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Molecular simulation study of polar order in orthogonal bent-core smectic liquid crystals
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We explore the phase behavior and structure of orthogonal smectic liquid crystals consisting of bent-core
molecules (BCMs) by means of Monte Carlo molecular simulations. A simple athermal molecular model
is introduced that describes the basic features of the BCMs. Phase transitions between uniaxial and biaxial
(antiferroelectric) orthogonal smectics are obtained. The results indicate the presence of local in-plane polar
correlations in the uniaxial smectic phase. The macroscopic uniaxial-biaxial transformation is rationalized in
terms of local polar correlations giving rise to polar domains. The size of these polar domains grows larger under
the action of an external vector field and their internal ordering is enhanced, leading to field-induced biaxial
order-disorder transitions.
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I. INTRODUCTION

Bent-core molecules (BCMs) are known [1–4] to self
organize into a variety of soft complex structures, often
showing hierarchal ordering on different length scales. Of
particular interest for electro-optical [5] and nonlinear optical
devices [6] is the polar (ferroelectric or antiferroelectric)
switching of nematic and smectic BCM liquid crystals (LCs).
The tilted stacking of the BCMs in layers is rather common and
is the defining characteristic of the tilted smectic (Sm-C) class
of materials as well as of the so called tilted cybotactic nematic
class (Ncyb-C), combining the presence local tilted molecular
layering with macroscopic positional disorder [7]. The tilted
ordering, however, complicates the device architecture, due to
the monoclinic (or lower) symmetry it confers to the materials.
In addition, it gives rise to the formation of chevron structures
and defects which can be a serious disadvantage for the use of
tilted LC materials in electro-optic devices. On the other hand,
when the stacking of the molecules into layers is not tilted,
defining the so called orthogonal LCs, whether of the smectic
(Sm-A) class or the orthogonal cybotactic nematic (Ncyb-A),
the aforementioned tilt-inflicted drawbacks are removed and
such materials could be very advantageous if they show polar
order and optical biaxiality [8].

The conventional nomenclature for orthogonal smectic
phases of BCM materials includes the Sm-A, the Sm-APR ,
the Sm-APA, the Sm-APRA, and the Sm-APα . The Sm-APA

was first observed by Eremin et al. [9] and characterized as an
orthogonal biaxial smectic phase exhibiting antiferroelectric
switching behavior and consisting of polar layers of antifer-
roelectric order. The Sm-APR as well as the Sm-APRα were
studied by Pociecha et al. [10] who proposed that the polar
directors of the layers are arranged randomly in the first case
and are helicoidally modulated along the layer normal, in the
second. A similar interpretation for the structure of Sm-APR

has been provided by Panarin et al. [11]. A different model of
the structure of Sm-APR has been proposed by Shimbo et al.
[12] wherein the molecules are organized in polar clusters
(domains) that are randomly distributed within the layers,
giving rise to a macroscopically uniaxial and apolar state.
Furthermore, the recently observed Sm-APRA is suggested
to consist of randomly aligned nonpolar domains of local
antiferroelectric ordering [13].

These different interpretations of the connection between
local structure and the macroscopic behavior of BCM LCs have
stimulated a lot of interest for theoretical research. Systematic
attempts have been made to rationalize this behavior using
theory and computer simulations [14–21], but there is still
much to be done, especially on the local structure-macroscopic
properties connection. In previous works, the BCMs were
modelled as an assembly of interacting sites in a bent
configuration by joining (i) two hard spherocylinders [16],
(ii) Lenard-Jones spheres [17], (iii) Gay-Berne particles [18],
and (iv) soft spherocyliders [19]. A fully atomistic simulation
of BCM nematics has also been reported [20].

In the present work, we have introduced a hard-core model
for the molecular interactions that permits us to model BCMs
with relatively short arms and sharp bend angles. The phase
behavior and local structure is rationalized in terms of the
shape anisotropy together with athermal specific interactions
[22]. Finally, the response to external stimuli is also discussed
and compared with experimental findings.

II. MOLECULAR MODEL AND SIMULATION DETAILS

We have employed a coarse grain molecular model which
captures two essential features of the BCMs; these are (i)
the anisotropic shape of the mesogenic bent core and (ii) the
chemical differentiation between the aromatic bent core of
the mesogen and its terminal alkyl chains. The bent core of
the molecules (see Fig. 1) consists of two spherocylinders
(c segments), of aspect ratio L∗ = L/D, jointed rigidly at
their end caps to form the bend angle γ , where D is the
diameter of the cylinders and the hemispherical caps. Two
terminal spherical segments (t segments) of radius R∗ = R/D

are attached tangentially at the free ends of the c segments
of the molecule. In this work we have focused on systems
with L∗ = 2, R∗ = 0.7, and γ = 120◦ in accordance with the
size and shape of common bent-core smectics. We have also
investigated systems with different L∗, R∗, and γ to examine
the influence of these parameters on the phase behavior. The
chemical incompatibility of different molecular units has been
modelled by introducing the following differentiations among
the segmental interactions [22]: (i) the c segments interact
with all types of segments (c or t) via hard-core repulsion on
overlap and null interaction otherwise, and (ii) the interaction
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potential of a t − t pair of segments is null, irrespective
of mutual overlapping. Our results demonstrate directly that
these minimal molecular features are sufficient to generate the
experimentally observed polymorphism and phase sequences.

The phase behavior and molecular organization of the so de-
fined BCM systems is studied by means of Metropolis Monte
Carlo (MC) simulations in the isobaric isothermal ensemble
(NpT ) using variable size simulation boxes with periodic
boundary conditions [23]. We have performed compression
and expansion series by systematically varying the pressure.
Equilibration requires on the order of 2 × 106 cycles and a
further 5 × 105–1 × 106 cycles to be used for the calculation
of ensemble averages of quantities of interest. A MC cycle
consists, on average, of N trial attempts (translations, ori-
entations, and translations-orientations) of randomly chosen
particle, and one volume change attempt. The temperature
and pressure are expressed in reduced units. The reduced
temperature is kept constant, T ∗ = kBT /ε = 1, where T is the
temperature, kB is the Boltzmann constant, and ε is the unit of
energy. The reduced pressure is given by p∗ = pD3/kBT . The
number density is defined as ρ∗ = ND3/V , where N is the
number of molecules and V is the volume. The intermolecular
distances r and correlation lengths ξ are scaled by the diameter
D, defining the reduced distances r∗ = r/D, the correlation
lengths ξ ∗ = ξ/D, and the respective reduced scattering vector
magnitudes q∗ = 2π/r∗.

III. RESULTS AND DISCUSSION

A. Phase behavior and molecular organization
in the smectic phases

Systems consisting of BCMs with L∗ = 2, R∗ = 0.7, and
γ = 120◦ (see Fig. 1), comprising from N = 845 to 3364
molecules have been simulated. To quantify the orientational
order and to identify the principal axes frame of the simulated
systems we have diagonalized the order tensors [16b] Qa =

1
2N

∑N
i=1[3(âi · Â)(âi · B̂) − δAB], where â = (x̂, ŷ, ẑ) repre-

sents any of the molecular axes and Â,B̂ = X̂,Ŷ ,Ẑ denote the
axes of the simulation box. The eigenvector associated with the
largest positive eigenvalue of the three order tensors is taken
as the primary director n̂.

At relatively low pressures, the order parameters Sa =
〈 1

N

∑
i P2(âi · n̂)〉 approximately vanish, which indicates the

absence of orientational order. Here P2(âi · n̂) denotes the

FIG. 1. (Color online) Coarse-grain molecular model of BCM
used in the simulations. The molecular axes frame is shown.

FIG. 2. (Color online) (a) The equation of state for systems
consisting of N = 845 BCMs. (b) The order parameters Sz and
Dx,y as a function of the reduced pressure p∗. Squares and circles
correspond to expansion series from ordered phases and triangles to
compression series from the isotropic phase.

second Legendre polynomial of the direction of the x or y or
z molecular axis relative to the primary director. The biaxial
order parameters are evaluated from the components of the
tensor Da,b = 〈 1

2N

∑
i[(âi · l̂)2 + (b̂i · m̂)2 − (âi · m̂)2 − (b̂i ·

l̂)2]〉, âi �= b̂i are axes of the ith molecule, and l̂,m̂ denote the
secondary principal axes of the phase.

In Fig. 2(a) we present the calculated pressure vs number
density p∗-ρ∗ equation of state (EOS) and in Fig. 2(b) the
the pressure dependence of the order parameters for a system
of N = 845 molecules. The system undergoes a transition,
accompanied by a density jump, from the isotropic (I) to an
orthogonal smectic (Sm-A) phase. A characteristic snapshot of
this smectic phase is shown in Fig. 3(a), from which it is evident
that the molecular axis z is ordered. The respective order
parameter Sz increases from nearly zero to approximately 0.9
[see Fig. 2(b)]. At even higher pressures a transition to a biaxial
smectic (Sm-APA) with antiferroelectric arrangement occurs.
A characteristic snapshot is shown in Fig. 3(b). The biaxial
order parameter of the Sm-APA is in the range 0.4 < Dx,y <

0.8 [see Fig. 2(b)]. The reverse process, i.e., expansion from
the Sm-APA that has been obtained by compression, shows
considerable hysteresis, with extended range of stability for the
orthogonal smectic Sm-A phase, compared to the compression
series. Finally, at lower pressures the Sm-A is destabilized in
favor of the I phase.

The structure of the isotropic liquid and of the ordered
phases is examined through (i) the calculated two-dimensional
x-ray scattering pattern [24]. The intermolecular scattering
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FIG. 3. (Color online) Representative snapshots for the simu-
lated BCM systems: (a) Sm-A at p∗ = 1.1 and (b) Sm-APA at
p∗ = 1.6.

intensity Iinter(q) reported in this study is given by subtracting
the single molecular intensity Imol(q) from the total intensity
Itot(q),Iinter(q) = Itot(q) − Imol(q) with Itot(q) = fT (q)f ∗

T (q)
and Imol(q) = ∑N

i=1 F 2
j (q), where fT (q) is the total scatter-

ing (structure) factor
∑N

i=1 Fj (q) exp(iq · rj ), Fj (q) is the
spherical uniform scattering factor of the j th molecule, rj

is its position; and (ii) a set of positional two-dimensional pair
correlation densities [19] defined as

g
â,b̂
0 (ra,rb) ∼

〈∑
i �=j

δ(ra − r ij · âi)δ(ra − r ij · b̂i)

	 ([r ij · (âi × b̂i)]
2 − σ 2)

〉
i �=j

which give the molecular density on the plane defined by the
axes of a single molecule. Here 	(x) denotes the step function
(	 = 1 for x > 0 and 	 = 0 otherwise), and σ = D/2.

First we study the structure of the thermodynamically stable
isotropic phase (away from the hysteresis regime) which lacks
long range positional and orientational order. The g

ŷ, ẑ
0 (y,z)

and g
x̂, ẑ
0 (x,z) show broad maxima (depicted by red arrows in

Fig. 4) which are located at a distance slightly lower than one
molecular length. The observation of these maxima indicates
positional correlations along the z molecular axis. A side by
side packing of the molecular cores is evident from the intense
maxima indicated by green arrows in Fig. 4(a).

It is interesting to note that, within the range of stability
of the I phase, the location of the maxima in the pattern does
not change on increasing the pressure; only their intensity
increases. The polar intermolecular correlations are rather
weak and rapidly decay to zero with distance; this is evident

FIG. 4. (Color online) Calculated correlation functions for sys-
tems of BCMs with L∗ = 2, R∗ = 0.7, and γ = 120◦ in the I phase
at p∗ = 0.7: (a) g

x̂, ẑ
0 (x,z), (b) g

ŷ, ẑ
0 (y,z) in real space, (c) g

x̂, ŷ
1 (x,y),

and (d) x-ray scattering pattern with scattering vector magnitude
q∗ = 2π/r∗.

from Fig. 4(c), showing the calculated orientational correlation
function g

x̂, ŷ
1 (x,y), defined according to

g
â,b̂
1 (ra,rb) =

〈∑
i �=j

(x̂i · x̂j )δ(ra − r ij · âi)δ(rb − r ij · b̂i)

	 ([r ij · (âi × b̂i)]
2 − σ 2)

〉
i �=j

/
g

â,b̂
0 (ra,rb).

Nevertheless, the nearest neighbors of a molecule in its x-y
plane appear to point in the same direction. The molecular
arrangement described by the correlation functions in real
space is also supported by the calculated x-ray scattering
pattern. A spherical scatterer is assigned to the molecular apex
(i.e., at the origin of the molecular axis frame). The inner
ring (small angle region) corresponds to interlayer distance
r∗ = 2π/q∗ ≈ 6.0 in accordance with the intermolecular
distance calculated from the density functions. Finally, the
outer ring corresponds to the side-by-side molecular packing.
In the isotropic phase the correlations are local, excluding any
long range orientational or positional order. Interestingly, the
same smecticlike clusters, i.e., domains of enhanced positional
correlations, have been observed in real systems of BCMs in
the I phase [25] and were invoked for the interpretation of
interesting properties such as large flow birefringence [26].
At higher pressures the system undergoes a transition to an
orthogonal smectic phase. This phase consists of apolar layers
with spacing approximately equal to that observed in the local
positional correlations.

In order to examine the in-plane polar order of the smectic
phase we have evaluated the g

x̂, ŷ
1 (x,y) functions (see Fig. 5),

from which we have found that short range polar correlations
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FIG. 5. (Color online) Contour maps of calculated correlation
functions for systems of BCMs with L∗ = 2, R∗ = 0.7, and γ =
120◦, (a) g

x̂, ŷ
1 (x,y), (b) g

x̂, ẑ
1 (x,z) for the Sm-APc phase at p∗ = 1.30.

are present and that the range of orientational correlations is
strongly anisotropic (extending in the x direction more than in
the y). Accordingly, each molecule in the layer can be viewed
as being surrounded in the x-y plane by an anisometric region
containing neighboring molecules that have polar correlations
with that molecule. Due to these polar correlations we term
this phase as Sm-APc. We have estimated the polar correlation
lengths ξx,ξy along the x and y molecular axes from the

g
x̂, ŷ
1 (x,y) functions as the optimal parameters for fitting

the separate x and y dependencies of this function to the
functional forms g

x̂, ŷ
1 (x,0) = exp(−|x|/ξx) and g

x̂, ŷ
1 (0,y) =

exp(−|y|/ξy). The correlation lengths ξ ∗
x and ξ ∗

y increase with
increasing pressure. These are roughly equal with very small
values (∼1.0 D) just above the isotropic-smectic transition
and increase to ξ ∗

x = 4.2 and ξ ∗
y = 2.5 at pressures deep in the

Sm-A phase (see Fig. 6). The calculated correlation lengths
suggest that each polar domain incorporates up to a few tens
of molecules.

Representative snapshots of the directions of the arrow
vectors (identified with the unit vectors of the molecular x

axis in Fig. 1) within a smectic layer are shown in Figs. 7(a)
and 7(b). There it can be seen that, in the Sm-A phase, small
polar domains exist and are distributed randomly within the
layer. Some polar domains are indicated in Figs. 7(a) and 7(b)
using ellipsoids with major and minor radius of approximately
the lengths ξ ∗

x and ξ ∗
y , respectively. The fluidity of particles and

FIG. 6. (Color online) Calculated polar correlation lengths ξ ∗
x

(squares) and ξ ∗
y (circles) vs pressure in the Sm-APc phase. Solid

symbols: without external field; open symbol: under external field
a∗ = 0.09.

FIG. 7. (Color online) Representative snapshots presenting the
molecular arrow vector (unit vector along the molecular x axis) in
a single smectic layer at two pressures for systems with (c), (d)
and without (a), (b) external vector field. Top panel, a∗ = 0: (a)
Sm-APc phase at p∗ = 1.20 and (b) at p∗ = 1.30; bottom panel:
same pressures with a∗ = 0.09. The ellipses are drown to indicate
some polar domains of the systems and to emphasize the larger polar
correlation lengths in the field-on systems.

the isotropic positional distribution within the layers should
be noted. Optical inspection of uncorrelated snapshots (every
one thousand of MC cycles) show a continuous formation
and disappearance of polar domains. This indicates that
these domains cannot be considered as stable floating “polar
islands” within the layers. The stochastic nature of the MC
simulations do not allow inferences about the dynamics of
the domain formation and disappearance process. The size of
these domains increases with pressure [this is also reflected
on the persistence of the g

x̂, ŷ
1 (x,y) function over longer

intermolecular distances]. Interestingly, the sign alternation
of g

x̂, ẑ
1 (x,z) with z near the transition to the Sm-APA indicates

that the small polar domains positioned one just above the other
on successive layers show antiferroelectric order correlations
[see Fig. 5(b)]. Therefore, the Sm-A phase in this limit
incorporates the characteristics of a conventional Sm-A phase
and also consists of weakly correlated antiferroelectrically
ordered domains. We term this smectic state Sm-APc. Note
that, according to Ref. [27], the layers in a Sm-APR are polar,
with the polar directors randomly arranged across the different
smectic layers, thus producing a macroscopically apolar
smectic phase. This interpretation differs from the one given in
Refs. [12,13], which is supported by our findings, i.e., each of
the layers is overall apolar and consists of randomly oriented
polar domains. Hence, the origin of the macroscopic apolarity
of the phase is attributed to cancellations of local polar
correlations (extending few molecular diameters) within each
layer, as opposed to the mechanism of polarity cancellations
among macroscopically polar layers.
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Further compression of the system brings it to a transition
from the Sm-APc to the Sm-APA phase. In this phase,
each layer becomes macroscopically polar, with the direction
of polarity alternating from layer to layer, thus forming a
macroscopic antiferroelectric structure. This implies that the
polar domains observed in Sm-APc increase in size and merge
upon the transition to the Sm-APA giving rise to long-range
two-dimensional polar order within each layer. In this case
the antiferroelectric coupling between adjacent smectic layers
counterbalances the spontaneous tendency towards disorder
in two-dimensional systems. We note here that the phase
sequence I–Sm-A–Sm-APR–Sm-APA–Cr has recently been
verified experimentally [27] (where Cr is crystalline phase); in
our case, the Sm-A–Sm-APR phase transition of [27] appears
as a nearly continuous transition from an orthogonal smectic
with small polar domains to an orthogonal smectic with larger
ones.

On increasing the bend angle to γ = 140◦ or 160◦ for the
same L∗ = 2 and R∗ = 0.7, the range of stability of the Sm-A
phase increases. On the other hand, increasing the length of
the arms to L∗ = 3 with R∗ = 0.7 and γ = 120◦ destabilizes
the Sm-A phase, which is now observed within a small range
of pressures. Finally, a slight decrease of the size of the t

segments destabilizes the liquid crystalline phases: the system
with L∗ = 2 and R∗ = 0.5 and γ = 120◦ exhibits only an I to
Cr transition.

B. Domain structure in the presence of a static vector field

A macroscopic measure of the size and internal ordering
of the clusters can be provided by the susceptibility of the
system to field-induced ordering [28,29]. A similar measure
is provided by the threshold value of the applied field that is
necessary to produce a transition from the state of randomly
oriented clusters to the macroscopically ordered phase [30].
The transition mechanism in this case entails the merging and
size increase of the clusters. For clusters identified on the basis
of a vector property, such as the polar ordering of the molecules
considered in these simulations, the appropriate susceptibility
refers to the direct coupling of a vector property reflecting
molecular polarity with a vector field. For electro-optic appli-
cations the response of the LC phase to the electric field is of
primary interest and therefore the relevant coupling would be
that of a permanent molecular dipole moment with an applied
electric field. However, as the aim of the present simulations
is to identify the possible phase organization modes that
originate directly from the bent shape of the molecules, the
model molecules are not endowed with permanent electrostatic
moments or polarizabilities. Strictly, therefore, the only dipole
moments of the molecules are the steric ones, associated
with their bent shape. In principle these would couple with
mechanical vector fields producing, for example, polar flow
alignment. Alternatively, it may be formally assumed that
the molecules carry permanent electric dipole moments that
couple directly to an externally applied electric field but are
very weak to generate significant intermolecular interactions.
Generally, electric dipole interactions are known to influence
the phase behavior and the local structure of LC systems [31].
Recently, a Sm-A to a ferroelectric Sm-A phase transition
has been predicted theoretically [21] in a system of bent-

FIG. 8. (Color online) (a) Biaxiality vs pressure and (b) polar
order parameter vs pressure for various values of the field strength a∗

for a system of N = 3364 molecules.

core molecules possessing a permanent dipole moment along
the arrow direction. An extension of the present molecular
simulations is under way for the study of the phase behavior
of systems of bent-core molecules possessing a permanent
dipole, and of their response to an external electric field.

In the present work we investigate the response of the
system to an externally applied field Ê that couples linearly to
the molecular arrow vector x̂ and contributes to the potential
energy of the ith molecule as Ui = −a(x̂i · Ê), where a is a
coupling parameter. The dimensionless strength of the field is
measured as a∗ = a/kT . When the field is off, the system
does not show a net spontaneous polarity. This is clearly
reflected through the vanishing first rank polar order parameter
P x

1 = 〈|∑N
i=1 x̂i · m̂|/N〉. Here m̂ denotes the secondary

principal axis of the phase along which the molecular arrow
vectors order in the presence of the external vector field
(a∗ �= 0); it coincides with the direction of the applied field.
The dependence of biaxiality and polar order parameters on
pressure, for various field strengths, are presented in Figs. 8(a)
and 8(b) respectively. From these plots it is concluded that
fields with strengths a∗ � 0.06 render the low-pressure Sm-
APc macroscopically polar and therefore biaxial. In contrast,
a measurable macroscopic polarity in the Sm-APA phase
is obtained only when the applied field exceeds a critical
strength a∗ ≈ 0.12. Fields with strengths up to a∗ = 0.12 do
not induce any detectable polarity in the Cr phase (p∗ > 1.9).
We stress here that the field strengths with a∗ � 0.12 leave
the calculated macroscopic biaxial order parameter of the
Sm-APA phase practically unchanged with respect to the
field-off calculations; see Fig. 8(a). In addition these fields
do not affect the average density of the systems. These
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observations suggest that the chosen strengths, 0.06 � a∗ �
0.12, correspond to relatively weak fields since they do
not influence the main order parameters of the unperturbed
(field-off) systems.

Application of fields with strengths in the range 0.06 �
a∗ � 0.12 to the Sm-APc phase have the following con-
sequences: (i) the size of the polar domains, as quantified
through the polar correlation lengths ξx and ξy , increases
with the strength of the field; see Figs. 6, 7(c), and 7(d);
(ii) the development of orientational correlations between
the polar domains become long-ranged, leading to a net
polarity and biaxiality; and (iii) the polar susceptibility of the
system increases substantially as the system approaches the
Sm-APc–Sm-APA phase transition at p∗ = 1.30.

Up to this pressure—where the Sm-APc–Sm-APA phase
transition occurs for the purely hard-core system without exter-
nal field—the macroscopic polarity of the field-on system, as
reflected on P x

1 , grows continuously and reaches its maximum
value. Above this pressure, depending on the strength of the
applied field, we observe either an abrupt drop of the polarity
(for a∗ � 0.09) or, for higher fields, a continuous growth of P x

1
with a tendency to saturate to its maximum allowed value as the
systems reaches its crystallization pressure. Clearly a∗ ≈ 0.12
is the lowest required field strength to have a field induced
transition form an orthogonal antiferroelectrically organized
Sm-A phase (Sm-APA) into a ferroelectric orthogonal smectic
(Sm-APF ). Fields bellow this threshold leave the Sm-APA

phase practically unperturbed, as indicated by the vanishing
magnitude of the polar order parameter. At even higher
pressures (p∗ > 1.90), an antiferroelectric crystal is observed.
In this case, much higher field strengths are expected for the
formation of the ferroelectric crystal state.

Interestingly, the field response obtained in these simu-
lations for the orthogonal bent-core phases is in qualitative
agreement with the experimentally observed [27] response to

an external electric field for the Sm-A–Sm-APR region. Our
simulations suggest that the underlying microscopic picture of
this transition involves polarly correlated in-plane domains that
change their size and align under the influence of the external
field, as opposed to randomly oriented macroscopically polar
layers which are aligned by the external field.

IV. CONCLUSIONS

The thermodynamic stability and the local structure of
liquid crystalline phases formed by model bent-core molecules
have been examined by the MC-NpT simulation technique.
The minimal representation of the intermolecular potential,
through selective short-range athermal interactions, allows us
to examine molecular structures with relative sharp angles and
short arms without using the more complex parametrization
of previous studies [17–20]. The molecular symmetry of the
rigid bent-core model we have used facilitates the investigation
of orthogonal smectic phases. The simple molecular model
reproduces qualitatively experimental observations on orthog-
onal bent-core systems [27]. We have observed the presence of
local polar in plane domains which are randomly distributed
in the Sm-APc and their size increases on approaching the
transition to the Sm-APA. Accordingly, the Sm-APc–Sm-APA

transition emerges from the growth of the size of these
domains at the transition. The response of the uniaxial smectic
phase to an external vector field that couples to the polar
ordering of the molecules is sensitively influenced by the
presence of polar in-plane domains; these increase their size
and get aligned by the field. Our results elucidate conflicting
interpretations [12,27] regarding the microscopic mechanisms
that are responsible for the macroscopic behavior of orthogonal
bent-core smectics especially for the Sm-A–Sm-APR–Sm-APA

transition.
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