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Explicit excluded volume of cylindrically symmetric convex bodies
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We represent explicitly the excluded volume Ve{B1,B2} of two generic cylindrically symmetric, convex rigid
bodies, B1 and B2, in terms of a family of shape functionals evaluated separately on B1 and B2. We show
that Ve{B1,B2} fails systematically to feature a dipolar component, thus making illusory the assignment of any
shape dipole to a tapered body in this class. The method proposed here is applied to cones and validated by a
shape-reconstruction algorithm. It is further applied to spheroids (ellipsoids of revolution), for which it shows
how some analytic estimates already regarded as classics should indeed be emended.
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I. INTRODUCTION

Onsager’s celebrated paper [1] on the effect of shape on
the interaction between hard particles has perhaps been the
most influential contribution to colloidal sciences of the last
century [2]. There, entropic forces alone were first recognized
as capable of inducing a structural ordering transition with
no involvement of whatever cohesion force may be present.
The typical prototype of such an ordering transition remains
indeed the isotropic-to-nematic transition predicted in [1] for
an assembly of slender hard rods as their number density is
increased beyond a critical value (falling within a narrow
gap of phase coexistence). As paradoxical as it may appear
at a superficial glance, such an ordering transition is duly
accompanied by an increase in entropy, since the loss in
orientational disorder attached to the rods’ alignment is
outbalanced by the gain in translational disorder made possible
by the increase in the volume available for the particles’ centers
of mass [2,3]. The conjugated counterpart of this volume is the
excluded volume.

The excluded volume of two rigid bodies is the volume in
space that any one point in one body cannot access by the
very presence of the other body. This definition is delusively
simple as it conceals a formidable mathematical task which
can seldom be accomplished in an exact analytic form.1 Of
course, there are exceptions to this general statement, but they
are very few. Noticeable among these are the excluded volume
of circular cylinders [1], spherocylinders [6], spheroplatelets
[7], and spherozonotopes [8].2

Despite its technical difficulties, the excluded volume
remains a key ingredient of both Onsager’s original theory
and its most recent extensions. In all of these, the per-particle
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1We learn from [4] that Viellard-Baron, who took an early interest in

this problem [5], “was reportedly greatly disturbed by the difficulties
he encountered.”

2Isihara [9] is often credited with having provided an explicit
formula for the excluded volume of ellipsoids of revolution. In Sec. VI
below, we shall discuss this case in some detail.

free energy F of an assembly of hard bodies (appropriately
made dimensionless) is a functional of the single-body local
density �. A number of papers have interpreted Onsager’s
original theory in the light of the modern density functional
theories; here we refer the reader to the most recent review on
the subject [10], which is mostly concerned with hard-body
systems that exhibit liquid-crystalline phases.3 F [�] differs
from the free-energy functional for an ideal gas by the addition
of an excess free energy Fex[�], which characterizes the
interactions of anisometric particles. In general, Fex[�] is
not known explicitly, but it can always be expressed as a
power series in the total number density ρ0, which is often
called the virial expansion. The first nontrivial term of such an
expansion is ρ0B2[�], where the functional B2 is the second
virial coefficient, which is nothing but the ensemble average
of the excluded volume,

B2[�] := 1

2

∫
�2

Ve(ω,ω′)�(ω)�(ω′)dωdω′. (1)

In (1), � is the orientational manifold, which describes all
possible orientations of a particle in the system and Ve(ω,ω′)
is the excluded volume of two particles with orientations ω

and ω′, respectively. Higher powers of ρ0 bear higher virial
coefficients Bn, which however are even more difficult to
compute than B2.

Onsager [1] remarkably estimated that for rods sufficiently
slender B2 actually prevails over all other Bn’s. This makes
Onsager’s theory virtually exact, as was also subsequently
confirmed directly by numerical computations [12,13]. Never-
theless, even when the second virial coefficient B2[�] cannot
be proved to be dominant, it remains a viable approximation
to Fex[�] in establishing, at least qualitatively, the variety of
possible equilibrium phases in a hard-body system and the
entropy-driven transitions between them. To this end, explicit
formulas for the excluded volume of rigid bodies are to be
especially treasured.

This is the motivation for our study. Our objective is to
express Ve{B1,B2}, the excluded volume for two rigid bodies,

3A general reference for simple liquids is still the classical book
[11], now enriched by an addition on complex fluids.

1539-3755/2015/91(6)/062503(21) 062503-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.062503


MARCO PIASTRA AND EPIFANIO G. VIRGA PHYSICAL REVIEW E 91, 062503 (2015)

B1 and B2, in terms of shape functionals depending solely
on the individual bodies B1 and B2. We shall accomplish this
task for bodies both convex and cylindrically symmetric, for
which Ve{B1,B2} can be given with no loss in generality as
the sum of a series of Legendre polynomials Pn,

Ve{B1,B2} =
∞∑

n=0

BnPn(m1 · m2), (2)

where m1 and m2 are unit vectors along the symmetry axes
of B1 and B2, respectively.4 The shape functionals involved
in our explicit representation will be natural extensions of
the classical functionals on which was largely based the
celebrated Brunn-Minkowski theory of convex bodies.5 The
major advantage of the method proposed here is the explicit
computability of such extended Minkowski functionals, which
makes our representation formula directly applicable to bodies
B1 and B2 not necessarily congruent, possibly representing
particles of different species.

The paper is organized as follows. In Sec. II, we set the scene
for our development by showing that the Legendre coefficients
Bn of the representation formula (2) can be expressed as
appropriate anisotropic volume averages. Section III is devoted
to the coefficient B1 of the first Legendre polynomial P1(m1 ·
m2) = m1 · m2 in (2). We attach a special meaning to this,
as it represents the dipolar contribution to Ve{B1,B2} which
would possibly arise from tapered, cylindrically symmetric,
convex bodies, if only one could unambiguously assign a shape
dipole to them. The somewhat surprising conclusion will be
that B1 vanishes identically on this class of bodies, making
the very notion of shape dipole void, despite its intuitive
appeal. Section IV is concerned with the extended Minkowski
functionals, in terms of which, once evaluated on the bodies B1

and B2, we can write in closed form all coefficients Bn in (2).
An explicit application of our method is illustrated in Sec. V,
where we evaluate the extended Minkowski functionals for a
generic circular cone and validate our evaluations through a
direct computation of the coefficients Bn made possible by
an independent shape-reconstruction algorithm, appropriately
modified to tackle efficiently the cone’s sharp ridge and
acuminated vertex. Likewise, in Sec. VI, we determine the
extended Minkowski functionals for a spheroid, that is, an
ellipsoid of revolution, either prolate or oblate. In Sec. VII,
we collect the main conclusions of our work, looking back
afresh to some of them, also in the light of possible future
developments that they may suggest.

We shall endeavor to make our presentation as free as
possible from unwanted technical details that might obscure
both the outcomes of our study and the strategy adopted
to obtain them. To provide, however, the interested reader

4Following Isihara [9], we denote by Bn the Legendre coefficients
of Ve, though often in more recent literature this symbol is used to
designate the virial coeffients, here denoted as Bn.

5Besides the original sources [14,15], the general books [16,17]
are highly recommended. We also collected a number of relevant
results phrased in the same mathematical language employed here
in Appendix A to our earlier study on this subject [18]. Finally, a
different but equivalent approach is presented in [19].

with enough information to appreciate the mathematical
infrastructure underlining this paper, we collect in two closing
appendices the details of both the mathematical theory and the
shape-reconstruction algorithm.

II. ANISOTROPIC VOLUME AVERAGES

It was proved by Mulder [8] that the excluded volume of
Ve{B1,B2} of two bodies, B1 and B2, be they convex or not,
can be expressed as

Ve{B1,B2} = V [B1 + B∗
2 ], (3)

where V is the volume functional, B∗
2 is the central inverse

(relative to a specified origin o) of the body B2, and + denotes
the Minkowski addition (to the definition of which concurs the
origin o).6 Letting both B1 and B2 be cylindrically symmetric
bodies with axes m1 and m2, respectively, since Ve{B1,B2} is
an isotropic scalar-valued function, by a theorem of Cauchy,7

we can say that Ve{B1,B2} is a function (still denoted as)
Ve of the inner product m1 · m2. Setting m1 · m2 = cos ϑ , the
function Ve(cos ϑ) can be expanded as the sum of a series of
Legendre polynomials (see, for example, Secs. 18.2 and 18.3
of [21]):

Ve(cos ϑ) =
∞∑

n=0

BnPn(cos ϑ), (4)

where

Bn := 2n + 1

2

∫ π

0
Ve(cos ϑ)Pn(cos ϑ) sin ϑdϑ (5)

are the Legendre coefficients of Ve. We record for future use a
few basic properties of the orthogonal polynomials Pn (see, in
particular, Secs. 18.6.1 of [21] and 8.917.1 of [22]):

Pn(−x) = (−1)nPn(x), Pn(1) = 1, |Pn(x)| � 1. (6)

There is another way of expressing the coefficients Bn,
which we find illuminating. Consider the average

〈PnVe〉 [B1,B2] := 〈Pn(m1 · m2)Ve(m1 · m2)〉B2
(7)

computed for fixed B1 over all possible replicas of B2

obtained by rotating arbitrarily B2 in space. By the cylindrical
symmetry of B2, the average (7) also acquires the equivalent
form

〈PnVe〉 [B1,B2] = 〈Pn(m1 · m2)Ve(m1 · m2)〉m2
, (8)

where, for any function f (e) defined on the unit sphere S2,

〈f 〉e := 1

4π

∫
S2

f (e)da(e) (9)

and da(e) denotes the area element with unit normal e.
Representing m2 in polar spherical coordinates with polar axis

6We shall often call (3) Mulder’s identity. The reader is referred
to the primer on the Brunn-Minkowski theory of convex bodies in
Appendix A of [18]. A short recapitulation of this theory is also given
in Appendix A 1 below to make our paper self-contained.

7See, for example, Sec. 113.1 of [20].

062503-2



EXPLICIT EXCLUDED VOLUME OF CYLINDRICALLY . . . PHYSICAL REVIEW E 91, 062503 (2015)

m1 and combining (8) and (5), we readily arrive at

〈PnVe〉[B1,B2] = 1

2

∫ π

0
Pn(cos ϑ)Ve(cos ϑ) sin ϑdϑ

= 1

2n + 1
Bn. (10)

Since both functions Ve and Pn are symmetric under the
exchange of m1 and m2, the average 〈PnVe〉 [B1,B2] is also
symmetric under the exchange of bodies B1 and B2:

〈PnVe〉 [B1,B2] = 〈PnVe〉 [B2,B1]. (11)

Equation (3) allows us to express the Legendre coefficients
Bn of the excluded volume of two cylindrically symmetric
bodies in a way directly related to the anisotropic averages of
the volume of a Minkowski sum. Combining (10), (7), and (3),
we readily see that

Bn = (2n + 1)〈Pn(m1 · m2)V [B1 + B∗
2 ]〉B2

= (2n + 1)(−1)n〈Pn(m1 · m∗
2)V [B1 + B∗

2 ]〉B2

= (2n + 1)(−1)n〈Pn(m1 · m∗
2)V [B1 + B∗

2 ]〉B∗
2
, (12)

where m∗
2 = −m2 is the symmetry axis of the central inverse

B∗
2 of B2 and use has been made of (6) and the fact that

averaging over B2 is just the same as averaging over B∗
2 .

Thus, to obtain all coefficients Bn in (4), we need to learn how
to compute the anisotropic volume averages

〈PnV 〉 [B1,B2] := 〈PnV [B1 + B2]〉B2
, (13)

as then (12) would simply reduce to

Bn = (2n + 1)(−1)n 〈PnV 〉 [B1,B
∗
2 ], (14)

which obeys the same symmetry relation as in (11). Equa-
tion (14) is the basic building block of our development.

Although (14) is as general as (3) for cylindrically sym-
metric bodies, this paper will solely be concerned with the
excluded volume of convex cylindrically symmetric bodies.
For n = 0, the average in (13) becomes isotropic as P0 ≡ 1
and its expression has long been know for generic convex
bodies:8

〈V 〉[B1,B2] = V [B1] + V [B2] + 1

4π
(M[B1]S[B2]

+M[B2]S[B1]), (15)

where M is the total mean curvature functional in (A12a) and
S is the surface area functional in (A12b). Since both M[B]
and S[B] are invariant under central inversion of B, it follows
from (14) and (15) that

B0 = 〈V 〉 [B1,B2]. (16)

Here our challenge is to extend the neat classical formula
(15) for the isotropic average of the volume of the Minkowski
sum of convex bodies to the anisotropic averages needed in
(14). This will be achieved in the two following sections with

8A derivation of (15) can be found in [19]. Moreover, Kihara [23,24]
credits Isihara [25] and Isihara and Hayashida [26,27] for having
proved (15), although he also seems aware that a proof had already
been contained in the classical work of Minkowski [15].

the aid of appropriate extensions of the classical Minkowski
functionals M and S. We anticipate that they are invariant
under central body inversion like the classical Minkowski
functionals, so that, in complete analogy with (15) and (16),
we shall be able to express the excluded volume Ve{B1,B2}
of cylindrically symmetric bodies B1 and B2 in terms of
functionals evaluated separately on B1 and B2.

As recalled in Appendix A, there is no loss in generality
in limiting attention to the class K + of convex bodies with
smooth boundaries and strictly positive principal curvatures,
as K + is dense in the whole class K of convex bodies (see
Appendix A 1). Thus, our strategy will be to compute first
the anisotropic volume averages in K + and then extend them
by continuity to the whole of K . In the following section,
we shall first accomplish our task for 〈P1V 〉 [B1,B2]; this
will lead us to conclude that B1 ≡ 0, a general result of some
import. In Sec. IV, we shall compute 〈PnV 〉 [B1,B2] for all
n � 2 and arrive at the expected general explicit formula for
all Bn’s.

III. NO SHAPE DIPOLES

Here our task is to compute B1. To this end we remark that

〈Pn(m1 · m2)〉B2
= 〈Pn(m1 · m2)〉m2

= 0, (17a)

〈Pn(m1 · m2)V [B2]〉B2
= V [B2] 〈Pn(m1 · m2)〉B2

= 0,

n � 1, (17b)

the former following from (9) and the orthogonality of
Legendre polynomials, and the latter also from the invariance
of the volume functional under rotations. Then we represent
m2 in a Cartesian frame (ex,ey,ez) fixed in B1. Letting ez = ν,
where ν is the outer unit normal to B1 at a selected point on
∂B1, and choosing ey orthogonal to the plane (m1,ν), we have
that

m1 = sin ϑ1ex + cos ϑ1ν, (18a)

m2 = cos φ sin ϑ2ex + sin φ sin ϑ2ey + cos ϑ2ν, (18b)

the latter of which represents all possible orientations of m2,
for given ϑ1 and ϑ2, the angles that m1 and m2 make with ν

(see Fig. 1).
An easy, but important consequence of (18) is that

m1 · m2 = sin ϑ1 sin ϑ2 cos φ + cos ϑ1 cos ϑ2

= sin ϑ1 sin ϑ2 cos φ + (m1 · ν)(m2 · ν). (19)

FIG. 1. Sketch representing the unit vectors ν, m1, and m2. With
ν and m1 fixed, m2 as represented by (18b) describes a cone around
ν in the first step of the averaging process described in the text.
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Now, using also (17), we can derive from (A14) the following expression:9

〈P1V 〉[B1,B2] = 1

3

(〈
m2 · ν

K (2)

〉
ν

∫
S2

(ν · r1)(ν · m1)da(ν) + 〈(ν · r2)(ν · m2)〉ν
∫
S2

m1 · ν

K (1)
da(ν)

)

+ 1

6

〈
(m2 · ν)

(
ρ

(2)
1 + ρ

(2)
2

)〉
ν

∫
S2

(ν · r1)(m1 · ν)
(
ρ

(1)
1 + ρ

(1)
2

)
da(ν)

+ 1

6

〈
(ν · r2)(m2 · ν)

(
ρ

(2)
1 + ρ

(2)
2

)〉
ν

∫
S2

(m1 · ν)
(
ρ

(1)
1 + ρ

(1)
2

)
da(ν), (20)

which results from computing the average over B2 in two
separate steps: first averaging over the angle φ in (19) which
ranges in [0,2π ] and then averaging formally over ν, meant as
the outward unit normal to B2, which ranges over S2. If the
former average is taken over the process in which, with ν and
m1 fixed, m2 is seen to describe a cone around ν (see Fig. 1), the
latter is nothing but the average over the independent process
in which all different points of ∂B2 come to be associated with
one and the same fixed normal ν. As in (A14), also in (20) ρ

(1)
1

and ρ
(1)
2 denote the principal radii of curvature of ∂B1 and

ρ
(2)
1 and ρ

(2)
2 denote the principal radii of curvature of ∂B2;

correspondingly, K (1) = (ρ(1)
1 ρ

(1)
2 )−1 and K (2) = (ρ(2)

1 ρ
(2)
2 )−1

are the Gaussian curvatures of ∂B1 and ∂B2 and r1 and r2

are the radial mappings of B1 and B2 (see Appendix A 1 for
more details).

Now, with the aid of the theory recalled in Appendix A
1, we compute the new shape functionals featuring in (20). It
readily follows from (A8) that for any body B ∈ K +∫

S2

m · ν

K
da(ν) =

∫
∂B

m · n da(n) =
∫

B
div m dv = 0,

(21)
where use has also been made of the classical divergence
theorem (and the fact that m can be extended to the whole
space as a uniform field). Likewise, (A9) and (A8) imply that∫

S2
(m · ν)(ρ1 + ρ2)da(ν) =

∫
S2

(m · ν)
1

K
divs n da(ν)

=
∫

∂B
(m · n) divs n da(n)

=
∫

∂B
divs m da(n) = 0, (22)

where use has also been made of the surface divergence
theorem recalled in (A11). Combining (21) and (22), we obtain
from (20) that 〈P1V 〉 [B1,B2] vanishes identically for all B1

and B2, and so, by (14),

B1 = −3 〈P1V 〉 [B1,B
∗
2 ] ≡ 0. (23)

Equation (23) says that for cylindrically symmetric bodies,
B1 and B2, the excluded volume Ve in (4) does not contain
any dipolar contribution, no matter how tethered B1 and B2

can be, suggesting that no shape dipole can be associated with
them. It was already argued in [18] that a shape dipole cannot

9Unlike Mulder’s identity (3), which is valid for general bodies,
Eq. (A14), which is indeed one basic ingredient of our theory, has
only been established for convex bodies.

be unambiguously assigned to a body B. Equation (23) shows
that no matter how we endeavor to assign a shape dipole to B it
plays no role in the hard-particle interactions governed by the
excluded volume. Of course, polarity effects are also expected
to be seen in these interactions. For example, it was proved in
[28] that the excluded volume of two congruent cylindrically
symmetric convex bodies is minimized when the bodies are in
the antiparallel configuration, where m2 = −m1. Such polar
effects, however, cannot involve shape dipoles: as shown in
[18], they start being manifested through the shape octupole
that features in (4) through the coefficient B3. This and all
higher order Legendre coefficients will be computed in the
following section.

IV. EXTENDED MINKOWSKI FUNCTIONALS

Computing the anisotropic volume averages
〈PnV 〉 [B1,B2] for n � 2 is technically more complicated
than computing 〈P1V 〉 [B1,B2], although conceptually
this task is not much different from that just accomplished
in the preceding section. As shown in Appendix A 2, this
computation led quite naturally to the introduction of a number
of shape functionals that extend the classical Minkowski
functionals M and S. They are defined for all n � 2 as
follows:

Mn[B] :=
∫

∂B
Pn(m · n)Hda(n), (24a)

M ′
n[B] :=

∫
∂B

(n · x)Pn(m · n)Kda(n), (24b)

M ′′
n [B] :=

∫
∂B

[1 − (m · n)2]
1

2
(σ1 − σ2)P (2,2)

n−2 (m · n)da(n),

(24c)

Sn[B] :=
∫

∂B
Pn(m · n)da(n), (24d)

S ′
n[B] :=

∫
∂B

(n · x)Pn(m · n)Hda(n), (24e)

S ′′
n [B] :=

∫
∂B

(n · x)[1 − (m · n)2]
1

2
(σ1 − σ2)

×P
(2,2)
n−2 (m · n)da(n). (24f)

We shall often refer to them as the extended Minkowski func-
tionals.10 They give 〈PnV 〉 [B1,B2] the following concise,

10More shortly, also as the extended M and S functionals.
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explicit representation:

〈PnV 〉[B1,B2] = 1

12π
(M ′

n[B1]Sn[B2] + M ′
n[B2]Sn[B1])

+ 1

6π
(Mn[B1]S ′

n[B2] + Mn[B2]S ′
n[B1])

− 1

6π

(n − 2)!(n + 2)!

(4n!)2
(M ′′

n [B1]S ′′
n [B2]

+M ′′
n [B2]S ′′

n [B1]). (25)

Strictly speaking, in Appendix A 2 we arrived at (24)
through the representation via radial mapping of the convex
bodies in the special class K +. However, the extended
Minkowski functionals can also be extended by continuity
to the whole of K . Moreover, as clearly shown by (24), their
definition actually applies to any cylindrically symmetric body,
be it convex or not. The extended M and S functionals are
invariant under rotations. Their behavior under translations is
further discussed in Appendix A 5.

Since the extended Minkowski functionals for a body B
are invariant under central inversion of B (see Appendix A 1),
it follows from (25) that 〈PnV 〉 [B1,B

∗
2 ] = 〈PnV 〉 [B1,B2],

and so Eq. (14) becomes

Bn = (2n + 1)(−1)n 〈PnV 〉 [B1,B2], (26)

which by (25) expresses the Legendre coefficients of Ve in
(4) in terms of shape functionals evaluated on the individual
bodies B1 and B2. Formula (26) will be applied in the two
following sections to special classes of bodies, namely, circular
cones and ellipsoids of revolution.

As shown in Appendix A 6, the functionals M ′′
n , M ′

n, and
Mn are not independent of one another. If M ′′

n is certainly
related to Mn through

M ′′
n [B] = 4n

n + 2
Mn[B], ∀ n � 2, (27)

for all cylindrically symmetric convex bodies B, we expect
the relation

M ′
n[B] = − 2

(n − 1)(n + 2)
Mn[B] (28)

to be valid at least for both classes of bodies studied in
detail in this paper, having checked it by direct inspection
for a large number of indices.11 Whenever (28) applies, the
anisotropic volume averages 〈PnV 〉 [B1,B2] in (25) take on a
much simpler form,

〈PnV 〉 [B1,B2] = 1

6π
(Mn[B1]An[B2] + Mn[B2]An[B1]) ,

(29)
where

An[B] := S ′
n[B] − 1

(n − 1)(n + 2)
Sn[B]

− n + 1

4(n − 1)
S ′′

n [B], ∀ n � 2. (30)

11Of course, we are aware that this can by no means be considered
as a proof of (28), which remains for us a conjecture, though with a
high likelihood of being true.

FIG. 2. (Color online) A circular cone with vertex in the origin
o, semiamplitude α, radius R, height h, and slant height L.

In particular, for two congruent bodies, B1 ∼ B2 ∼ B,12 by
(26), Bn can be given the following factorized expression,

Bn = (2n + 1)(−1)n

3π
Mn[B]An[B], (31)

which we shall assume to be valid in the following (and will
be very convenient in our development below).13

V. CIRCULAR CONES

We denote by C α a circular cone with semiamplitude α ∈
[0, π

2 ], radius R, and height h, both related through (A32) to
the slant height L (see Fig. 2).

It is a simple matter to show that the classical Minkowski
functionals for C α take the explicit forms (see also (A61) and
(A62) of [18])

M[C α] = πL

[
cos α +

(
π

2
+ α

)
sin α

]
, (32a)

S[C α] = πL2 sin α(1 + sin α), (32b)

V [C α] = 1

3
πL3 cos α sin2 α. (32c)

As follows easily from (A34), the Gaussian curvature
K vanishes identically on all smooth components of ∂C α .
Moreover, the contribution of the vertex o to all the integrals
in (24) vanishes, as can be seen by replacing o with a fitting
spherical cap of radius ε (whose area surface scales like ε2)
and then taking the limit as ε → 0+, in complete analogy to
the method used in Appendix A4a to compute the extended
Minkowski functionals on a circular ridge R. The formulas
(A40) obtained there for a R can be directly applied here to
the rim of the cone’s base by simply setting θ1 = π

2 − α and
θ2 = π . Use of (A32) finally leads us to

Mn[C α] = πL

(
Pn(sin α) cos α + sin α

∫ π

π
2 −α

Pn(cos ϑ)dϑ

)
,

(33a)

M ′
n[C α] = −2πL

∫ π

π
2 −α

cos(ϑ + α)Pn(cos ϑ) sin ϑdϑ,

(33b)

12Meaning that B1 and B2 are images of B under the action of the
full orthogonal group O(3).

13In the language of [29] and [30], once combined with (2),
(31) would be called a convolution decomposition (or simply a
deconvolution) of the excluded volume.
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FIG. 3. (Color online) (a) For two congruent circular cones, C α
1 and C α

2 , with slant height L and semiamplitude α, the graphs of Bn scaled
to L3 are plotted against 0 � α � π

2 for n = 2 (solid line), n = 4 (dashed line), and n = 6 (dotted line), according to (A51). (b) For the same
cones, C α

1 and C α
2 , the graphs of Bn scaled to L3 are plotted against 0 � α � π

2 for n = 1 (thin solid line), n = 3 (solid line), n = 5 (dashed
line), and n = 7 (dotted line). In both panels, crosses represent the values computed numerically on the shape of the excluded body Be{C α

1 ,C α
2 }

reconstructed with the algorithm recalled in Appendix B.

M ′′
n [C α] = −πL

(
P

(2,2)
n−2 (sin α) cos3 α

− sin α

∫ π

π
2 −α

P
(2,2)
n−2 (cos ϑ) sin2 ϑdϑ

)
, (33c)

Sn[C α] = πL2 sin α[Pn(sin α) + (−1)n sin α], (33d)

S ′
n[C α] = −πL2 sin α

∫ π

π
2 −α

cos(ϑ + α)Pn(cos ϑ)dϑ, (33e)

S ′′
n [C α] = −πL2 sin α

∫ π

π
2 −α

cos(ϑ + α)

×P
(2,2)
n−2 (cos ϑ) sin2 ϑdϑ, (33f)

for all n � 2. Inserting (33) in (26), we obtain explicit, analytic
formulas for the Legendre coefficients Bn of the excluded
volume of two congruent circular cones, C α

1 and C α
2 , which for

completeness are recorded in (A51) for the first seven indices
n � 1. They are plotted in Fig. 3 as functions of α. Inserting
(32) in (15), we also obtain the isotropic average B0 in (16),
which is plotted in Fig. 4 with two possible normalizations,

relative to the volume Vc of each cone delivered by (32c) in
Fig. 4(a), and relative to L3 in Fig. 4(b).

The even-indexed coefficients Bn’s are mostly negative,
indicating by (6) a tendency for the corresponding terms
in the sum (4) to minimize Ve for either ϑ = 0 or ϑ = π ,
irrespectively. On the contrary, the odd-indexed coefficients
are mostly positive (apart from B3 which is never negative),
indicating a tendency for the corresponding terms in (4) to
minimize Ve for ϑ = π , that is, when the cones C α

1 and C α
2

are in the antiparallel configuration, with m2 = −m1. This
suggests that the excluded volume of two congruent circular
cones is minimized in the antiparallel configuration, as shown
by direct computation in [18] in accord with the general
minimum property established more recently in [28].

The crosses superimposed on the graphs in Fig. 3 represent
the values of Bn extracted numerically from the volume of
the excluded body Be{C α

1 ,C α
2 }, the region in space that cone

C α
2 cannot access by the presence of cone C α

1 . Determining
Be{C α

1 ,C α
2 } is indeed necessary for a direct determination

of Ve{C α
1 ,C α

2 }, as the general proper geometric definition of
the excluded volume of bodies B1 and B2 is precisely the
volume of the excluded body Be{B1,B2}, Ve{B1,B2} :=

062503-6
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FIG. 4. (Color online) (a) The isotropic average B0 as in (16) and (15) normalized to the cone’s volume Vc delivered by (32c); it attains its
minimum at α

.= 0.14π . (b) B0 normalized to L3 like all other coefficients Bn’s shown in Fig. 3; it attains its maximum at α
.= 0.47π . In both

panels, crosses represent the volumes computed numerically to benchmark the shape-reconstruction algorithm described in Appendix B.

V [Be{B1,B2}] (see also [18]). Here Be{C α
1 ,C α

2 } was ob-
tained from the shape-reconstruction algorithm outlined in
Appendix B. Our strategy was completely different from that
adopted so far in this paper. For a given α, we reconstructed
Be{C α

1 ,C α
2 } for a number of values of the angle ϑ made by

the cones’ axes m1 and m2; we computed numerically the
excluded volume Ve as a function of ϑ by applying (A12c)
to a triangulation of ∂Be{C α

1 ,C α
2 } and we extracted from this

function the coefficients Bn through (5). To what extent the two
methods agree, thus granting support to each other, is left to
the reader to judge from Fig. 3. Quantitative details about both
the shape-reconstruction algorithm employed here (including
its adaptation to the specific case of cones, which with their
sharp edge and pointed vertex required special attention) and
the way the coefficients Bn were computed can be found in
Appendix B below.

Figure 5 shows three graphs representing the excluded
volume Ve of C α

1 and C α
2 scaled to their common volume

Vc [given by (32c)] as a function of the angle ϑ between their
axes. The semiamplitude α of both cones is taken here to
be α0

.= 0.14 π , for which, as shown in Fig. 4, the isotropic
average 〈Ve〉 scaled to Vc takes on its minimum value. The
graphs in Fig. 5 correspond to the function in (12) truncated at
n = 3 and n = 9; they are both contrasted against the octupolar
approximation, which in [18] was shown to be rather accurate.
While, by construction, the latter takes on the exact values
of Ve at both ϑ = 0 (parallel cones) and ϑ = π (antiparallel
cones), which are 14Vc and 8Vc, respectively, both truncated
expansions do not. Actually, as expected,14 the convergence
of the series in (4) at these points is rather slow: for example,
a computation with 61 terms was required to obtain

Ve

Vc

.= 14.01 and
Ve

Vc

.= 8.153, (34)

14This is expected since the expansion in (4) is an approximation in
the L2 norm, and not pointwise.

at ϑ = 0 and ϑ = π , respectively. Thus, if for cones the
explicit octupolar approximation of the excluded volume could
still be a good choice, for other cylindrically symmetric convex

8

9

10

11

12

13

14

15

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

ϑ

V
e/

V
c

FIG. 5. (Color online) Excluded volume Ve of two congruent
circular cones, C α

1 and C α
2 , with slant height L and semiamplitude

α0
.= 0.14 π corresponding to the minimum value of the scaled

average 〈Ve〉 /Vc, where Vc is the volume of each cone. Two
graphs, plotted against the angle 0 � ϑ � π made by the cones’
axes, are delivered by (4) truncated at n = 3 (solid line) and n = 9
(dashed line). The third graph (dotted line) represents the octupolar
approximation proposed in [18], which interpolates the excluded
volumes of parallel (ϑ = 0) and antiparallel (ϑ = π ) configurations.
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bodies, the general method proposed in this paper might be
even a better choice.

VI. SPHEROIDS

Spheroids are cylindrically symmetric ellipsoids (see
Fig. 6). Letting a be the semiaxis of the spheroid along the
symmetry axis m and b the semiaxis orthogonal to m, we set

η := b

a
(35)

and call it the aspect ratio of the body. A spheroid with aspect
ratio η will denoted S η for short; it is prolate along the
symmetry axis for 0 < η < 1 and oblate for η > 1. Clearly,
for η = 1, S η reduces to a sphere of radius a. Making use of
the explicit representation of S η described in Appendix A 3 b,
we may write the classical Minkowski functionals as

M[S η] = πa

(
2 +

∫ 1

−1

η2

1 + (η2 − 1)u2

)
du, (36a)

S[S η] = 2πa2η

∫ 1

−1

√
1 + (η2 − 1)u2du, (36b)

V [S η] = 4π

3
a3η2 =: Vs, (36c)

where Vs has been introduced as a shorthand for the spheroid’s
volume. It is often useful to describe how far S η is from a
sphere by defining its eccentricity ε as

ε :=
⎧⎨
⎩

√
1 − η2 for 0 � η � 1,√
1 − 1

η2 for η � 1.
(37)

A relevant property of ε is that the transformation η �→ 1/η,
which represents the reciprocal inversion of S η relative to its
center, changes a prolate spheroid into an oblate spheroid with
the same eccentricity. Though neither of the functionals (36)
is invariant under reciprocal inversion of S η, all the ratios

fn := Bn

Vs
(38)

are expected to be so, as such a property should indeed be
enjoyed by the ratio of the excluded volume Ve{S η

1 ,S η

2 }
of two congruent spheroids, S η

1 and S η

2 , to their common

(a) (b)

FIG. 6. A spheroid is an ellipsoid of revolution. The symmetry
axis is here denoted by m; a and b are the ellipsoid’s semiaxes, in
the direction of m and in the direction orthogonal to m, respectively.
This spheroid is said to be prolate (a) if the aspect ratio η := b/a is
less than unity; it is said to be oblate (b) if η > 1.

volume.15 As a consequence, all fn’s should be functions of ε

alone. The expression for f0 was already obtained by Isihara
[25],

f0 = 2 + 3

2

(
1 + (1 − ε2)

arctanh ε

ε

)(
1 + arcsin ε

ε
√

1 − ε2

)
,

(39)
which is also known as the Isihara-Ogston-Winzor formula
[35,36].

The representation for Bn in (31) can appropriately be used
to obtain all even-indexed functions fn.16 To this end, we
first record the form taken on a spheroid S η by the extended
Minkowski functional (see Appendix A 8 for more details):

Mn[S η] = πa

∫ 1

−1
Pn(ξ )

η2[1 + η2 + (1 − η2)ξ 2]

[η2 + (1 − η2)ξ 2]
3
2

dξ, (40a)

M ′
n[S η] = 2πa

∫ 1

−1
Pn(ξ )

√
η2 + (1 − η2)ξ 2dξ, (40b)

M ′′
n [S η] = πa

∫ 1

−1
P

(2,2)
n−2 (ξ )

η2(η2 − 1)(1 − ξ 2)2

[η2 + (1 − η2)ξ 2]
3
2

dξ, (40c)

Sn[S η] = 2πa2
∫ 1

−1
Pn(ξ )

η4

[η2 + (1 − η2)ξ 2]2
dξ, (40d)

S ′
n[S η] = πa2

∫ 1

−1
Pn(ξ )

η2

η2 + (1 − η2)ξ 2
dξ, (40e)

S ′′
n [S η] = πa2

∫ 1

−1
P

(2,2)
n−2 (ξ )

η2(η2 − 1)(1 − ξ 2)2

η2 + (1 − η2)ξ 2
dξ. (40f)

For n = 2, we obtained

f2 = 15

32

1

ε4

(
ε2 − 3 + (ε2 + 3)(1 − ε2)

arctanh ε

ε

)

×
(

3 − 2ε2 + 4ε2 − 3

ε
√

1 − ε2
arcsin ε

)
. (41)

It is worth noting that this formula coincides with that
found by Isihara [9] for oblate spheroids (η � 1).17 For
prolate spheroids, Isihara [9] records a result which does
not comply with the requirement of f2 being invariant under
the transformation η �→ 1/η. For this reason, we deem it to

15Tjipto-Margo and Evans [31] credit Hołyst and Poniewierski
[32] for having proved analytically such an invariance property
for uniaxial ellipsoids, but we were unable to retrace a convincing
analytic proof in [32]. Similarly, the extension of this property to
biaxial ellipsoids was established numerically in [31] by a Monte
Carlo method. Contrariwise, the explicit analytic formula obtained
by Mulder [7,33] for the excluded volume of spheroplatelets allows
one to prove that its ratio to the individual spheroplatelet’s volume is
invariant under reciprocal transformation of the three unequal lengths
that characterize these bodies. In any event, as shown in [34], even
for spheroids, this property does not apply to higher-order virial
coefficients.

16Clearly, all odd-indexed fn vanish identically since spheroids are
symmetric under central inversion.

17See Eqs. (48)–(50) of [9].
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FIG. 7. (Color online) The plots of B2 (solid line), B4 (dashed
line), and B6 (dotted line) normalized to B0 for 0 � η � 1. In the limit
as η → 0 (needle-shaped spheroids), the ratios shown here tend to
B2/B0 = −5/8

.= −0.63, B4/B0 = −9/64
.= −0.14, and B6/B0 =

−65/1024
.= −0.06.

be incorrect. This should not indeed surprise us, as Isihara’s
method delivers Bn in the form of two separate power series in
ε, one for the prolate case and the other for the oblate case,18

which need then be resummed.19

Explicit formulas for both f4 and f6 are reproduced in
Appendix A 8; here we shall be contented with showing in
Fig. 7 B6, B4, and B2 normalized to B0 as functions of η

for prolate spheroids (as for oblate spheroids these ratios also
remain unchanged under the transformation η �→ 1/η). The
graphs plotted in Fig. 7 may help in deciding how many terms
to retain in (4) for any given value of η.

For completeness, we show in Fig. 8 the graphs of the
coefficients B0 and B2, the former of which is normalized
to 8Vs, the minimum excluded volume of two congruent
spheroids of volume Vs (attained when they are in the parallel
configuration).

Over the past few decades, hard ellipsoids have been
the object of many studies revisiting the classical Onsager
theory of hard cylindrical rods. In all these studies, the
excluded volume of ellipsoids plays by necessity a central role
(occasionally, along with some higher-order virial coefficients
which have also been computed).20 More recently, a formula
was also obtained in [36] for the excluded volume of two
congruent oblate spheroids, elaborating on the original method
of Isihara [9]. That formula21 is not directly comparable with
ours, as it expresses the excluded volume as a power series
of trigonometric functions of the angle between the bodies’

18See Eqs. (29) and (47) of [9].
19A similar discrepancy for f4 is pointed out in Appendix A 8 below.
20We refer the reader to [37] for a review. Other relevant information

can be gathered from the works [34,38–43].
21See Eq. (B12) of [36].

symmetry axes, which unlike Legendre polynomials is not a
system of orthogonal functions.

VII. CONCLUSIONS

The major objective of this paper was to express explicitly
the excluded volume Ve{B1,B2} of two arbitrary cylindrically
symmetric, convex bodies B1 and B2 (with symmetry axes
m1 and m2), in terms of shape functionals to be evaluated
separately for B1 and B2. We accomplished this task by
relating the coefficients Bn that represent Ve{B1,B2} in
the basis of Legendre polynomials Pn(m1 · m2) to certain
anisotropic volume averages which, in complete analogy with
the classical Minkowski formula for the isotropic average
of the excluded volume, were expressed in terms of shape
functionals that extend Minkowski’s. As demonstrated by the
examples of cones and spheroids, which we worked out in full
details, the extended Minkowski functionals can be evaluated
exactly. A large number of them might be required to obtain
Ve{B1,B2} at a high degree of accuracy, but the proposed
method provides them exactly in any desired number.

As witnessed by the case of cones, one motivation of
our study was to explore the role of shape polarity in the
excluded volume of tapered bodies. It has already been shown
that when such congruent bodies B1 and B2 are convex and
cylindrically symmetric, Ve{B1,B2} attains its minimum in
the antiparallel configuration [28]. Therefore, one could think
of assigning a shape dipole d to these bodies by extracting from
Ve{B1,B2} the dipolar component, B1m1 · m2, and rewriting
it formally as d1 · d2.22 Instead, we proved that B1 ≡ 0, thus
making elusive the definition of any shape dipole for a tapered,
cylindrically symmetric, convex body. Clearly, the antipolar
property revealed by the minimum of Ve{B1,B2} remains
valid, but it can in general be read off from the coefficient B3,
and so properly speaking it is an octupolar effect.

Cones indeed interested us because they are tapered, but
they are not the easiest cylindrically symmetric, convex bodies
for which one would compute the excluded volume. Perhaps,
ellipsoids of revolution might come first in anyone’s list.
For this reason, we also applied our method to ellipsoids
of revolution. Other methods have already been devised to
compute the excluded volume of these bodies, such as the
overlap criteria used in computer simulations [5,44], or the
approximations stipulated in the Gaussian overlap model orig-
inally introduced in [45],23 but with the admirable exception
of the classical factorized formulas of Isihara [9] for the
first Legendre coefficients Bn and the closed form expression
for the distance of closest approach for two ellipses in two

22Actually, for selected m1 and m2 on the symmetry axes of the
congruent bodies B1 and B2, one could either orient the vectors d1

and d2 along m1 and m2, respectively, or in the opposite directions,
provided their orientations are reverted in both bodies.

23An Onsager theory for hard ellipsoids based on this approximation
can be found in [46], a paper well aware of the possible inaccuracies
stemming from the hard-body modification of the simple Gaussian
overlap model [47]. See also [48] for a recent review of the Gaussian
overlap model for hard ellipsoids.
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FIG. 8. (Color online) (a) The plot of B0 (normalized to 8Vs) for a prolate spheroid. It behaves like 3/32η as η → 0. (b) The plot of B2

(normalized to Vs) for a prolate spheroid. It behaves like −15π/32η as η → 0. Both plots are easily extended to oblate spheroids by preserving
their values under the transformation η �→ 1/η.

space dimensions [4],24 no explicit analytic representation was
known for the excluded volume of ellipsoids of revolution. We
hope that we have provided one, rooting on geometric grounds
the multiplicative structure of Isihara’s formulas and emending
some of them.

Several other applications could be foreseen for our
representation formula. In tune again with Onsager’s paper [1],
we mention just one: the role of shape in steric interactions of
filamentous viruses. This was indeed the original motivation
of Onsager’s work, which intended to provide a theoretical
explanation for the liquid-crystalline behavior of tobacco
mosaic viruses, which were the first to be isolated and purified
[50]. An up-to-date review of the recent applications of
Onsager’s theory to viruses of various elongated shapes can be
found in [51]. We trust that our representation formula for the
excluded volume could help making the role of viruses’ shape
more explicit.
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APPENDIX A: MATHEMATICAL DETAILS

In this Appendix we record for completeness the mathe-
matical details needed to make our development rigorous, but
which would have hampered our presentation if dispersed in
the main body of the paper. We start by recalling the essentials
of convex-body geometry; they are extracted from the wider
treatment presented in Appendix A of [18], to which the
interested reader is referred for a better appreciation of the
formalism adopted in this paper.

1. Essentials of convex-body geometry

A convex body B in the three-dimensional space E is
represented here through the radial mapping ν �→ r(ν), which
associates with each unit vector ν in the unit sphere S2 of E the
point on the boundary ∂B of B where the outward unit normal
is precisely ν. Such a representation requires S2 to be mapped
univocally onto ∂B, which is the case whenever B belongs
to the class K + of convex bodies with smooth boundaries
and strictly positive curvatures. Such an assumption is not a
true limitation to our development, as K + is indeed dense
in the whole class K of convex bodies with respect to the
Hausdorff metric. Thus, the values attained in K \ K + by
a continuous functional defined in K + can be computed as
limits on appropriate approximating sequences of bodies in
K +. This property is for example exploited in Sec. A 4a below
to compute the contribution of a sharp ridge to the extended
Minkowski functionals introduced in Sec. IV.25

25The very same property makes it possible to arrive at the
expressions for the extended M and S functionals of a cone C α

listed in Sec. V.
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FIG. 9. (Color online) Sketch that describes how the radial map-
ping r assigns to a unit vector ν of S2 the translation that brings o

into the point on ∂B where ν is the unit outward normal to ∂B. The
existence of such a mapping is guaranteed by the assumption that B
belongs to K +.

Figure 9 illustrates our representation of B through its
radial mapping r . It also shows that the unit outward normal n
to ∂B, which by construction at the point r(ν) coincides with
ν, can also be regarded as a field on ∂B. Its surface gradient
∇sn is the curvature tensor and can be represented as

∇sn = σ1e1 ⊗ e1 + σ2e2 ⊗ e2, (A1)

where the positive scalars σ1 and σ2 are the principal
curvatures of ∂B, and the orthogonal unit vectors e1 and
e2, both tangent to ∂B, designate the principal directions
of curvature. In this paper, fully devoted to cylindrically
symmetric bodies, we have conventionally taken e1 along the
local meridian, so that e1, n, and the symmetry axis m of B
are everywhere in one and the same plane (possibly varying
with the point selected on ∂B). Figure 10 shows the geometric
situation envisaged here.

The mean curvature H and the Gaussian curvature K are
defined in terms of the principal curvatures as

H := 1
2 (σ1 + σ2) and K := σ1σ2. (A2)

The former can also be expressed as

H = tr ∇sn = 1
2 divs n, (A3)

where tr is the trace operator and divs denotes the surface
divergence. Similarly, letting A∗ denote the adjugate of a

FIG. 10. (Color online) Cross section of a cylindrically symmet-
ric body B through a plane containing its axis of symmetry m. Both
the outer unit normal n and the principal direction of curvature e1

along the local meridian are on this plane.

second-rank tensor A,26 we also have that

(∇sn)∗ = Kn ⊗ n = Kν ⊗ ν. (A4)

The surface gradient ∇sr of the radial mapping r over S2

has an expression similar to (A1),

∇sr = ρ1e1 ⊗ e1 + ρ2e2 ⊗ e2, (A5)

where

ρ1 := 1

σ1
and ρ2 := 1

σ2
(A6)

are the principal radii of curvature of ∂B. In complete analogy
with (A1), we have that

(∇sr)∗ = 1

K
ν ⊗ ν, (A7)

whence it follows that the surface dilation ratio induced by the
mapping r that sends S2 onto ∂B is given by27

da(n)

da(ν)
= |(∇sr)∗ν| = 1

K
. (A8)

Putting together (A5), (A6), (A3), and (A2), we can also write

divs r = ρ1 + ρ2 = 1

K
divs n. (A9)

In the following, we shall also denote by x the position vector
on ∂B. Formally, the fields ν and n are related through x by
the relations

ν = n(x) and x = r(ν). (A10)

A theorem that we have often used in this paper is the
surface-divergence theorem.28 It says that∫

S
divs uda(n) =

∫
S

(divs n)u · nda(n)

= 2
∫

S
H u · nda(n), (A11)

for any continuously differentiable field u defined on a closed
smooth surface S with unit outer normal n and mean curvature
H .

Three continuous functionals defined on the whole class K
of convex bodies were introduced by Minkowski. They are the
total mean curvature M , the surface area S, and the volume
V . For a body B ∈ K +, they are defined and represented as

26A∗ is characterized by requiring that A∗(u × v) = Au × Av, for
all vectors u and v, where × denotes the cross product of vectors (see
also Sec. 2.11 of [20]).

27See also Sec. 5.2 of [20].
28See also Sec. 5.2.3 of [52].
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follows:29

M[B] :=
∫

∂B
Hda(n) =

∫
S2

r · νda(ν), (A12a)

S[B] :=
∫

∂B
da(n) =

∫
S2

1

K
da(ν) =

∫
S2

ν · (∇sr)∗νda(ν), (A12b)

V [B] := 1

3

∫
∂B

n · x da(n) = 1

3

∫
S2

r · ν
1

K
da(ν) := 1

3

∫
S2

(ν · r)ν · (∇sr)∗νda(ν). (A12c)

As shown in greater details in [18], one of the advantages of representing a body B in K + through its radial mapping r
is that the Minkowski sum B1 + B2 of two bodies, B1 and B2, represented by the radial mappings r1 and r2, respectively,
is represented by the radial mapping r12 := r1 + r2. Correspondingly, the fundamental functionals in (A12) evaluated on the
Minkoski sum of two bodies, B1 and B2, of K + are delivered by30

M[B1 + B2] = M[B1] + M[B2], (A13a)

S[B1 + B2] = S[B1] + S[B2] +
∫
S2

[
sin2 φ

(
ρ

(1)
1 ρ

(2)
1 + ρ

(1)
2 ρ

(2)
2

) + cos2 φ
(
ρ

(1)
1 ρ

(2)
2 + ρ

(1)
2 ρ

(2)
1

)]
da(ν), (A13b)

V [B1 + B2] := V [B1] + V [B2] + 1

3

∫
S2

(
ν · r1

1

K (2)
+ ν · r2

1

K (1)

)
da(ν)

+ 1

3

∫
S2

(ν · r1 + ν · r2)
[

sin2 φ
(
ρ

(1)
1 ρ

(2)
1 + ρ

(1)
2 ρ

(2)
2

) + cos2 φ
(
ρ

(1)
1 ρ

(2)
2 + ρ

(1)
2 ρ

(2)
1

)]
da(ν), (A14)

where ρ
(1)
1 and ρ

(1)
2 are the principal radii of curvature

of ∂B1, ρ
(2)
1 , and ρ

(2)
2 are those of ∂B2, φ ∈ [0,2π ] is

the angle of the rotation about ν that brings the pair of
principal curvature directions (e(1)

1 ,e(1)
2 ) of body B1 into the

pair of principal curvature directions (e(2)
1 ,e(2)

2 ) of body B2,
and K (1) = (ρ(1)

1 ρ
(1)
2 )−1, K (2) = (ρ(2)

1 ρ
(2)
2 )−1 are the Gaussian

curvatures of ∂B1 and ∂B2, respectively.
We finally remark that for a body B ∈ K + represented by

the radial mapping r(ν), the central inverse B∗ (relative to the
same origin o) is represented by the radial mapping r∗ defined
by

r∗(ν) := −r(−ν). (A15)

As a result, if r1 and r2 are the radial mappings representing the
bodies B1 and B2 in K +, the body B1 + B∗

2 , whose volume,
by Mulder’s identity (3), is the excluded volume Ve{B1,B2}
of the pair (B1,B2), is represented by the radial mapping

re(ν) := r1(ν) − r2(−ν). (A16)

It is not difficult to show with aid of (A15) that the shape
functionals defined in (24) for B ∈ K + are invariant under
the transformation B �→ B∗.

Another consequence of Mulder’s identity is that (A14)
bears a close resemblance to Wertheim’s representation for
Mayer’s function [53].31 An important difference, however,
between our method and Wertheim’s is that the expansion in

29See Appendix A of [18] for more details.
30See (A25), (A43), and (A49) of [18].
31See, in particular, (36) of [53], which in an incomplete form was

also referred to as the convolution decomposition of Mayer’s function
by Rosenfeld [29] and later re-established in [30] in its complete form,
equivalent to Wertheim’s original equation.

(2) with coefficients Bn as in (31) does not result from an
expansion of the integrand in the last integral of (A14), thus
avoiding the ambiguities acknowledged in [53].32

2. Anisotropic volume averages

The anisotropic volume averages 〈PnV 〉 [B1,B2] are de-
fined in (13). The first average 〈P1V 〉 [B1,B2] has been
computed in Sec. III; here we compute all others. The method
employed will be the same as in Sec. III, but to make it effective
we need to replace (19) with the more general addition formula
(see Sec. 18.18.9 of [21]),

Pn(m1 · m2) = Pn(sin ϑ1 sin ϑ2 cos φ + cos ϑ1 cos ϑ2)

= Pn(cos ϑ1)Pn(cos ϑ2)

+ 2
n∑

k=1

(n − k)!(n + k)!

22k(n!)2
(sin ϑ1)k(sin ϑ2)k

×P
(k,k)
n−k (cos ϑ1)P (k,k)

n−k (cos ϑ2) cos kφ, (A17)

where P
(α,β)
n is the Jacobi polynomial of degree n and indices

(α,β). Jacobi polynomials are defined in the interval [−1,1]
and are orthogonal relative to the weight function w(x) = (1 −
x)α(1 + x)β . They enjoy the symmetry property P

(α,β)
n (−x) =

(−1)nP (α,β)
n (x) and can be represented as finite sums (see

Sec. 18.5.8 of [21]),

P (α,β)
n (x) = 1

2n

n∑
k=0

(
n + α

k

)(
n + β

n − k

)
(x − 1)n−k(x + 1)k.

(A18)

32Compare, for example, (64) and (68) of [53].
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The first three Jacobi polynomials that interest us are

P
(2,2)
0 (x) = 1, P

(2,2)
1 (x) = 3x, P

(2,2)
2 (x) = 7x2 − 1. (A19)

With the aid of (18) and (A17), we establish the identity

1

2π

∫ 2π

0
Pn(m1 · m2)

[
sin2 φ

(
ρ

(1)
1 ρ

(2)
1 + ρ

(1)
2 ρ

(2)
2

) + cos2 φ
(
ρ

(1)
1 ρ

(2)
2 + ρ

(1)
2 ρ

(2)
1

)]
dφ

= Pn(m1 · ν)Pn(m2 · ν)
(
ρ

(1)
1 + ρ

(1)
2

)(
ρ

(2)
1 + ρ

(2)
2

) − (n − 2)!(n + 2)!

(4n!)2
[1 − (m1 · ν)2][1 − (m2 · ν)2]

×P
(2,2)
n−2 (m1 · ν)P (2,2)

n−2 (m2 · ν)
(
ρ

(1)
1 − ρ

(1)
2

)(
ρ

(2)
1 − ρ

(2)
2

)
, (A20)

where, as stipulated above, the principal directions of curvatures e(1)
1 and e(2)

1 for bodies B1 and B2, respectively, to which the
principal radii of curvature ρ

(1)
1 and ρ

(2)
1 are correspondingly associated, lie orderly on the planes (m1,n) and (m2,n). Use of (17),

(A17), and (A20) in (A14) leads us to

〈PnV 〉[B1,B2] = 1

3

(〈
Pn(m2 · ν)

K (2)

〉
ν

∫
S2

(ν · r1)Pn(m1 · ν)da(ν) + 〈(ν · r2)Pn(m2 · ν)〉ν
∫
S2

Pn(m1 · ν)

K (1)

)

+ 1

6

〈
Pn(m2 · ν)

(
ρ

(2)
1 + ρ

(2)
2

)〉
ν

∫
S2

(ν · r1)Pn(m1 · ν)
(
ρ

(1)
1 + ρ

(1)
2

)
da(ν)

+ 1

6

〈
(ν · r2)Pn(m2 · ν)

(
ρ

(2)
1 + ρ

(2)
2

)〉
ν

∫
S2

Pn(m1 · ν)
(
ρ

(1)
1 + ρ

(1)
2

)
da(ν)

− 1

6

(n − 2)!(n + 2)!

(4n!)2

〈
[1 − (m2 · ν)2]P (2,2)

n−2 (m2 · ν)
(
ρ

(2)
1 − ρ

(2)
2

)〉
ν

×
∫
S2

[1 − (m1 · ν)2](ν · r1)P (2,2)
n−2 (m1 · ν)

(
ρ

(1)
1 − ρ

(1)
2

)
da(ν)

− 1

6

(n − 2)!(n + 2)!

(4n!)2

〈
[1 − (m2 · ν)2](ν · r2)P (2,2)

n−2 (m2 · ν)
(
ρ

(2)
1 − ρ

(2)
2

)〉
ν

×
∫
S2

[1 − (m1 · ν)2]P (2,2)
n−2 (m1 · ν)

(
ρ

(1)
1 − ρ

(1)
2

)
da(ν). (A21)

To accomplish our task we need now compute all the integrals featuring in (A21). To make this easier, it is expedient to realize
that they result from parametrizing some general shape functionals through the radial mappings r1 and r2 of bodies B1 and B2.
For a cylindrically symmetric body B ∈ K +, by (A8), we see that∫

S2

Pn(m · ν)

K
da(ν) =

∫
∂B

Pn(m · n)da(n). (A22a)

Similarly, also by use of (A5), (A6), and (A2), we easily arrive at∫
S2

(ν · r)Pn(m · ν)da(ν) =
∫

∂B
(ν · x)Pn(m · n)Kda(n), (A22b)

∫
S2

Pn(m · ν)(ρ1 + ρ2)da(ν) = 2
∫

∂B
Pn(m · n)Hda(n), (A22c)

∫
S2

(ν · r)Pn(m · ν)(ρ1 + ρ2)da(ν) = 2
∫

∂B
(n · x)Pn(m · n)Hda(n), (A22d)

∫
S2

[1 − (m · ν)2](ν · r)P (2,2)
n−2 (m · ν)(ρ1 − ρ2)da(ν) = −2

∫
∂B

[1 − (m · n)2](n · x)P (2,2)
n−2 (m · n)

1

2
(σ1 − σ2)da(n), (A22e)

∫
S2

[1 − (m · ν)2]P (2,2)
n−2 (m · ν)(ρ1 − ρ2)da(ν) = −2

∫
∂B

[1 − (m · n)2]P (2,2)
n−2 (m · n)

1

2
(σ1 − σ2)da(n). (A22f)

In formulas (A22) we readily recognize the shape functionals
defined in (24). With the aid of these definitions, we give (A21)
the form (25) used in the main text.

3. Generating curve

Here we represent the boundary ∂B of a cylindrically
symmetric convex body B as generated by the 2π rotation
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FIG. 11. (Color online) The plane curve y, which generates ∂B
by a 2π rotation about m, is parametrized in the generic scalar s as
y(s) = x(s,0), where x(s,ϕ) is given by (A23). The origin o is taken
to coincide with the uppermost pole.

of a plane curve, y(s) = r(s)ex − a(s)ez, parametrized in the
generic scalar s (see Fig. 11). Identifying m with the unit vector
ez of a Cartesian frame (ex,ey,ez), we can then represent ∂B
as the surface

x(s,ϕ) = r(s)er − a(s)ez, (A23)

where

er = cos ϕ ex + sin ϕ ey (A24a)

is the radial unit vector and

eϕ = − sin ϕ ex + cos ϕ ey (A24b)

is the associate orthogonal unit vector in the plane (ex,ey).
By letting s and ϕ depend on a parameter t , we obtain

a trajectory t �→ ξ (t) := x(s(t),ϕ(t)) on ∂B. It follows from
(A23) that

ξ̇ = ṡ
√

r ′2 + a′2 t + ϕ̇reϕ, (A25)

where a prime denotes differentiation with respect to s, a
superimposed dot denotes differentiation with respect to t ,
and

t = r ′er − a′ez√
r ′2 + a′2 (A26)

is the unit tangent vector to x(·,ϕ), for given ϕ. From (A26)
and (A25), we easily arrive at both the unit outward normal to
∂B,

n = a′er + r ′ez√
r ′2 + a′2 , (A27)

and the surface area element

da(n) = r
√

r ′2 + a′2dsdϕ. (A28)

By further differentiating n along the trajectory ξ (t), we obtain
that

ṅ = ṡ(a′′r ′ − a′r ′′)
r ′2 + a′2 t + ϕ̇a′

√
r ′2 + a′2 eϕ. (A29)

Since ṅ = (∇sn)ξ̇ and, by (A25),

ṡ = ξ̇ · t√
r ′2 + a′2 and ϕ̇ = ξ̇ · eϕ

r
, (A30)

where ξ̇ is arbitrary, we conclude that

∇sn = a′′r ′ − a′r ′′

(r ′2 + a′2)3/2
t ⊗ t + a′

r
√

r ′2 + a′2 eϕ ⊗ eϕ, (A31)

whence we read off at once the principal curvatures of ∂B.

FIG. 12. (Color online) The generating curve of a circular cone
C α with semiamplitude α, radius R, and height h, the two latter related
to the slant height L as in (A32). The parameter s here represents the
arclength along the slant side of the cone.

a. Cones

Figure 12 depicts the generating curve for a circular cone
C α with vertex in the origin o, semiamplitude α, radius R, and
height h, which are related to the slant height L through the
equations

R = L sin α, h = L cos α. (A32)

The functions r(s) and a(s) featuring in (A23) are correspond-
ingly given by

r(s) = s sin α and a(s) = s cos α, (A33)

where now s has been chosen as the arclength along the slant
height of the cone; it follows from (A31) that

σ1 = 0 and σ2 = cot α

s
. (A34)

b. Spheroids

The generating curve for a spheroid S η is illustrated in
Fig. 13; it is a half ellipse with semiaxes a and b, along ez

and ex , respectively, and centered in the origin o. Letting the
parameter s be the angle θ ranging in [0,π ] and depicted in
Fig. 13, the functions a(s) and r(s) in (A23) are now written
as33

a(θ ) = −a cos θ and r(θ ) = b sin θ. (A35)

By use of (A27) and (A31), we readily arrive at

m · n = η cos θ√
1 + (η2 − 1) cos2 θ

, (A36a)

n · x = aη√
1 + (η2 − 1) cos2 θ

, (A36b)

σ1 = η

a

1

[1 + (η2 − 1) cos2 θ ]
3
2

, (A36c)

σ2 = 1

aη

1√
1 + (η2 − 1) cos2 θ

, (A36d)

where η := b/a is the spheroid’s aspect ratio.

33To avoid typographical clutter, we are guilty of using the same
symbol for both the function a(θ ) and the scaling semiaxis of the
generating half ellipse.
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FIG. 13. (Color online) The half ellipse with semiaxes a and b

whose 2π rotation about the symmetry axis m = ex generates a
spheroid with aspect ratio η = b/a. The parameter θ featured in
(A35) designates the angle between y(θ ) and ez. The origin o has
been chosen in the center of the spheroid.

4. Extended M and S functionals of a circular ridge

Here we apply the formalism presented in Sec. A 3 to
compute the extended M and S functionals defined in Sec. IV
for a circular ridge R of radius R, where neither H nor
K is defined. To this end, we replace R with a toroidal
approximation Rε with equatorial radius R and meridian
radius ε, whose outer unit normal n spans the sector in which
the angle θ that it makes with the symmetry axis m ranges in
the interval [θ1,θ2]. To afford a greater generality (and in view
of our application to cones in Sec. V above), we choose the
origin o on the symmetry axis at the generic distance h from
the ridge’s plane (see Fig. 14).

Our strategy will be to compute the extended M and S

functionals on Rε and then take the limit as ε → 0+. The
functions r(s) and a(s) introduced in Sec. A 3 which here
describe Rε are

r(s) = R + ε sin θ (s), a(s) = h − ε cos θ (s), (A37)

where θ and s are related through s − s1 = ε(θ (s) − θ1), with
s1 an arbitrary constant. It easily follows from (A31) and (A37)
that

σ1 = 1

ε
, σ2 = sin θ

R + ε sin θ
. (A38)

(a) (b)

FIG. 14. (Color online) (a) Circular ridge R of radius R in the
plane orthogonal to the symmetry axis m at the distance h from the
origin o. The unit outward normal n makes the angle θ1 with m on
one side and angle θ2 on the other side. (b) The sharp corner of R is
rounded off in a toroidal surface with meridian radius ε.

Moreover, (A28) yields

da(n) = (R + ε sin θ )εdθdϕ. (A39)

Using (A38) and (A39) in the definitions of the extended M

and S functionals in (24), and then taking the limit as ε → 0+,
we arrive at the following expressions:

Mn[R] = πR

∫ θ2

θ1

Pn(cos θ )dθ, (A40a)

M ′
n[R] = 2π

∫ θ2

θ1

(R sin θ − h cos θ ) sin θPn(cos θ )dθ,

(A40b)

M ′′
n [R] = πR

∫ θ2

θ1

sin2 θP
(2,2)
n−2 (cos θ )dθ, (A40c)

Sn[R] = 0, (A40d)

S ′
n[R] = πR

∫ θ2

θ1

(R sin θ − h cos θ )Pn(cos θ )dθ, (A40e)

S ′′
n [R] = πR

∫ θ2

θ1

(R sin θ − h cos θ ) sin2 θP
(2,2)
n−2 (cos θ )dθ.

(A40f)

a. Extended M and S functionals for a disk

Formulas (A40) are instrumental to obtaining the explicit
expressions for the extended M and S functionals of a disk
D of radius R. As before, we start by replacing D with an
approximating rounded body, the spherodisk Dε defined as the
Minkowski sum of D and a ball B3

ε of radius ε and center
coincident with the center of D . Figure 15 illustrates both Dε

and the generating curve of its boundary.
The extended M and S functionals for D will be obtained

by taking the limit as ε → 0+ in those computed for Dε. ∂Dε

consists of two flat parallel disks, for which both principal
curvatures vanish, and the toroidal approximation Rε of the
circular rim R of D , for which the angles θ1 and θ2 in Fig. 14
are θ1 = 0 and θ2 = π , respectively. Apart from the limit as
ε → 0+ of Sn[Dε], which is immediate to compute, for all
other functionals this limit follows directly from (A40) by
setting h = 0 and choosing θ1 and θ2 as above. We thus arrive
at

Mn[D] = πR

∫ π

0
Pn(cos θ )dθ, (A41a)

M ′
n[D] = 2πR

∫ π

0
Pn(cos θ ) sin2 θdθ, (A41b)

(a) (b)

FIG. 15. (Color online) (a) Spherodisk Dε defined as the
Minkowski sum of the disk D and a ball B3

ε of radius ε and same
center o as D . (b) The generating curve of Dε . The symmetry axis m
is orthogonal to D .
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M ′′
n [D] = πR

∫ π

0
P

(2,2)
n−2 (cos θ ) sin2 θdθ, (A41c)

Sn[D] = πR2 [Pn(1) + Pn(−1)] , (A41d)

S ′
n[D] = πR2

∫ π

0
Pn(cos θ ) sin θdθ, (A41e)

S ′′
n [D] = πR2

∫ π

0
P

(2,2)
n−2 (cos θ ) sin3 θdθ. (A41f)

In particular, it follows from (A41) that all extended M and S

functionals with an odd index n vanish for a disk.

5. Invariance under translations

The anisotropic volume averages for which we found in (25)
an explicit representation in terms of the extended Minkowski
functionals are clearly invariant under the full Euclidean group
comprising both translations and rotations. On the other hand,
as clearly shown by Eqs. (24), while all extended M and S

functionals are invariant under rotations, those that also appear
to be invariant under translations are only Mn, M ′′

n , and Sn.
M ′

n[B], S ′
n[B], and S ′′

n [B] are expressed as integrals over the
boundary ∂B of the body B of fields that depend explicitly

on the origin o through the position vector x. Here we shall
show that, despite all appearances, M ′

n is indeed invariant under
translations, whereas both S ′

n and S ′′
n are not. For the latter

two, we shall also give explicit formulas that describe how
they are affected by a translation. Of course, the combination
of these functionals in (25) must be translation invariant. We
shall exploit this fact in Sec. A 6 below to show that functionals
M ′′

n and Mn are not independent, a conclusion which would be
hard to reach by direct comparison of their definitions.

Translating a body B by the vector a is formally equivalent
to taking the Minkowski sum B + a of B and the point in
space identified by a. Moreover, since all extended M and S

functionals are invariant under rotations, computed on B + a
for any given B, they are isotropic functions of a. It readily
follows from (24b) that

M ′
n[B + a] = M ′

n[B] + a ·
∫

∂B
Pn(m · n)Knda(n). (A42)

The integral on the right side of (A42) is an isotropic vector-
valued function of m; as such, by the Cauchy theorem on
isotropic vector-valued functions, it must be proportional to
m. Thus, (A42) becomes

M ′
n[B + a] = M ′

n[B] + a · m
∫

∂B
(m · n)Pn(m · n)Kda(n).

(A43)
For B ∈ K +, by use of (A8), we see that

∫
∂B

(m · n)Pn(m · n)Kda(n) =
∫
S2

P1(m · ν)Pn(m · ν)da(ν) = 2π

∫ 1

−1
P1(x)Pn(x)dx = 0, ∀ n � 2, (A44)

where the last equality follows from the orthogonality of Legendre polynomials. Since we have already proved in Sec. III that
M1[B] vanishes identically for all B ∈ K +, by (A44) we conclude that all functionals Mn are invariant under translations.

This is not the case for both S ′
n and S ′′

n . Reasoning precisely as above and making use of the recurrence relations34

xPn(x) = n + 1

2n + 1
Pn+1(x) + n

2n + 1
Pn−1(x), (A45a)

xP
(2,2)
n−2 (x) = (n − 1)(n + 3)

(n + 1)(2n + 1)
P

(2,2)
n−1 (x) + n

2n + 1
P

(2,2)
n−3 (x), (A45b)

the latter valid for n � 2 and with the postulation that P
(2,2)
−1 ≡ 0, we arrive at

S ′
n[B + a] = S ′

n[B] + a · m
(

n + 1

2n + 1
Mn+1[B] + n

2n + 1
Mn−1[B]

)
, (A46a)

S ′′
n [B + a] = S ′′

n [B] + a · m
(

(n − 1)(n + 3)

(n + 1)(2n + 1)
M ′′

n+1[B] + n

2n + 1
M ′′

n−1[B]

)
, (A46b)

the latter valid for n � 2 and with the postulation that
M ′′

1 [B] ≡ 0.

6. Reduction formulas

Here we take advantage of the general formulas (A46) just
established and of the specific expressions for the extended
M and S functionals obtained in (A41) to show that each
functional M ′′

n reduces to Mn and to substantiate our conjecture
that so should equally each M ′

n.

34See, for example, Sec. 18.9.1 of [21].

a. M ′′
n reduced to Mn

By requiring that the anisotropic volume averages, as
expressed by (25), be invariant under translations for all bodies
B1 and B2, a laborious but easy computation relying on (A46)
and the translation invariance of M ′

n shows that

M ′′
n [B] = a′′

nMn[B], (A47)

where the coefficients a′′
n must obey the recurrence equation

(n + 3)(n + 2)

16(n + 1)n
a′′

n+1a
′′
n = 1, (A48)
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whose explicit solution is

a′′
n = 4n

n + 2
. (A49)

Combining (A49) with (A47), we arrive immediately at (27).

b. M ′
n reduced to Mn

Inspired by (A49), we computed the ratio a′
n of M ′

n[D] to
Mn[D] for a disk D ; interpolating with the aid of (A41a) and
(A41b) the values of a′

n obtained for a number of indices n,
we concluded that

a′
n = − 2

(n − 1)(n + 1)
, ∀ n � 2, (A50)

whence (28) follows at once. Although we could not establish
(28) on a firmer basis, we checked by use of (33a) and (33b) and
of (40a) and (40b) that it is valid for a large number of indices
n when B is taken to be either a cone C α or a spheroid S η,

for all values of the semiamplitude α and of the aspect ratio
η. We are aware that (27) and (28) have a completely different
standing, as the former has been proved rigorously, whereas
the latter is only conjectured. Most of our development in the
main body of the paper relies neither on (27) nor on (28). What
does depend on (28) is only the possibility of giving compact
factorized formulas for the coefficients Bn as those listed in
(A51) and (A54) for cones and spheroids, respectively, both
of which are expected to obey (28).

7. Legendre coefficients for the excluded volume of cones

Letting B1 and B2 be two congruent circular cones, C α
1

and C α
2 , with semiamplitude α, with the aid of (15), (31), and

(33) we arrived at the following explicit formulas for the first
eight Legendre coefficients Bn plotted in Figs. 3 and 4(b) as
functions of α:

B0 = 2

3
πL3 sin2α cos α + 1

2
πL3 sin α

[(
π

2
+ α

)
sin α + cos α

]
(1 + sin α), (A51a)

B1 = 0, (A51b)

B2 = 5

64
πL3 sin α(2α sin α + π sin α + 2 cos α − 6 cos3α)(3 cos2α − 2 − 2 sin α), (A51c)

B3 = 35

12
πL3 sin3α cos5α, (A51d)

B4 = − 3

2048
πL3 sin α(3π sin α + 6α sin α + 6 cos α − 130 cos3α + 140 cos5α)

× (35 cos4α − 40 cos2α + 8 + 8 sin α), (A51e)

B5 = 77

960
πL3 sin3α cos5α(27 cos2α − 20)(9 cos2α − 8), (A51f)

B6 = 13

65 536
πL3 sin α(5π sin α + 10α sin α + 10 cos α − 686 cos3α + 1876 cos5α − 1232 cos7α)

× (231 cos6α − 378 cos4α + 168 cos2α − 16 − 16 sin α), (A51g)

B7 = 3

17 92
πL3 sin3α cos5α(280 − 924 cos2α + 715 cos4 α)(143 cos4α − 198 cos2α + 72), (A51h)

where L is the cone’s slant height. They are recorded here both for completeness and as an illustration of the method proposed
in this paper.

8. Legendre coefficients for the excluded volume of spheroids

To obtain the coefficients Bn that express the excluded volume of congruent spheroids as a series of Legendre polynomials,
we computed the extended Minkowski functionals in (24) for the generating curve described by (A35). Use of (A36) in (24a)
gave

Mn[S η] = πa

∫ 1

−1
Pn

(
ηu√

1 + (η2 − 1)u2

)(
η2

1 + (η2 − 1)u2
+ 1

)
du, (A52)

where we have set u := cos θ . The change of variables

ξ := ηu√
1 + (η2 − 1)u2

(A53)

then led us from (A52) to (40a). The other formulas in (40) were obtained in precisely the same way.
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Along with the expression for f2 recorded in (41), we also obtained

f4 = B4

Vs
= − 9

1024

1

ε8

(
3ε4 − 100ε2 + 105 + 3(1 − ε2)(ε4 + 10ε2 − 35)

arctanh ε

ε

)

×
(

8ε4 − 110ε2 + 105 − (72ε4 − 180ε2 + 105)
arcsin ε

ε
√

1 − ε2

)
(A54a)

and

f6 = B6

Vs
= − 39

32 768

1

ε12

(
5ε6 − 581ε4 + 1715ε2 − 1155 − 5ε2(ε6 + 20ε4 − 210ε2 + 420)

arctanh ε

ε

)

×
(

16ε6 − 616ε4 + 1750ε2 − 1165 − (320ε6 − 1680ε4 + 2520ε2 − 1155)
arcsin ε

ε
√

1 − ε2

)
. (A54b)

In Fig. 16, using (A54a) and (39) we plotted the ratio B4/B0 =
f4/f0 against η. It is there also contrasted against the function
obtained for this ratio by Isihara [9] (only for the prolate
case). The two graphs fail to coincide, even dramatically so,
away from η = 1. In particular, we estimate that

lim
η→0

B4

B
(I)
4

= 9, (A55)

where B
(I)
4 is B4 as delivered by Eq. (60) of [9].

APPENDIX B: SHAPE-RECONSTRUCTION METHOD

In this appendix we describe the method adopted for
reconstructing the boundary of the excluded body Be{C α

1 ,C α
2 }

for two congruent circular cones C α
1 and C α

2 of semiamplitude
α and slant height L, hereafter simply denoted Be for short.
More precisely, the method reconstructs a triangular surface
mesh that, depending on a fundamental parameter to be
described, approximates ∂Be at any degree of precision. From
the surface mesh, the approximate value of the excluded
volume V [Be] can be computed immediately.

The method adopted for this task is a pipeline of two
algorithmic components:

(1) an online vector quantization algorithm that includes
a generator of random point samples from ∂Be and which
produces a configuration of reference vectors W ;

-0.15

-0.10

-0.05

0

0 0.2 0.4 0.6 0.8 1.0
η

B
4
/B

0

FIG. 16. (Color online) The ratio B4/B0 = f4/f0 is plotted
against η both according to the expressions in (A54a) and (39) (solid
line) and to formula (60) of [9] (dashed line).

(2) a surface reconstruction algorithm that produces from
W the triangulated surface mesh that represents an approxi-
mation to ∂Be.

The method described is similar to that in [18]. In particular,
the random generator of point samples from ∂Be is essentially
the same. In that context, however, all target surfaces ∂Be

were generated from spherocones and could be assumed to be
smooth, so that the reconstruction process could be embedded
into step 1 above via the SOAM algorithm [54]. By contrast,
in the case of cones considered here, the presence of ridges
and cusps in ∂Be forces adopting a different strategy. In the
rest of this Appendix, the main aspects of this new strategy are
discussed in detail.

Upon comparing the method described here with others
computing the densest packing of particles of arbitrary shape
[55], we heed in passing that our method determines directly
the surface bounding the excluded region, with arbitrary degree
of precision and in one run per pose, whereas those other
methods typically require repeated Monte Carlo simulations
[56].

1. Sampling the surface boundary

Random point samples from ∂Be can be generated with
a procedure based on equation (A16), reproduced here for
convenience:

re(ν) = r1(ν) − r2(−ν).

Here re reaches a point on ∂Be and r1 and r2, in this specific
case, designate points on ∂C α

1 and ∂C α
2 , respectively. Random

points on ∂Be can be obtained either by a generating a random
vector reaching a point on ∂C α

1 and then finding a vector to
a point on ∂C α

2 that has opposite normal −ν or by reverting
this very procedure: the sum of the vectors thus obtained will
belong to ∂Be.

The main difficulty in implementing such a random gen-
erator is to guarantee positive sampling probability almost
everywhere on ∂Be, that is, apart from subsets of zero area
measure. On all smooth components of a circular cone, in
fact, the Gaussian curvature K vanishes and this means that
in general a normal vector ν does not identify uniquely one
point on the cone’s surface. Furthermore, the Minkowski sum
of two straight lines on the boundary of each cone can result in
a surface patch with positive area measure on ∂Be, despite the
fact that each line has zero area measure and thus no chances
of being sampled, unless specific provisions are introduced.
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FIG. 17. (Color online) (a) A set of 30 K random points generated from ∂Be with the method adopted here. The sampling of the surface
is clearly nonuniform. (b) The final configuration of 10 K reference vectors W produced by the adaptive NG algorithm is more uniformly
distributed. (c) and (d) From W , the ball-pivoting algorithm reconstructs the surface boundary ∂Be with no human intervention.

Appendix B in [18] describes how these problems can be
circumvented in actual computations.

Although the requirement of positive sampling probability
almost everywhere can be enforced in practice, no known
method guarantees uniform sampling probability over ∂Be.35

As shown in Fig. 17(a), the overall sampling obtained with the
chosen random point generation method is indeed nonuniform.

2. Vector quantization: Adaptive neural gas

Many well-known algorithms for surface reconstruction
work considerably better when the input point cloud is as
close as possible to a uniform sample of the target surface and
are often hampered when this is not the case.36 Apart from
greater time complexity, these difficulties can lead in practice
to the need for accurate verification of results and possibly to
manual postprocessing, to correct imperfections.

The intended purpose of a vector quantization algorithm in
this context is to obtain both an improvement in the uniformity
of sampling and a quantitative reduction in the number of
points to be used for surface reconstruction. The algorithm of
choice is an adaptive variant of the neural gas (NG) algorithm
[59] and works as follows:

(1) initialize W with a predefined number k of reference
vectors wi positioned at random on ∂Be;

(2) generate a random point p from ∂Be;
(3) find the nearest reference vector in W , i.e., wi :=

argminwj ∈W ‖ p − wj‖;
(4) if ‖ p − wi‖ � r , where r is a fixed threshold, adapt all

reference vectors in W by

�wi = ε · hλ(ki( p))( p − wi),

where ki( p) := #{wj : ‖ p − wj‖ < ‖ p − wi‖} (# denotes
cardinality), ε > 0 is a real parameter, and

h0(n) := δ0n and hλ(n) := e− n
λ , for λ > 0;

(5) otherwise, if p is farther away from wi , add a new
reference vector p to W ;

35Known methods for uniform sampling presuppose knowledge of
the surface’s analytic description plus further specific conditions [57].

36More precisely, the relevant requisite in this respect is that the
point sampling should be at least locally uniform [58].

(6) unless a maximum number of iterations T has been
reached, return to step 2.

As evident from step 5, this algorithm is adaptive in the
number of reference vectors in W ; in particular, this means
that the level of refinement of the sampling of ∂Be provided
by W can be controlled through the value of the fundamental
threshold r .

In [59] it is proven that, when the value of the constant ε

tends to 0 as the iterations progress, the NG algorithm performs
a stochastic gradient descent towards a (local) minimum of an
overall cost function and that its configuration tends to obey
the power law

ρ(w) ∝ P (w)γ with γ := d

d + 2
,

where d is the dimension of the input space being sampled,
that is d = 2 in this case. Here ρ(w) is the density of reference
vectors in W at w and P (w) is the sampling probability. Since
the exponent γ is smaller than 1, the overall configuration of W
tends to be closer to uniformity than the sampling probability
P . This effect is clearly visible in Fig. 17(b).

3. Surface reconstruction

With proper parameter settings (see below), the recon-
struction of a triangular mesh from the final configuration
W produced by the adaptive NG algorithm poses no particular
problem and could be performed in full automation. In this
work we used the ball-pivoting algorithm [60] which joins in a
triangular face any three vectors in W whose ends are touched
by a ball of a given radius r that does not contain any other
vector’s end from the same set. One example of the results
of this procedure is shown in Figs. 17(c) and 17(d). Further
examples are shown in Fig. 18, which contains a gallery of
shapes produced with the method described above.

4. Implementation and benchmark

The adaptive NG vector quantization algorithm, together
with the generator of random points from ∂Be, has been
implemented in JAVA. In order to speed the execution up,
the algorithm has been converted to a multithreaded version
suitable for multicore computers, along the lines described in
[61]. For surface reconstruction, we used the implementation
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FIG. 18. Gallery of reconstructed boundaries ∂Be for pairs of
congruent circular cones of semiamplitude α. Rows correspond to
values of α equal to π

32 , π

6 , and 15
32 π , respectively, while columns

correspond to values of the angle ϑ between the symmetry axes m1

and m2 equal to 0, π

2 , and π , respectively. All figures are in the same
scale and frame of reference.

of the ball-pivoting algorithm included in the MESHLAB open-
source tool [62].

The overall method for shape reconstruction was validated
using Minkowski’s formula for isotropic volume average
(15) together with the cone-specific functionals (32). For
benchmarking, pairs of congruent circular cones C α

1 and C α
2

having slant height L and semiamplitude α varying from π
32

to 15
32π with step π

32 were considered. For each such pair,
the value of V [Be] was computed for angles ϑ between the
two symmetry axes m1 and m2 varying from 0 to π with
step π

32 ; the isotropic average of the resulting sequence of
volumes was then computed and compared with the exact
value of 〈V 〉[Be]. The fundamental threshold r , which governs
the density of reference vectors in W with respect to ∂Be,
was determined empirically with the objective of having a
difference lesser than 0.02% between the exact value of
each isotropic average and the corresponding value computed
numerically. A value r = 1

50L was found to be adequate
[see also the comparative plots in Figs. 4(a) and 4(b)]. Also
the value of T = 120 M maximum equivalent iterations of
the NG algorithm was determined empirically. In the actual
experiments, the execution was split into 4 concurrent threads,
each processing in multisignal mode (see [61]) 250 random
points per iteration. Being dependent on the area of ∂Be, the
number of reference vectors in the final configurations of W
varied greatly, from 3592 to 41 689.

All numerical experiments were run on a workstation based
on an Intel

R©
Xeon

R©
CPU E3-1240 v3, 3.4 GHz CPU with

8 GB of RAM. As for computing times, the most demanding
part of the method is running the T = 120M equivalent
iterations of the adaptive NG algorithm. For each pair of cones
and for each pose, with the precision required, this computation
took on average about 4254 seconds (i.e., about 71 minutes)
to complete.
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