
PHYSICAL REVIEW E 91, 062601 (2015)

Topological solitons in helical strings
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The low-energy physics of (quasi)degenerate one-dimensional systems is typically understood as the particle-
like dynamics of kinks between stable, ordered structures. Such dynamics, we show, becomes highly nontrivial
when the ground states are topologically constrained: a dynamics of the domains rather than on the domains
which the kinks separate. Motivated by recently reported observations of charged polymers physio-adsorbed on
nanotubes, we study kinks between helical structures of a string wrapping around a cylinder. While their motion
cannot be disentangled from domain dynamics, and energy and momentum is not concentrated in the solitons,
the dynamics of the domains can be folded back into a particle-like description of the local excitations.
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I. INTRODUCTION

The relationship between topological and physical proper-
ties [1–3] has received much recent attention. It is relevant
to elasticity [3,4], nonlinear physics [5,6], soft and hard
condensed matter [2,3,7], and quantum computing [8,9]. As
topology is the study of invariance under homeomorphism,
it shines a light on continuum field theories. Topological
invariants associated with physical objects often dictate inter-
action: for instance punctures in a plane (defects, dislocations,
vortices) define a topological invariant (the winding angle) and
thus a logarithmic field which, not surprisingly, also mediates
their mutual interaction [4]. Similarly, topologically distinct
states support infinitely continuum transitions [10,11].

We have previously investigated [11] the statistical mechan-
ics (and connections with conformal invariance in quantum
mechanics) of topological transitions among winding states
representing winding and unwinding polymers. Here we
study the Newton dynamics of a string (polymer) which has
preferred winding directions around a cylinder (nanotube),
coming for instance from screened self-interaction. If strings
are stable in different, and not necessarily degenerate, helical
structures, they exhibit topological solitons whose dynamics,
however, is not “contained” in the kink but rather involves
the entire system. This is a feature of the topology of helical
solitons found also in systems of essentially different physics:
in “dynamical phyllotaxis” [12–14] repulsive particles in
cylindrical geometries mimic botanical patterns of leaves
on stems, spines on cactuses, and petals on a flower [15]
by self-organizing in helical lattices described by Fibonacci
numbers [12,16], also separated by kinks; or in colloidal
crystals on cylinders and rod-shaped bacterial cell walls [17].

While our analysis elucidates an interesting case of
topology-dictated dynamics connected to the simplest topo-
logical invariant—the winding number—it is not without
practical implications. Polymer-nanotube hybrids, ssDNA-
carbon nanotubes in particular [18–21], have been the subject
of much recent experimental and numerical research [18–28]
as promising candidates for nanotechnological applications
in biomolecular and chemical sensing, drug delivery [18,29],
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and dispersion and patterning of carbon nanotubes [20–22].
Indeed, ss-DNA forms tight helices on carbon nanotubes
after sonication of the hybrids, although the role of base
dependance and nanotube chirality is still debated [21–23],
and raises issues about how long-range order is reached. One
might speculate about an analogy between such sonication and
vibrofluidization in granular systems [30–43]—or magneto-
agitation for magnetic materials [40–42], which has been
shown to be describable in terms of an effective tempera-
ture [41–43]—possibly via an out-of-equilibrium phase tran-
sition [44] in a one-dimensional (1D) system with long range
interactions [45]. Order could then come from interacting
kinks driven to coalesce and annihilate.

Theoretical research has so far concentrated on the chem-
ical physics of the DNA-nanotube interaction [24–26] and
structure of the adsorbed polymer [28] as well as on coarse
grained modeling of the hybrid [27]. However we know of no
physics-based analysis rooted in the topology of the problem.
Yet one sees how topological properties, as well as—or more
so than—local considerations, might be quite relevant in such
problems of winding helices.

We begin here to explore some topological implications
on the unwinding and rewinding of strings in cylindrical
geometries, which—we suspect—might be useful in a more
general fashion. We describe the low-energy physics of these
systems in terms of the Newtonian dynamics of their kinks;
analysis of an overdamped, driven regime will be reported
elsewhere [47]. Within a minimal, mesoscale, continuum
model (M1), we attempt to conceptualize the statics and
low-energy nonlinear dynamics of a charged polymer physio-
adsorbed on a nanotube. Conclusions are corroborated by
numerical analysis of a ball-and-spring model (M2).

II. FRAMEWORK

A. Model 1: Analytical

We start with M1. Consider a 2D field ψ(s,t) which
describes a string (polymer) constrained to the surface of a
cylinder or radius r: in cylindrical coordinates z,r,θ we have
ψ1 = z, ψ2 = rθ (see Fig. 1). Since s is the intrinsic coordinate
of the string, as such, T = ψ ′ is its tangent vector in the space
rθ,z.
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FIG. 1. (Color online) Helical solitons separating helices of dif-
ferent winding angle. The string is shown in three dimensions (top),
in cylindrical coordinates (second panel), and in repeated cylindrical
coordinates (third panel) which illustrates the curve ψ(s). At the
bottom the energy of a helical structure as a function of its gain
angle �θ (radians) between consecutive monomers, for two different
choices of σ , with (right) and without (left) metastable states.

We write for ψ(s,t) the following Lagrangian density:

L = 1
2λψ̇

2 − 1
2k(∂s T )2 − V (T ) (1)

(we denote time derivatives with a dot), where λ is the linear
density of mass, k the effective bending rigidity, and V an
energy that depends only on the tangent vector; we thus assume
that the long wavelength dynamics of polymers provides an
effective smoothed potential, which affords us an analytical
analysis. In a more realistic setup, a site dependent potential
will be used in a ball-and-spring model (M2) of which M1 is
the continuum generalization. The rigidity k in the bending
term is indeed effective. As we will see, when M1 is used
to describe M2, the bending term comes from self-interaction
of the polymer (screened by the tube) on top of a possible
intrinsic bending rigidity of the polymer itself.

Naturally, V contains the possible symmetry breaking of
the chiral structure. Its specific form is not relevant to our
considerations, as long as it has more than one minimum. It
can have the form of a double dip, thus providing for two
stable helices, oppositely winding and degenerate (Fig. 1,
bottom left). More generally, e.g., because of a corrugation
potential of the tube, V can have nondegenerate local minima
corresponding to different (meta)stable helices (Fig. 1, bottom
right).

B. Model 2: Numerical

Before proceeding we motivate M1 by introducing M2, a
more faithful ball-and-spring model of nonlocally interacting

monomers of cylindrical coordinates θi , zi , which we use in
dynamical simulations.

Monomers i and i + 1 interact harmonically via K(di,i+1 −
a)2/2 (dij is their distance) so that the chain is floppy, as
for ssDNA. They also interact repulsively via a screened
coulomb potential Uij = σijVo exp(−dij /do)/dij . The mod-
ulation factor σij = σ (θij ) reflects the cylindrical nature of the
screening from the tube as well as possible effects of adhesive
optimization well known in the case of ssDNA-nanutobe
hybrids [27]. (Clearly, a is in general slightly smaller than
the actual equilibrium length of a straight polymer, because of
the electrostatic repulsion.)

We choose a sufficiently smooth function of period π ,
σ1(θ ) = [1 + cos(θ/2)2]/2. In general one can imagine that
a corrugation potential can introduce an extra angle beside
the one induced by self-interaction and screening. Thus,
to conceptualize a metastable state we also consider σ2 =
[1 + cos(6θ )2]/2. More parametrized choices might be needed
to faithfully address specific situations, yet they do not
qualitatively change our results.

In simulations we choose r = 9, a = 7, do = 100, Vo = 10,
and K = 1, which corresponds, if lengths are measured in Å,
to charged ssDNA on a nanotube of diameter of 1.8 nm, with
a Debye screening length of 10 nm. We choose Vo/K = 10
to ensure an electrostatic stretch of less than 10% of a. The
actual value of Vo simply defines the timescale (in the ratio
Vo/m with the mass m of the monomer).

Figure 1, bottom left, shows the double-dip shape of the
total energy of M2 when restricted to a helical configuration,
as a function of the wrapping angle, when we choose σ = σ1 as
screening function. Physically, the two opposite stable angles
(which depend on r/a) come from a competition: winding the
helix increases the screening, but also the repulsion between
monomers whose distance is shortened. Figure 1, bottom right
shows the helical energy in the case of σ2, demonstrating the
existence of metastable configurations.

Now we can justify the locality in M1 as an approximation
of M2, which is obviously nonlocal. Because we study low
energy dynamics on helical manifolds separated by kinks, we
approximate the total energy with the last two terms in Eq. (1):
one, V (T ), is the energy of the helix (Fig. 1), which depends on
its pitch defined by T ; then the self-repulsion in M2 provides
to M1 a term of extra effective bending rigidity. In practice the
total energy of M1 is a functional of T (s) and the last two terms
in Eq. (1) represent the first two terms of a functional expansion
in the derivatives of T (s). The agreement between analytical
solutions of M1 and numerics on M2 (see the analysis below)
confirms the choice.

III. ANALYTICAL SOLUTIONS, NUMERICAL
CORROBORATIONS

(Quasi)degeneracy implies kinks between (meta)stable
structures. Before investigating numerically their Newtonian
dynamics, we gain theoretical insight by solving M1.

A. Equations of motion

The equations of motion for a string of length 2l de-
rived from M1 are obtained by minimizing the constrained
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Lagrangian

L =
∫ l

−l

[
L − 1

2
μ(T 2 − 1)

]
ds + F+ · ψ(l) − F− · ψ(−l),

(2)

where μ(s) is a functional Lagrange multiplier ensuring
T (s)2 = 1 ∀s, F+ is the force exerted at one boundary ψ(+l)
and −F− at the other boundary ψ(−l). This returns the
equation of motion

λψ̈ = −∂s j , j |±l = −F±, (3)

which is in fact a conservation equation for the density of
momentum λψ̇ , of flux

j = −∂T V + k∂2
s T − μT . (4)

If V has local minimum in T̄ , then the stable helix
ψ(s) = T̄s is a static solution. Such a solution exists when
the forces applied at the extremities are purely tensile and
balanced, F± = T̄F . Since j is the stress vector of our 1D
system, Eq. (4) shows that the functional Lagrange multiplier
μ(s) is in fact the scalar tensile stress. For a stable helix it
is, from Eq. (4), the only stress μ(s) = const = F . Clearly
ψ(s) = T̄s + wt would also be a solution, corresponding to a
translating or rotating helix.

Immediately Eqs. (3) show that a helical structure can
change its pitch via uniform compression or expansion.
Indeed T (t) = T̄eiωt (a uniform rotation of the tangent vector
in the complex plane representation of 2D vectors) is a
solution which corresponds to ψ(s,t) = T (t)s + wt . Then, if
we substitute it into Eqs. (3) we obtain the tension μ(s) =
μ0 − s2ω2/2λ, where μ0 is a constant which depends on the
forces applied at the boundaries: from Eqs. (3) we have for
the tangentially applied forces at the boundaries T± · F± =
μ0 − l2ω2/λ, whereas the normally applied forces account for
the needed torque: N± · F± = ∂T V (where N = T ′). This
solution is clearly problematic as stresses diverge with size
and so does speed (ψ̇± = ±lωN + w); it is thus only viable
for a finite structure, with properly applied loads.

B. Topological solitons

However, a helical structure can also change its pitch by
propagating a soliton. A traveling solution of Eqs. (3) and (4)
has the form ψ = φ(s − vt) + wt , which implies T = φ′.

Then Eqs. (3) become λv2T ′ = − j ′ which can be inte-
grated to obtain

kT ′′ = −∂T W (T ) + μT . (5)

Equation (5) is simply a Newton equation for a “particle”
described by T (s) (where now s is “time” in the equivalent
Newton picture) constrained to a circumference (because
T 2 = 1) and subject to the potential

W (T ) = −V (T ) + 1
2λv2(T − τ )2. (6)

Here τ is defined by

F− = λv2(T− − τ ) (7)

where T± = T (±l).

Equation (5) becomes more manageable if projected on its
Frennet-Serret reference frame [48]. We define α via T = eiα ,
and similarly τ = τeiατ . Then projection on the normal vector
N = T ′ yields finally

kα′′ = −∂αW (α). (8)

The above is a simple 1D Newton equation for a particle
moving in a potential,

W (α) = −V (α) + λτv2[1 − cos(α − ατ )], (9)

but is now an unconstrained one. Its solution returns α and
thus T and from that φ = ∫

T ds.
Instead, projection on the tangent T returns the tensile stress

μ = λv2(1 − τ · T ) − kα′2. (10)

From Eqs (8) and (10), via linearization, the phonon
dispersion in a stable helix ᾱ is readily found to be

ω2 = c2
F q2 + (k/λ)q4, (11)

where c2
F = c2 + F/λ is the tension-dependent speed of

sound, and c is the speed of sound in absence of tension, given
by c2 = ∂2

αV |ᾱ/λ. Without the direction-dependent potential
V (T ) the helical angle would be defined by the direction of the
opposite tensile forces at the boundaries, and we would also
have c2

F = F/λ, the well known speed of sound for a string
under tension. Note also that the helical structure is stable to
applied pressure (F < 0) when it does not exceed the critical
value −F > λc2.

Moving to solitons, we are now in familiar territory. If we
consider l → ∞ then a topological soliton connecting two
different stable or metastable helical structures corresponds to
a trajectory between two degenerate maxima of W [3,5], as
shown in Fig. 2. These helices are associated with (possibly
local) minima of V .

Indeed, when v = 0, and the kink is static, from Eq. (6)
W = −V and maxima of W are minima of V and correspond
to stable helices; static kinks are thus only possible between
degenerate structures of the same energy (unless of course
proper forces are applied at the end, thus changing the ener-
getics). However, dynamical solitons between nondegenerate
structures are also possible, as we shall see in the next
subsection.

C. Locked speed

So far we have reduced the problem of a traveling solution
to an equivalent Newton equation. In this context, the soliton
is a special trajectory between two degenerate maxima of a
properly defined potential energy. That is of course typical
in problems of topological solitons (consider the sine-Gordon
case) or tunneling [3,49,50].

However Eq. (6) has an interesting feature missing in most
such problems. There is an extra term in W , proportional to the
square of the speed (see also Fig. 2, top panel), which implies
that even if two helices do not have the same energy, a kink can
still exist between them but it must travel, and with a locked
speed. Indeed only v �= 0 in the second term of Eq. (6) can
make the effective potential W degenerate when V is not. This
is much different from the case of a sine-Gordon soliton, and
other similar cases, where the potential W does not depend on
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FIG. 2. (Color online) Schematics of a solution of Eq. (8). Top:
in general a soliton correspond to a trajectory connecting two maxima
of W (solid black line). From Eq. (6), maxima of W do not
correspond to minima of V (dashed black line), due to the extra term
λτv2[1 − cos(α − ατ )] (dashed grey line). It follows that solitons
between degenerate structures are possible but they must have a
specific speed. Bottom: the solution for a soliton between helices of
different energy V , the same as that obtained by simulations shown
in Fig. 3 (see Supplemental Material S1 [46] ).

the speed of the soliton, and as a consequence only solitons
between degenerate structures exist, and at any speed below
the speed of sound [5].

The physical reason for this mechanism is rather intuitive.
The propagation of a soliton corresponds to a homotopy
between continuum states of different topological invariant
(winding angle) per unit length. This constrains a rotation of
one domain with respect to the other.

For a heuristic understanding, consider a soliton propagat-
ing inside a static region (2) of higher energy, leaving a helix
of lower energy (1) in its wake. Because of continuity, helix B
must rotate with respect to A, with speed ψ̇1 = v(T 2 − T 1).
As the soliton propagates at constant speed v, the total kinetic
energy increases linearly in time with rate λv3(T 2 − T 1)2/2
while the potential energy decreases linearly in time with rate
(V2 − V1)v. Then energy conservation locks the speed of the
soliton at

v2 = 2
V1 − V2

λ(T 1 − T 2)2
. (12)

Thus, the kinetic energy necessary for the rotation of one helix
with respect to the other is provided by the energy difference
between the two domains, and the soliton effectively turns
potential energy into kinetic energy as it propagates at constant
speed. If, however, the two domains are degenerate, the soliton
must be static.

Remarkably, this heuristic formula precisely returns the
correct speed v that makes W of Eq. (6) degenerate (having
chosen τ = T 1, or F− = 0). This can be seen clearly in Fig. 2,
bottom panel, which predicts the existence of a soliton of speed
v given by (12) between nondegenerate (meta)stable helices.

FIG. 3. (Color online) Helical solitons separating helices of dif-
ferent winding angle, propagating into a region of higher potential
energy (numerical integration of the Newtonian dynamics of M2,
animation in Supplemental Material S1 [46]). The system starts
in a metastable helical configuration (Fig. 1, bottom right panel).
Stable helical configurations form at the boundaries and propagate
inside. Top: 3D plot for the angular deviation �θi = θi+1 − θi vs
space and time. Bottom left: density plot for the angular deviation
�θi = θi+1 − θi (also plotted in 3D at the bottom) as a function of time
and monomers, demonstrating propagation at fixed speed, collision,
and reflection on the boundaries. Bottom right: the time evolution
of kinetic (red) and potential (black) energy (Vm is the energy of
the initial metastable configuration) demonstrates the expected initial
linear growth of kinetic energy until collision; after collision a stable
helix of opposite orientation forms with solitons now propagating
outward until reflection.

Speed locking clarifies that in these system energy and
momentum are not localized inside the soliton (as in a
sine-Gordon case), but rather flow through the soliton as it
propagates. This can also be understood from Eqs. (3) from
which we have j = λv2(T 1 − T ); the flux of momentum
is uniform in the helical structures but changes through the
soliton.

We use M2 to corroborate this result. Figure 3 shows results
of a velocity-Verlet numerical integration of M2. A helix is
prepared in a metastable state corresponding to �θ � 0.6 rad
(Fig. 1, bottom right panel), with open boundaries. Lower
energy helices (�θ � 0.23 rad) form at the boundaries and
propagate inside with constant speed, as the potential energy
decreases linearly, and the kinetic energy correspondingly
increases. We see from the simulation that upon collision
a new metastable helix (�θ � −0.6 rad) forms and the
potential energy starts increasing again, until reflection with
the boundaries. As the simulation proceeds more energy from
the solitonic dynamics is dissipated into phonons, as expected
in a discrete system (see Supplemental Material S1 [46]).
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FIG. 4. (Color online) Pulse soliton propagating at uniform
speed, obtained by velocity-Verlet integration of M2. Top: plot of the
angular deviation �θi = θi+1 − θi between consecutive monomers as
function of time. Below we show a snapshot of the pulse in cylindrical
coordinates and in 3D. A pulse soliton is predicted by our analytical
framework M1 (bottom panel) as the speed v raises the maximum
in V (α2), allowing for a trajectory that bounces back from α2 and
returns to α1. As v → 0 the size of the pulse increases, ultimately
tending to two static kinks places infinitely far away.

D. Pulses

While this topological soliton can only propagate at locked
speed, the union of a kink-antikink separates two identical
domains with no relative rotation of the two and can thus—at
least in principle—propagate at any speed.

Indeed such pulses are admitted by our analytical frame-
work M1. Consider for instance two degenerate minima of
V , α1 and α2, as in Fig. 4. We choose F− = 0 and thus
τ = T− = T 1. Now W has still a maximum in α1, but a higher
maximum in α2 + δ slightly shifted from α2. A trajectory can
now start in α1, reach the proximity of the new structure, and
then come back to α1, thus describing a kink-antikink pair
(Fig. 4, bottom panel).

Clearly an upper limit for v must exist. Much like in the
sine-Gordon cases, it is given by the speed of sound of the
helical structure, although the underlying reason is in fact
different. Indeed in our case, when v2 > c2 = ∂2

αV , α1 is not a
maximum of W anymore but rather a minimum, and thus and
no solitonic solution is possible. Instead, in sine-Gordon-like
solitons the presence of an upper limit for the speed of any
soliton, and not just pulses, comes from the pseudo-relativistic
invariance of the Lagrangian. In Fig. 4 we show results of
simulations on M2 demonstrating stability and motion of such
pulses (see Supplemental Material S2 for a movie [46]).

Note that as v goes to zero, and W (α2) becomes degenerate
with W (α1), the trajectory in Fig. 4 (bottom) describes two
opposite kinks progressively far away from each other. It is not
difficult (details will be shown elsewhere [47]) to compute the
total energy for a traveling pulse of speed v and to obtain that,
in the limit of low speed, the energy decreases. When v → 0
it tends to the energy of two static kinks, placed infinitely far
away and thus noninteracting.

Since in a discrete system soliton propagation is associated
with phonon radiation, one would predict that a pulse will
always decay into two distant static kinks. However, we can see
how topology, again, protects from this dynamics: an increase
in the size of the pulse must force a relative rotation on the
identical helices separated by the pulse. As those are assumed
to be infinitely long, the kinetic energy cost would be infinite.

For finite systems, however, the decay is possible; indeed
simulations of exactly the same situation depicted in Fig. 4,
but on 300 rather than 500 monomers, show such decay
(Supplemental Material S3 [46]), as the energy needed to set
the external domain into rotation is inferior to the energy stored
in the bound kink-antikink.

Finally, note that in Fig. 4, and therefore in the discussion
above, V (α2) = V (α1). However when V (α2) > V (α1) there
is a minimum speed for the pulse, given by Eq. (12),
corresponding to the speed that makes W degenerate, with
W (ᾱ2) = W (ᾱ1). Everything said above for the case v → 0
generalizes to this case when v tends to its minimum value.

IV. CONCLUSIONS

We have shown that topological solitons in strings of
different helical structures afford a description as particle-like
excitations. Indeed, while the collective rotation of domains
might make it seem impossible to describe the low-energy
physics in terms of excitation dynamics (kinks), still such a
picture can be regained by folding the domain dynamics into
a velocity dependent effective potential for the kinks, which
thus places constraints on their speed.

These solitons are stable but different from, e.g., sine-
Gordon-like solitons: unlike the latter, they can separate
nondegenerate structures. Their velocities are controlled by a
competition between the kinetic energy of helical rotation and
steady changes in potential energy due to helical wrapping
or unwrapping, and are proportional to the square root
of the energy difference of the two domains, and inversely
proportional to the scalar difference of the tangent vectors
that define the helicity of each domain. Bound couples of
kinks and antikinks form pulses that can travel at any speed
between a minimum and a maximum (the speed of sound of the
structure).

A wealth of work covers the subject of solitons in double
or multiple well potentials, and it is related to the quantum
problem of tunneling, topological defects and in general
transitions between solutions that are homotopically distinct
from the vacuum [3,5,49,50]. In general, in sine-Gordon-like
problems in one dimension, it is shown that a solitonic solution
corresponds to a pseudo-trajectory for a classical Newtonian
particle, traveling between two degenerate maxima of −V

where V is a nonlinear, multiple well potential for the degree
of freedom of the problem. As we know the sine-Gordon or
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double-well-Gordon equations are invariant under a boost of
the Poincaré group, which allows solitonic solutions at any
speed below the speed that defines the group: there the speed
of the soliton gauges the mass of the Newtonian particle. Here,
however, the potential energy does not depend on the degree of
freedom but rather on its derivative, which defines a preference
for wrapping and a preferred wrapping angle. Mathematically
this translates in the same pseudo-Newton picture for the
soliton as a classical trajectory, but now the speed of the soliton
does not contribute to the mass of the pseudo-trajectory, rather
it adds to the energy of the structure an extra term that depends
on the speed of the soliton itself. Thus it is not −V that need
to be degenerate but W of Eq. (6), allowing solitons between
nondegenerate structures, and at the same time locking the
speed. This simple picture reflects the physical fact that energy

(and momentum) is not contained in the soliton, but rather flow
through the soliton, and is contained in the domains which the
soliton separates, where it is transformed from potential to
kinetic energy as the soliton passes by. This nonlocality of
energy can nonetheless be subsumed into the usual picture of
a Newtonian pseudo-trajectory.
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