = σA

V Q

∫ N

0

∫
dr′′G(r,t ; r0)G(r′′,N − t ; r)dt, (66)

where r0 represents the position of the grafting point on the
surface. The partition function of a single chain satisfies

Q = 1

V

∫
V

G(r,N ; r0)dr. (67)

The free energy of the system can be written as

F = −1

2

∫
V

dr �(r)ρe(r) − u0

2

∫
V

dr ρp(r)2

−
∫

V

dr[c+(r) + c−(r) − 2c0] − σ ln Q. (68)

Equations (59)–(63) and (65)–(67) consist of a set of
self-consistent equations. We need to solve them numerically
in planar, cylindrical, and spherical coordinates to obtain the
equilibrium distributions of fields, segments, and mobile ions.
We use a relaxation iteration method to solve the SCFT
equations (see our previous work for details [27]). Since the
electrostatic interaction in low salt concentration extends far
from the surface, we need a large box to solve the problem
precisely. Therefore, a nonuniform grid is needed to speed up
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FIG. 1. (Color online) Structure of a polyelectrolyte brush grafted on a flat surface at different conditions. The parameters are fixed at
N = 500, σ = 0.1, and u0 = 0.1. Shown are spatial distributions of polymer segments and reduced electrostatic potential at (a) and (b) different
fractions of charged segments (α = 0.02, 0.04, 0.06, 0.08, and 0.10) for a given salt concentration of c0 = 100 mM and (c) and (d) different
salt concentrations (c0 = 20, 50, 100, 200, and 400 mM) with a given fraction α = 0.10. All lengths are expressed in units of b.

the calculations. Once all distributions are determined, the free
energy can be obtained. By use of Eqs. (2) and (3), the elastic
moduli from the charged polymer brush are deduced.

B. Results from numerical SCFT

In our previous work we used the SCFT to analyze
systematically the effects of grafting density, chain length, and
the interaction parameter of neutral polymer brushes on the
bending modulus [27]. This article focuses on the contribution
of the electrostatic interaction to curvature elasticity. The
parameters related to charges, including the charge fraction
α and salt concentration c0, are investigated. We restrict
our attention to some specified parameters. Namely, only
long chains with chain length N varying from 100 to 500
are considered. The fraction of charge segments is set to
be 0.01 � α � 0.1. The grafting density satisfies σ � 0.1.
For simplicity, we set lB = b = 1 nm. The excluded-volume
parameter u0 is fixed at 0 (θ solvent) or 0.1 (good solvent).
With these parameters our method is applicable without taking
into account the solvent explicitly. The salt concentration c0

changes from 10 to 10000 mM. The system we deal with is a
moderately grafted and weakly charged polymer brush and is
comparable to the one in the SST.

We first investigate the structural properties of the polyelec-
trolyte brush. As shown in Fig. 1, one typical case displays
the influence of the charge fraction and salt concentration on

the structure of a planar brush. The parameters are fixed as
N = 500, u0 = 0.1, and σ = 0.1. Figures 1(a) and 1(b) give
the segment density profiles and electrostatic potential distri-
butions at different α, respectively. When polymer chains carry
more charges, the electrostatic repulsion between segments is
enhanced and the chains are forced to have more stretched
conformations. Figures 1(c) and 1(d) show the effect of salt
concentration when α = 0.1. Apparently, high salt content
leads to a high screening effect and reduces the electrostatic
interaction. In this case, the segments tend to be distributed
closer to that of a neutral polymer brush, i.e., the parabolic
form. However, we also note that the electrostatic potential
in the brush region varies abruptly, which means that the
local electroneutrality approximation (constant potential in the
brush) breaks down here.

In Fig. 2 we display our main SCFT results on the quanti-
tative relation between the bending or Gaussian modulus and
systematic parameters (α, σ , and N ) for the fixed parameters of
c0 = 100 mM and u0 = 0.1. After subtracting the contribution
from the neutral polymer brush K0, the remaining bending
modulus induced by the electrostatic effect K − K0 shows a
good linear relation with respect to the variable of (ασ )2 for any
different chain length N . Furthermore, we can put all the curves
of different chain lengths into a unified function. Figure 2(b)
shows K − K0 as a function of a new combined variable
α2σ 2N2.8 on a log-log scale. The good linear relationship over
a broad range can be obtained by fitting and the slope is ∼1.0.
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FIG. 2. (Color online) (a) Bending modulus K of a polyelectrolyte brush layer as a function of the fraction α and grafting density σ

with c0 = 100 mM and u0 = 0.1. After subtracting the contribution from the neutral polymer brush K0, the linear relationship is found
between K − K0 and (ασ )2. The charge fraction changes as α = 0.02, 0.04, 0.06, 0.08, and 0.10, while the grafting density changes as
σ = 0.025, 0.050, 0.075, and 0.100. The different chain lengths are displayed for N = 100, 200, 300, 400, and 500. (b) All data points in
(a) are combined into a unified function of α2σ 2N 2.8. The linear fitting for ln(K − K0) and ln(α2σ 2N 2.8) produces a slope of ∼1.0. (c) The
Gaussian modulus of the polyelectrolyte brush K − K0 also has a linear relation with (ασ )2. All parameters are the same as in (a). (d) The
absolute value of the Gaussian modulus |K − K0| is proportional to α2σ 2N 2.9, as shown on a log-log scale. All moduli are expressed in units
of kBT .

Based on these results, we believe that the relation between
the bending modulus attributed to the electrostatic interactions
and the related parameters satisfies the general rule

K − K0 ≈ ABα2σ 2N2.8, (69)

where the prefactor AB depends on the salt concentration c0

and excluded-volume parameter u0. For the case of Fig. 2(a)
we have AB = 0.74. In the Gaussian chain system without
excluded-volume interactions (u0 = 0), we get a different
prefactor AB = 0.34 at the same salt concentration c0 =
100 mM. Note that a few points in Fig. 2(b) deviate from
the fitting line, which correspond to the cases where both
the grafting density and charge fraction are very small. Since
in this situation the total bending modulus K is close to
the modulus K0 of the neutral brush, the contribution from
the charge effect is tiny and may have a large deviation.
Similar scaling relations are found for the Gaussian modulus
in Fig. 2(d), which scales as

K − K0 ≈ −AGα2σ 2N2.9, (70)

where AG = 0.35.
Next we study the effect of salt concentration on the bending

modulus. In Fig. 3 we give the modulus K − K0 induced by

the electrostatic interaction as a function of salt concentration
with σ = 0.1 on a log-log scale at different chain lengths
[Fig. 3(a)] and at different charge fractions [Fig. 3(b)]. Two
different regions can be distinguished for all curves. When
the salt concentration is low (c0 < 100 mM), the bending
modulus decreases gradually with the decrease of c0. However,
for a relatively high value of c0, the contribution from the
charge effect is found to be inversely proportional to the salt
concentration, i.e., K − K0 ∼ c−1

0 . This scaling relation holds
over a broad range of parameter space. Similarly, the absolute
value of the Gaussian modulus |K̄ − K̄0| exhibits the same
behavior as the bending modulus (data are not shown).

IV. DISCUSSION

The results from the SST [Eqs. (38) and (55)] and from
the numerical SCFT calculation [Eqs. (69) and (70)] give
quantitative predictions of the elastic moduli but with a
different scaling law for the parameters. In order to get
more insight into our results, we consider analytically a
slightly bent polyelectrolyte brush in terms of scaling. Zhulina
et al. [21] studied this system based on the assumption
of the local electroneutrality approximation, which requires
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FIG. 3. (Color online) Bending modulus K − K0 as a function of salt concentration on a log-log scale. The salt concentration c0 changes
from 10 to 10000 mM. The other parameters are σ = 0.1 and u0 = 0.1. (a) The chain length changes as N = 100, 200, 300, 400, and 500 with
a fixed charge fraction of α = 0.10. (b) The charge fraction changes as α = 0.02, 0.06, and 0.10 with a chain length of N = 500.

that the excess charge is always zero in the brush region,
i.e., the electroneutrality condition is satisfied everywhere.
When the salt concentration is high enough, the contribution
of the electrostatic interaction to the free energy is given by
fel = α2ρ2

p(r)/4c0 [αρp(r) � c0] in the mean-field level. This
term leads to an osmotic pressure in addition to that induced
by the excluded-volume interaction and also gives an extra
effective excluded volume to each segment ue = α2/4c0. In the
limit u0 � ue, the contribution from the real excluded volume
can be ignored and this situation corresponds to the so-called
salted brush regime. The bending modulus from the charged
brush is expressed as K ∼ N3σ 7/3(α2/4c0)4/3 by using the
formula of the neutral brush [13,14]. This expression gives the
same scaling dependence as our SST prediction (38) except for
the prefactor. Thus our SST analysis under the Debye-Hückel
approximation seems to represent a suitable modification to
the local electroneurality approximation. The merit of our
method consists in the prediction of quantified prefactors,
which is the limitation of scaling arguments. Provided the
maximum potential at the surface satisfies �(0) = A � 1, the
Debye-Hückel approximation is applicable. With κh0 � 1
this condition requires A ≈ Bh2

0 � 1. From Eq. (20) we find
the condition ensuring the validity of our SST as

ασ 2

b2c2
0

� 128

27π2
. (71)

The numerical SCFT predicts a weaker dependence of
elastic moduli on the charge fraction, salt concentration,
and grafting density compared to the results from the SST.
The main difference is that the SCFT adopts the nonlinear
PB equation, while in the SST treatment the Debye-Hückel
approximation (linearized PB equations) is used. In fact,
this methodological difference indeed leads to the different
dependence on the parameters. To illustrate this point we
consider the case of a bare charged plane. On the basis of
the PB equation, Lekkerkerker [45] derived the electrostatic
contribution to the bending modulus of a plane with surface
charge density σe as

K = 1

2π

kBT

lBκ

(q − 1)(q + 2)

(q + 1)q
, (72)

where q =
√

p2 + 1 and p = 2πlB |σe|
κ

. For a small surface
charge density and a high salt concentration (p � 1), the
bending modulus is reduced to the result based on the Debye-
Hückel approximation [42]

K = kBT 3πlB |σe|2
2κ3

. (73)

In contrast, when the surface charge density is large and
the salt concentration is low (p � 1), the modulus can be
expressed as

K = 1

2π

kBT

lBκ
. (74)

The Gaussian modulus induced by the electrostatic interac-
tion has expressions similar to Eqs. (73) and (74) except for the
numerical constants. Figure 4 shows the bending modulus K as
a function of the surface charge density |σe| (in arbitrary units)
at a fixed κ from the nonlinear PB equation (72) (solid line)
and the linearized PB equation (73) (dashed line). These two
curves agree with each other very well when |σe| is very small

FIG. 4. Bending modulus K as a function of surface charge
density |σe|. The solid line corresponds to the expression of the PB
equation (72), while the dashed line corresponds to the linearized PB
equation using the Debye-Hückel approximation (73).
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(|σe| < 0.05). However, at high surface charge density, the lin-
earized PB equation obviously overestimates the electrostatic
contribution to K compared to the nonlinear PB result. The
grafted polyelectrolyte brush can be regarded as an analog to
a charged flat surface with an effective surface charge density
that is proportional to ασN from a large length scale. There-
fore, for the same reason, in our case the SST gives an effect of
the parameters α, σ , and N on the bending modulus stronger
than the SCFT calculation since we have to introduce the
Debye-Hückel approximation in the analytical SST. Another
possible reason for the difference between two methods comes
from the neglect of the polymer entropy in the SST approach,
including the entropy associated with free end distribution
and entropy loss due to the impenetrable membrane. These
entropic terms have a significant effect on the brush profile,
the charge distribution, and the electrostatic energy if the
parameter charactering the degree of stretching β is small [52].
In our system, these entropic contributions are not expected to
be a dominant factor since β is large enough here. At the same
time, the electrostatic force results in the further stretching of
chains, which is favorable to validate the SST treatment.

It is worthwhile to make a further comparison between the
polyelectrolyte brush and a bare charged surface. Introducing
the notation σeff = ασN , which represents the number of
charges per unit area carried by the polymer brush, σeff is
equal to the effective surface charge density if all charges in
the brush are collapsed onto the flat surface. Equation (69)
from the SCFT treatment can be rewritten as

K − K0 ∼ (ασN )2N0.8 ∼ σ 2
effN

0.8. (75)

The Gaussian modulus has the same expression as K −
K0 ∼ σ 2

effN
0.9. Consequently, the bending modulus calculated

by the numerical SCFT is also proportional to the square of
the effective surface charge density, which is in agreement
with the result of a bare charged plane in the limit p � 1. It
is noted that we have an extra term N0.8 in Eq. (75), which
can be regarded as a correction to a charged flat surface due
to the presence of a polymer brush. This term characterizes a
unique effect when the surface is covered by a soft shell of
polymers. However, it is not clear about the inherent meaning
of the exponent 0.8.

The effect of added salts reveals more details on the
difference between a bare charged surface and a charged
polymer brush. Based on Eqs. (73) and (74), the bare charged
surface has the bending modulus scaling as K,K ∼ c

−3/2
0

at high salt concentration and K,K ∼ c
−1/2
0 at low salt

concentration (note that κ2 ∼ c0). When the salt concentration
c0 is extremely small, the screening effect of mobile ions is
weak and the potential � is relatively large. One may expect
that a charged brush (the Pincus brush regime without added
salt) behaves similarly to a bare charged plane as K,K ∼ c

−1/2
0

for κ−1 � h0 [28]. However, in this case our analytical SST
is not applicable due to the strong electrostatic potential. The
results from the numerical SCFT at low salt concentrations
do not follow a simple scaling relation between the modulus
and c0. Most probably the low salt concentrations we used
here do not satisfy the condition p � 1. At very high salt
concentration c0, the SCFT gives K,K ∼ c−1

0 , while the SST
predicts K,K ∼ c

−4/3
0 . The absolute values of these exponents

are smaller than the value of 3/2 for a bare charged surface. The
weaker dependence on salt concentration reveals the essential
difference between a polyelectrolyte brush and a bare charged
surface. Namely, the charges loaded on polymers spread across
the whole brush zone. These polymer charges and mobile ions
can adjust their positions in the three-dimensional space during
the bending process. Thus the charged polymer brush system
has more degrees of freedom than the bare charged surface.
The redistribution of all charged particles leads to a weaker
screening effect of added salts on the repulsive electrostatic
force acting on the surface.

V. CONCLUSION

In this paper we calculated the elastic constants (bending
modulus and Gaussian modulus) induced by a polyelectrolyte
brush monolayer grafted on a solid surface. Both the analytical
method based on the SST and the numerical calculations based
on the SCFT were applied. We focused on the scaling relation
between elastic moduli and systematic parameters for the
charge effect (charge fraction α and salt concentration c0) and
compared results from the two methods. In the analytical treat-
ment, adopting a Gaussian chain model, based on a parabolic
external potential assumption within the SST framework and a
Debye-Hückel approximation for the PB equation, we derived
the structure and the free energy of a brush in flat, cylindrical,
and spherical coordinates, respectively. Expanding the free
energy as a power series of the curvature in the cases of the
cylindrical and the spherical brushes, we obtained analytical
expressions for elastic moduli. In the SCFT treatment, the
nonideal chain model was investigated by explicitly taking into
account the excluded-volume interaction. In our calculation,
the chain length was relatively long while both the charge
fraction and grafting density were low. The inner structure
and the free energy were numerically calculated in different
coordinates and the moduli were obtained by fitting. It was
found that the elastic moduli induced by the electrostatic
interaction (after subtracting the contribution of the neutral
polymer brush) scale as α2σ 2 and are inversely proportional
to the salt concentration c0 when the salt concentration is
high enough. A simple scaling argument based on the local
electroneutrality approximation gave results similar to those
from our SST, indicating the validity of our analytical SST in
this system. We also found that the SST result for the scaling
exponents with respect to systematic parameters is larger than
that from the SCFT. This was attributed to the linearization
of the PB equation in the analytical derivation, rendering the
analytical SST applicable in a limited parameter space.

Furthermore, we compared the grafted polyelectrolyte
brush system with a bare charged surface and found some
common features about their contributions to the surface
modulus induced by the electrostatic interaction. However,
the different scaling exponents of elastic moduli with respect
to chain length N and salt concentration c0 revealed the special
role played by polymer chains in determining the modulus.

In summary, we have investigated systematically the elastic
moduli induced by a polyelectrolyte brush and obtained several
important scaling relations. These findings provide a deep
understanding of the polyelectrolyte brush, but we need to
seek further experiments to confirm the predictions. It should
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be noted that the correlational electrostatic contribution is not
introduced here, which is very important in polyelectrolyte so-
lutions [53,54]. The rational consideration of the electrostatic
correlation effect of a charged brush involves in complicated
calculations since the complex coupling between charges and
polymer chains is anisotropic for the brush. This issue in left
to future investigation.
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