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In recent years there has been a growing interest in the study of shape formation using modern responsive
materials that can be preprogrammed to undergo spatially inhomogeneous local deformations. In particular,
nematic liquid crystalline solids offer exciting possibilities in this context. Considerable recent progress has been
made in achieving a variety of shape transitions in thin sheets of nematic solids by engineering isolated points of
concentrated Gaussian curvature using topological defects in the nematic director field across textured surfaces.
In this paper, we consider ways of achieving shape transitions in thin sheets of nematic glass by generation
of nonlocalized Gaussian curvature in the absence of topological defects in the director field. We show how
one can blueprint any desired Gaussian curvature in a thin nematic sheet by controlling the nematic alignment
angle across the surface and highlight specific patterns which present feasible initial targets for experimental
verification of the theory.
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I. INTRODUCTION

Complex shape transitions driven by inhomogeneous local
deformation patterns are ubiquitous in nature and are observed
at a variety of length scales, ranging from the cell walls of
plants and bacteria to macrostructures, such as plant leaves
[1]. Examples of such local deformations include differential
growth in biological structures and nonuniform mechanical
responses of biological tissues to external stimuli, such as
humidity [2]. Modern responsive materials can be prepro-
grammed to undergo spatially inhomogeneous expansions
and contractions in response to external stimuli, such as
heat and light. Examples include thermoresponsive hydrogels
[3] and nematic liquid crystalline solids [4]. There has
been considerable interest in recent years in the prospect of
preprogramming desired shape transformations that can be
remotely activated in such materials [5–7].

Liquid crystalline solids consist of long flexible molecular
chains that are sufficiently cross-linked to form a solid. At
sufficiently high temperatures, the molecular directions are
randomly distributed, and the material is in the isotropic phase.
When the temperature is below some critical value, the rodlike
molecular elements become locally aligned about the director
n, and the material is said to be in the nematic phase. Liquid
crystalline solids experience elongations and contractions in
response to light, heat, pH, and other stimuli that change the
molecular order. Of particular significance are nematic glasses
[8] and elastomers [9]. Both have spontaneous deformation
tensors of the form

F = (λ − λ−ν)n ⊗ n + λ−νId3, (1)

where Id3 denotes the identity operator on R3. That is, a
local scaling by λ along the director n and a scaling by λ−ν

perpendicular to n is observed upon exposure to a stimulus.
The parameter ν is known as the optothermal Poisson ratio
and relates the perpendicular and parallel responses [6].

In nematic glasses, molecular chain motion is highly limited
by the cross-links, and the director is not independently mobile
from the elastic matrix as it is in elastomers. For nematic
glasses, we typically have λ ∈ (0.96,1.04) and ν ∈ ( 1

2 ,2),
whereas for elastomers λ ∈ ( 1

2 ,4) and ν = 1
2 . In nematic

glasses, the director field changes only through convection
by mechanical deformations, which allows for a feasible pat-
terning of the director field at the initial time of cross-linking
and the subsequent guarantee that the pattern will not be
modified by “soft elasticity” mediated by director rotation [9].
Considerable control of director fields is achievable through
a variety of techniques, including the use of electric and
magnetic fields, surface anchoring, and holography. Thus, the
material response in nematic glasses can be preprogrammed by
precisely setting up a desired director field pattern immediately
before the glass is formed via cross-linking [6,8].

It has come to our attention that a recent ambitious
paper by Aharoni et al. [10] addresses the question of shape
transformations that are achievable through the patterning of
general smooth director fields on flat sheets as was the original
motivation for much of this paper. Nonetheless, we hope
that this paper will add to their contribution by highlighting
specific patterns which present feasible initial targets for
experimental confirmations of the theory. We also introduce
the notion of orthogonal duality of director fields and consider
its implication for Gaussian curvature distributions. Nematic
patterns on initially curved surfaces are considered towards
the end of the paper.

The values of λ and ν are typically dependent on the strength
of the stimulus. In the following analysis, we assume that the
shape transformation is achieved by a sudden exposure to a
stimulus of fixed strength so that there is a sudden activation
of the prescribed local deformations for fixed values λ and
ν. For definiteness, we assume that λ < 1 so that the local
deformations consist of a contraction along the director and
an elongation in the perpendicular directions. We use the
convention that Latin indices run over 1–3, whereas Greek
indices take values 1 and 2.

II. NON-EUCLIDEAN LOCAL DEFORMATIONS
AND NEMATIC SURFACES

A configuration of a body in R3 can be specified by a
smooth injective immersion �: � → R3, where � ⊂ R3 is
a domain. The configuration defines curvilinear coordinates
x = (xi) = (x1,x2,x3) ∈ � for material points throughout the

1539-3755/2015/91(6)/062405(9) 062405-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.062405


CYRUS MOSTAJERAN PHYSICAL REVIEW E 91, 062405 (2015)

body. The map �: � → R3 induces a Riemannian metric g on
� with covariant components,

gij (x) = ∂i� · ∂j�. (2)

The Christoffel symbols are defined in terms of the compo-
nents of the metric tensor by

�ijl = 1
2 (∂jgil + ∂igjl − ∂lgij ), (3)

and �k
ij = gkl�ijl , where (gij ) = (gij )−1. It is well known that

the components,

Rlijk = ∂j�ikl − ∂k�ijl + �m
ij �klm − �m

ik�jlm, (4)

of the Riemann curvature associated with any such induced
metric uniformly vanish at all points in � [11].

Processes, such as differential growth in biological struc-
tures, can determine a reference geometry that is characterized
by a reference Riemannian metric ḡ that describes the
prescribed rest distances associated with the underlying growth
law. Typically, the underlying growth law gives rise to a
reference metric that is non-Euclidean in the sense that its
Riemann curvature tensor has nonvanishing components [5].

As the body deforms in response to the underlying
local deformations, it must assume a configuration in three-
dimensional (3D) Euclidean space. Thus, its realized configu-
ration is characterized by a Riemannian metric g that is induced
by a configuration �: � → R3. The metric g is referred to
as the actual metric. If the underlying local deformations
are geometrically incompatible with Euclidean space, the
prescribed rest distances described by ḡ cannot be realized
everywhere. This generates a residual strain field throughout
the body given by ε(x) = 1

2 [g(x) − ḡ(x)]. For a hyperelastic
material, the elastic energy is given by a functional,

E[�] =
∫

�

W [x,g(x)]dV, (5)

where dV = √|ḡ|dx1dx2dx3. At each point x, the energy
density function W [x,g(x)] vanishes if and only if g(x) = ḡ(x)
[12].

Consider a standard domain of parametrization of the
form � = ω × (− h

2 , h
2 ) for a thin shell of thickness h,

where ω corresponds to the midsurface and the third coordinate
x3 ∈ (− h

2 , h
2 ) measures the distance along the normal to the

midsurface. We can derive a reduced two-dimensional (2D)
model formulated in terms of the first and second fundamental
forms aαβ, bαβ of the midsurface �(ω) by using the Kirchhoff
kinematic assumption and integrating over the shell thickness
h. In the case of a homogeneous and isotropic elastic material,
we obtain the reduced energy functional,

E =
∫

ω

W(x1,x2)
√

|ā|dx1dx2

=
∫

ω

[WS(x1,x2) + WB(x1,x2)]
√

|ā|dx1dx2, (6)

where

WS(x1,x2) = h

2
Aαβγ δ(aαβ − āαβ)(aγ δ − āγ δ), (7)

WB(x1,x2) = h3

24
Aαβγ δ(bαβ − b̄αβ)(bγ δ − b̄γ δ) (8)

are the stretching and bending energy contributions, respec-
tively [12]. The reference fundamental forms āαβ and b̄αβ are
related to the three-dimensional reference metric ḡ via

āαβ(x1,x2) = ḡαβ |x3=0, b̄αβ(x1,x2) = −1

2
∂3ḡαβ

∣∣∣
x3=0

.

(9)

The components of the elasticity tensor Aαβγ δ [12] are given
by

Aαβγ δ = Y

4
(
1 − ν2

el

)
×

[
νelā

αβ āγ δ + 1

2
(1 − νel)(ā

αγ āβδ + āαδāβγ )

]
,

(10)

where Young’s modulus Y and Poisson’s ratio νel are related
to the Lamé coefficients λel and μel by

νel

1 − νel
= λel

λel + 2μel
, Y = 2μel (1 + νel). (11)

As h → 0, the equilibrium configuration manifests as an
isometric immersion of the reference two-dimensional metric
āαβ . That is,

aαβ = āαβ, as h → 0. (12)

More precisely, the analysis of the thin sheet limiting
behavior has been placed on a more rigorous mathematical
foundation in recent years using the concept of � convergence.
In Friesecke et al. [13] the nonlinear bending theory of plates
due to Kirchhoff is derived as the � limit of the classical
theory of 3D nonlinear elasticity, under the assumption that
the classical 3D elastic energy per unit thickness h scales
like h2. The non-Euclidean version of this result is derived
in Ref. [14] under the same scaling law applied to the energy
functional (5), yielding a natural non-Euclidean generalization
of the Kirchhoff model with a corresponding 2D bending
energy functional. Necessary and sufficient conditions for the
existence of a W 2,2 isometric immersion of a given 2D metric
into R3 are also established. In particular, it is shown that if
finite bending energy isometric immersions of the metric exist,
then the minimizers of the 3D elastic energy (5) converge in
the vanishing thickness limit to an isometric immersion of the
midsurface metric, which is a global minimizer of the bending
energy over all isometric immersions [14].

Consider a director field n: � → R3 given by n =
n(x1,x2,x3) = ni(x1,x2,x3)êi , where xi are the coordinates
with respect to an orthonormal coordinate frame {ei} on �

and {êi} denotes the standard orthonormal basis of Euclidean
space. The spontaneous deformation tensor is given by

F̄ij = (λ − λ−ν)ninj + λ−νδij . (13)

The reference metric determined by the nematic director field
is

ḡij = (F̄ T )ik(F̄ )kj

= (λ − λ−ν)2nknkninj

+ 2λ−ν(λ − λ−ν)ninj + λ−2νδkiδkj . (14)
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Since nknk = 1, we obtain

ḡij = (λ2 − λ−2ν)ninj + λ−2νδij . (15)

Here we are interested in surface director field patterns on
initially flat thin sheets, so we consider a plate of thickness h

with a standard domain of parametrization of the form � =
ω × (− h

2 , h
2 ) and director fields of the form

n(x) = n1(x1,x2)ê1 + n2(x1,x2)ê2, (16)

where ω denotes the midplate. That is, we assume that the
same surface director field is repeated at each level across the
plate thickness. The reference metric now has components,

ḡαβ = (λ2 − λ−2ν)nαnβ + λ−2νδαβ, (17)

and ḡ33 = λ−2ν, ḡα3 = 0. The reference fundamental forms in
the reduced two-dimensional model are

āαβ(x1,x2) = ḡαβ(x1,x2,0), b̄αβ(x1,x2) = 0. (18)

Thus, in the thin sheet limit the components aαβ of the first
fundamental form of the midsurface are given by

aαβ = (λ2 − λ−2ν)nαnβ + λ−2νδαβ. (19)

Since the 2D in-plane director field is modeled as a normalized
vector field, it can be specified by a single angle scalar field
ψ = ψ(x1,x2) such that

n1 = cos ψ(x1,x2), n2 = sin ψ(x1,x2). (20)

Recall that the Gaussian curvature K at a point p on a
surface is defined as the product of the two principal curvatures
at p. In terms of the fundamental forms of the surface, it
can be expressed as K = det(bαβ)/ det(aαβ). According to
the Theorema Egregium of Gauss, the Gaussian curvature
is a characteristic of the intrinsic geometry of a surface. In
particular, it is uniquely determined by the first fundamental
form aαβ according to the equation,

K = − 1

a11

(
∂1�

2
12 − ∂2�

2
11 + �1

12�
2
11

−�1
11�

2
12 + �2

12�
2
12 − �2

11�
2
22

)
. (21)

A direct calculation of the Gaussian curvature associated with
the nematic metric yields the expression,

K = 1
2 (λ2ν − λ−2)

{(
∂2

2 ψ − ∂2
1 ψ − 4 ∂1ψ ∂2ψ

)
sin(2ψ)

+ 2[∂1∂2ψ + (∂2ψ)2 − (∂1ψ)2] cos(2ψ)
}
, (22)

in terms of the angle scalar field ψ .
Define the orthogonal dual to a director field to be the

director field obtained by rotating all the nematic directors
by π/2. That is, the dual director field is characterized by
the angle field ψ̃ = ψ + π/2. Upon taking the orthogonal
dual ψ → ψ + π/2, we find that ∂αψ → ∂αψ, sin(2ψ) →
sin(2ψ + π ) = − sin 2ψ , and

cos(2ψ) → cos(2ψ + π ) = − cos 2ψ so that

K → −K, as ψ → ψ + π/2. (23)

That is, the orthogonal dual of any director field has precisely
the opposite Gaussian curvature at every point.

III. SHIFTED DIRECTOR PATTERNS

Suppose that the components of the director field depend
only on one of the coordinates so that n = n(x2), say. Such a
director field can be specified as

n = cos ψ(x2)ê1 + sin ψ(x2)ê2. (24)

The Gaussian curvature of the associated metric is given by

K = − 1
2 (λ−2 − λ2ν)(ψ ′′ sin 2ψ + 2ψ ′2 cos 2ψ). (25)

For constant K ∈ R, this yields a second order ordinary
differential equation (ODE) in ψ ,

d2

dx2
2

cos 2ψ = 4C(K), (26)

where C(K) = K/(λ−2 − λ2ν). This ODE is solved by

ψ(x2) = ± 1
2 cos−1

[
c1 + c2 x2 + 2C(K)x2

2

]
, (27)

where c1,c2 are constants of integration. The corresponding di-
rector field generates constant Gaussian curvature K wherever
it is well defined. Figure 1 shows examples of director fields
that generate constant Gaussian curvature of various types.

Director fields of the form (24) can be generated by
shifting a fixed curve along the x1 axis. We now develop
a more geometric description for director fields that can
be generated by uniform translation of a curve γ = γ (t) =
γ1(t)ê1 + γ2(t)ê2 along a fixed direction specified by a unit
vector u = u1 ê1 + u2 ê2. For such a director field, it is natural
to change coordinates from the Cartesian (x1,x2) to (t,r) where
t is the parameter along the curve γ and r is the parameter in
the direction of translation. That is, we have

x1(t,r) := γ1(t) + ru1, x2(t,r) := γ2(t) + ru2. (28)

The director field n = n1 ê1 + n2 ê2 at each point (t,r) is given
by

n1(t) = γ ′
1√

γ ′2
1 + γ ′2

2

, n2(t) = γ ′
2√

γ ′2
1 + γ ′2

2

. (29)

Note that the independence of the director field components
from r follows by construction. The metric components
A = [aαβ] = [(λ2 − λ−2ν)nαnβ + λ−2νδαβ] in Cartesian coor-
dinates transform according to A → JT AJ, where J is the
Jacobian matrix,

J =
(

∂tx1 ∂rx1

∂tx2 ∂rx2

)
. (30)

That is,(
att atr

art arr

)
=

(
γ ′

1(t) u1

γ ′
2(t) u2

)T (
a11 a12

a21 a22

) (
γ ′

1(t) u1

γ ′
2(t) u2

)
.

(31)
Now for a given curve γ and specified direction u, we can

compute the Gaussian curvature as a scalar field K = K(t)
using the equation,

K = − 1

att

(
∂t�

r
tr − ∂r�

r
tt + �t

tr�
r
tt

−�t
tt�

r
tr + �r

tr�
r
tr − �r

tt�
r
rr

)
. (32)
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FIG. 1. (Color online) Director fields of the form n = cos ψ(x2)ê1 + sin ψ(x2)ê2 on the unit square for different choices of the function
ψ = ψ(x2). The resulting Gaussian curvature K upon stimulation is also indicated.

Here we note a remarkable result with an elegant geomet-
ric interpretation. Take a circular arc γ (t) = R(cos t, sin t),
where R = 1√

K
(λ−2 − λ2ν)1/2 and K > 0 is a constant. Now

let u = (cos α, sin α), where α is some fixed angle. A direct
computation of the Gaussian curvature associated with the
director field generated by translating γ along u yields K

exactly. It is assumed that the circular arc and direction of
translation are chosen such that the director field does not
self-intersect.

Recall that the tractrix on the x1x2 plane whose axis
coincides with the x1 axis is the planar curve γ passing through
a point (0,a) with the property that the length of the segment
of the tangent line from any point on the curve to the x1 axis
is constant and equal to a > 0. One parametric representation
of the tractrix is provided by

γ1(t) = a(tanh t − t), γ2(t) = a sech t. (33)

We now consider the director pattern that is generated by
translating a tractrix along its axis. That is, we take γ to be
as in Eq. (33) and choose the direction of translation to be
u = (1,0) as shown in Fig. 2. A direct computation of the
Gaussian curvature of such a pattern generated by a tractrix
with parameter a = 1√|K| (λ

−2 − λ2ν)1/2 with K < 0, yields K

exactly.

IV. ORTHOGONAL DUALITY

The result that the director fields in Fig. 2 generate opposite
Gaussian curvature may seem surprising on first inspection
since the patterns look somewhat similar. However, in light
of the orthogonal duality result (23), we find that the patterns
make perfect sense. In particular, the positive curvature pattern
is equivalent to the pattern obtained by rotating the sheet by
90◦. One can see that this equivalent pattern is exactly the
orthogonal dual of the negative curvature pattern of Fig. 2 as
illustrated in Fig. 3.

This observation is consistent with physical intuition since
the mechanical response of nematic solids to stimuli, such
as heat, is a contraction along the director and a simultaneous
expansion in the orthogonal directions. Thus, one might expect
that the intrinsic curvature properties of a patterned sheet will
be qualitatively reversed when the pattern is replaced by its
orthogonal dual, even though the scaling factors λ and λ−ν are

λ−2 − λ2ν

|K|

λ−2 − λ2ν

K

O

FIG. 2. (Color online) The nematic pattern obtained by shifting
a circular arc along a fixed direction generates constant positive
Gaussian curvature K > 0. The nematic pattern obtained by shifting a
tractrix along its axis generates constant negative Gaussian curvature
K < 0.
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FIG. 3. (Color online) Orthogonal duality of director fields. The
director fields that were discovered to generate constant Gaussian
curvatures of opposite sign are seen to be equivalent to orthogonally
dual patterns. Note that every tractrix intersects every circle at right
angles.

not exact reciprocals when ν 	= 1. Indeed, we have shown that
this reversal is exact in the sense that the Gaussian curvature
distribution becomes precisely the negative of the dual pattern.

It is also interesting to connect these ideas to the mechanical
response of a patterned nematic sheet that is being cooled
instead of heated. On cooling an initially flat nematic sheet,
the rodlike molecules expand along the director and contract
in the orthogonal directions. So once again one may expect
the activated surface to exhibit the opposite of the curvature
properties that manifest on heating. Quantifying this opposite
response however is somewhat delicate since the scaling
coefficients are typically temperature dependent and cooling
a flat sheet by a particular temperature will not necessarily
produce the exact opposite of the response observed by heating
the flat sheet by the same temperature.

V. WILLMORE FUNCTIONAL

It is well known that for a surface in R3, the components
aαβ and bαβ of the first and second fundamental forms satisfy
the Gauss-Codazzi-Mainardi equations,

∂β�αστ −∂σ�αβτ + �
μ
αβ�στμ − �μ

ασ�βτμ = bασ bβτ −bαβbστ ,

∂βbασ − ∂σ bαβ + �μ
ασ bβμ − �

μ
αβbσμ = 0, (34)

where �αβτ = 1
2 (∂βaατ + ∂αaβτ −∂τ aαβ) and �σ

αβ = aστ�αβτ .
Furthermore, any pair (a,b) consisting of a symmetric and
positive definite matrix field (aαβ) and a symmetric matrix
field (bαβ) that satisfy the Gauss-Codazzi-Mainardi equations
determines a unique surface up to a rigid transformation in R3

[11].
To determine the equilibrium configuration of the midsur-

face of an initially flat nematic sheet upon stimulation, we need
to know the components bαβ of the second fundamental form
that minimize the bending energy,

E[b] = 1

3

∫
ω

Aαβγ δbαβbγ δdS, (35)

subject to the Gauss-Codazzi-Mainardi constraints defined by
the metric (aαβ) generated by the director field. This functional
can be rewritten in terms of the mean and Gaussian curvatures
of the midsurface as

E = 1

3

∫
ω

(
4H 2

1 − νel
− 2K

)
dS. (36)

Since aαβ = āαβ and the Gaussian curvature K is an isometric
invariant, the problem reduces to minimizing the Willmore

R =
1√
K

FIG. 4. (Color online) An initially flat nematic sheet forming part
of a sphere upon stimulation.

functional,

IW =
∫

ω

H 2dS, (37)

among isometric immersions of the metric [14–16].
The Willmore functional can be written in terms of the

principal curvatures κ1,κ2 as

IW = 1

4

∫
ω

(κ1 + κ2)2dS

= 1

4

∫
ω

(κ1 − κ2)2dS +
∫

ω

K dS, (38)

where K = κ1κ2 is the Gaussian curvature. We note that if the
condition κ1 = κ2 throughout ω is consistent with the metric,
then the equilibrium configuration corresponding to minimal
bending energy is determined by imposing this condition. The
sphere is the only compact surface in R3 whose principal
curvatures are equal everywhere [16]. Since surfaces of the
same constant Gaussian curvature K are locally isometric by
Minding’s theorem [17], a flat nematic sheet whose director
field encodes constant positive curvature K will form part of
a sphere of radius R = 1/

√
K upon stimulation, assuming

that the sheet is small enough to exclude the possibility of
self-intersection as in Fig. 4.

In the case of a thin sheet encoded with constant negative
curvature K < 0, the study of the equilibrium shapes demands
a considerably more delicate analysis. We follow Gemmer and
Venkataramani [18] and consider equilibrium configurations
of hyperbolic elastic disks of radius R that have already
undergone local deformations. The equilibrium configurations
in the thin sheet limit correspond to minimizers of the Willmore
functional or, equivalently, to minimizers of

ĨW =
∫

ω

(
κ2

1 + κ2
2

)
dS, (39)

over isometric immersions of the metric. In geodesic polar
coordinates (ρ,θ ) where the metric takes the form ds2 =
dρ2 + |K|−1 sinh2(

√|K|ρ)dθ2, Eq. (39) can be written as

ĨW =
∫ 2π

0

∫ R

0

sinh(
√|K|ρ)√|K|

(
κ2

1 + κ2
2

)
dρ dθ. (40)

It is well known that at every point of a hyperbolic surface,
there exists a pair of asymptotic curves along which the
normal curvature vanishes [19]. Furthermore, the isometric
immersions of the hyperbolic metric of constant Gaussian
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curvature K are in correspondence with solutions of the
sine-Gordon equation,

∂2φ

∂u ∂v
= |K| sin φ(u,v), (41)

where u,v are coordinates for a local parametrization by
asymptotic curves and φ denotes the angle between the
asymptotic curves. The angle φ is related to the principal
curvatures by

κ2
1 = |K| tan2 φ

2
, κ2

2 = |K| cot2
φ

2
, (42)

so that

ĨW =
∫ 2π

0

∫ R

0

sinh(
√|K|ρ)√|K|

(
tan2 φ

2
+ cot2

φ

2

)
dρ dθ.

(43)
In Ref. [18], the minimization of Eq. (43) over all smooth

solutions to the sine-Gordon equation is analyzed numerically
to conclude that the principal curvatures of smooth isometric
immersions of a hyperbolic disk of radius R satisfy

max(|κ1|,|κ2|) � |K|
64

e2
√|K|R. (44)

Moreover, it is shown that this lower bound is attained by
surfaces that are geodesic disks lying on hyperboloids of
revolution of constant Gaussian curvature K .

Hyperbolic surfaces whose two asymptotic curves are
straight lines that intersect at an angle θ form a one-parameter
family of surfaces Aθ known as Amsler surfaces [20]. Each
such surface is uniquely determined by the angle θ between
the asymptotic lines. In Ref. [18], the odd periodic extension
of a subset of the Amsler surface Aπ/n bounded between the
asymptotic lines is taken to generate a periodic profile with
n waves. The resulting n-periodic shapes are referred to as
periodic Amsler surfaces An, which are not smooth as they
have discontinuities in their second derivatives at the lines of
inflection.

Numerical investigations of the bending energy associated
with geodesic disk cutouts of An have revealed that for large
values of ε = √|K|R, particular n-wave periodic Amsler
surfaces are energetically more favorable than the smooth
saddle shapes that correspond to disks lying on hyperboloids
of revolution. Furthermore, it has been shown that there exists
a sequence of critical radii Rn ∼ ln(n) beyond which the
principal curvatures and hence Willmore functional of An

diverge. If the radius of the hyperbolic disk is sufficiently
large for periodic Amsler surfaces to be energetically more
favorable than the hyperboloid solutions, the particular n-wave
surface that is expected to form is predicted by identifying the
smallest critical radius Rn greater than R. Thus, as the radius
of the hyperbolic disk increases one observes that n-periodic
shapes with an increasing number of waves become more
energetically favorable [18,21].

It is interesting to contrast the case of shape selection of
sheets encoded with constant positive curvature with that of
sheets patterned with a hyperbolic metric. In the constant
positive curvature case, the analysis suggests that subsets
of spheres are the most energetically favorable isometric
immersions provided that the dimensions of the initial sheet
are small enough to rule out self-intersection of the deformed

λ−2 − λ2ν

K

O

FIG. 5. (Color online) Blueprinting prescribed positive Gaussian
curvature K > 0 on a rectangular sheet of arbitrary dimensions whose
edges are indicated by the dashed lines. The Gaussian curvature is
well defined everywhere except along the solid horizontal lines where
the distinct arcs join.

surface. That is, the nature of the solution is not influenced by
the shape and size of the initially flat sheet. In the hyperbolic
case, however, we notice that the extrinsic geometry of the
deformed surface is crucially dependent on the particular
shape and size of the initially flat sheet. In particular, surfaces
with dramatically different extrinsic geometries may form by
simply increasing the size of the sample patterned with a
particular intrinsic geometry.

VI. BLUEPRINTING NEMATIC SHEETS OF PRESCRIBED
GAUSSIAN CURVATURE

One can use the shifted circular arc patterns of Fig. 2 to
blueprint a metric of constant positive Gaussian curvature that
is realized upon stimulation of a thin nematic sheet. Since
the magnitude of the Gaussian curvature is determined by the
radius of the shifted circular arcs, we need to use a shifted
pattern consisting of circular arcs that are C1-smoothly joined
in order to extend the pattern to cover larger domains as shown
in Fig. 5.

The pattern on the larger domain encodes positive Gaussian
curvature at all points except along the lines where the distinct
circular arcs join. At these points, the Gaussian curvature is
not defined, and sharp creases may develop upon stimulation.
Similarly, one can extend the shifted tractrix patterns of
Fig. 2 to encode constant negative curvature on extended
domains as shown in Fig. 6. As in the positive curvature case,
the Gaussian curvature is not well defined along the solid
horizontal lines indicated in Fig. 6 as the metric components
are not continuously differentiable at these points.

In the case of the circular arc patterns, for instance, note
that the unit tangents to the arcs give the director field whose
first derivative at each point coincides with the vector pointing
towards the center of the circular arc at that point and so clearly
exhibits a jump discontinuity across the solid horizontal line.
The jump discontinuities of the extended hyperbolic pattern
follow by orthogonal duality.

062405-6



CURVATURE GENERATION IN NEMATIC SURFACES PHYSICAL REVIEW E 91, 062405 (2015)

λ−2 − λ2ν

|K|

FIG. 6. (Color online) Blueprinting prescribed negative Gaus-
sian curvature K < 0 on a rectangular sheet of arbitrary dimensions
whose edges are indicated by the dashed lines. The Gaussian curvature
is well defined everywhere except along the solid horizontal lines.

VII. NEMATIC PATTERNS ON CURVED SURFACES

Often we are interested in shape transitions of surfaces
that are initially curved. In such cases the surface may have
a nonflat first fundamental form at the outset, which would
then change due to the activation of some local deformation
pattern. In the context of thin nematic shells, we would start
with a shell whose midsurface is given as an embedding in three
dimensions. This embedding determines the first fundamental
form as a nontrivial (0,2) metric tensor, which would then
change to a new reference metric āαβ that depends on the
director field pattern on the surface.

Here we highlight an interesting result on the effect of two
sets of director fields on the Gaussian curvature of surfaces of
revolution. Consider a surface of revolution whose standard
parametrization is given by

r(u,v) = [f (v) cos u,f (v) sin u,g(v)], (45)

where the pair of real-valued functions (f,g) specifies the
profile curve of the surface. The associated metric is given by

ds2 = ru · rudu2 + 2ru · rvdu dv + rv · rvdv2

= f 2du2 + (f ′2 + g′2)dv2. (46)

A direct calculation of the Gaussian curvature yields

K = f ′g′g′′ − f ′′g′2

f (f ′2 + g′2)2
. (47)

Now suppose that the surface is patterned such that the
directors are aligned with the v = constant lines. That is, the

director field lines are circles centered on the axis of revolution.
The metric upon stimulation becomes

ds2 = f 2λ2du2 + (f ′2 + g′2)λ−2νdv2, (48)

and the Gaussian curvature transforms as

K = λ2ν f ′g′g′′ − f ′′g′2

f (f ′2 + g′2)2
. (49)

That is, for any surface of revolution patterned by director
fields aligned with the horizontal circles centered on the axis
of revolution, the Gaussian curvature transforms according to
the elegant formula K → λ2νK . This result was established
in Ref. [22] for the special case of a sphere patterned by
azimuthal director fields. Here we see that the result is valid
for all surfaces of revolution, including surfaces of negative
and nonconstant Gaussian curvature.

For the orthogonal dual of the considered pattern on any
given surface of revolution, the metric upon stimulation is
given by

ds2 = f 2λ−2νdu2 + (f ′2 + g′2)λ2dv2, (50)

and a direct calculation of the Gaussian curvature yields

K = λ−2 f ′g′g′′ − f ′′g′2

f (f ′2 + g′2)2
. (51)

That is, for any surface of revolution patterned by director
fields aligned with the profile curves of the surface (i.e., lines
of constant u), the Gaussian curvature transforms according to
K → λ−2K . Note the remarkable fact that this transformation
is independent of the optothermal Poisson ratio ν. In the case
of a sphere, such patterns correspond to the director fields
being aligned with the lines of longitude.

In the special case of a sphere of radius R, these results show
that upon the stimulation of an azimuthal pattern the Gaussian
curvature decreases to λ2ν/R2, whereas for the orthogonal
dual pattern the Gaussian curvature increases to λ−2/R2. We
now show how these two patterns and the associated Gaussian
curvature responses can be viewed as the extreme cases of the
family of loxodromic spiral patterns on a sphere as shown in
Fig. 7.

Recall that a loxodrome on a sphere is the curve that cuts
a meridian at a constant angle α. If α is not a right angle,
then the loxodromes form spirals on the sphere. We assume
that a sphere of radius R is patterned with a director field
whose integral curves consist of loxodromes of angle α so
that n = cos α êθ + sin α êφ , where θ and φ are the polar and

α =
π

2
, K =

λ2ν

R2
α = 0, K =

1
λ2R2

α =
π

4
, K =

λ−1 + λν 2

4R2

π

2
π

1
R2

1
λ2R2

λ2ν

R2

α

K

K =
1
4

1
λ

+ λν +
1
λ
− λν cos 2α

2 1
R2

FIG. 7. (Color online) Loxodromic spiral director fields of the form n = cos α êθ + sin α êφ on a sphere of radius R for the cases α =
0,π/4,π/2 and the Gaussian curvature generated upon stimulation. Note that α is the angle that the directors make with the meridian lines.
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azimuthal angles, respectively, and êθ ,êφ are the corresponding
unit tangent vectors in R3. Upon stimulation, the point (θ,φ)
transforms according to (θ,φ)T → F (θ,φ)T , where F is the
matrix representation of the spontaneous deformation tensor
with respect to the orthonormal basis êθ ,êφ . The round
spherical metric ds2 = R2(dθ2 + sin2 θ dφ2) transforms
as

ds2 → (
dθ dφ

)
FT a0F

(
dθ

dφ

)
= (

dθ dφ
)
a

(
dθ

dφ

)
,

(52)
where

a0 =
(

R2 0
0 R2 sin2 θ

)
. (53)

Directly computing1 the Gaussian curvature using the new
metric a = FT a0F , we obtain the formula,

K = 1

4

[(
1

λ
+ λν

)
+

(
1

λ
− λν

)
cos 2α

]2 1

R2
. (54)

We notice that the resulting Gaussian curvature is a constant
between the values λ2ν/R2 and λ−2/R2 depending on angle α.
Note that, although the Gaussian curvature upon stimulation
is constant and positive in each case, the resulting surface
is generally not a sphere. For example, in the case of
azimuthal patterns (α = π/2) a spindle or “thorny sphere”
of the corresponding curvature is expected to form [22].

VIII. COMMENTS

It is often the case that key physical characteristics of
materials, such as adhesive and optical properties, are deter-
mined by surface structure. The engineering of switchable

1All computations were verified in Mathematica 10.0 using the
author’s code [23].

surfaces consisting of active materials, such as nematic
glasses offers the possibility of controllably and reversibly
changing the surface geometry of thin structures for use in a
variety of potential devices. Possible applications may include
microfluidic mixers and pumps, adjustable optical lenses, and
switchable textured surfaces for use in tablet computers. There
are two key mechanisms for generating shape transformations
in thin sheets of patterned nematic glasses. One method is by
means of defects in the director field pattern (see Ref. [24]),
and the other is by using a smooth in-plane director field that
generates Gaussian curvature.

In this paper, we have clearly highlighted smooth director
fields that generate constant Gaussian curvature of any desired
value with the hope that such patterns offer feasible initial
targets for experimentalists to confirm the predictions of the
theory and test its limitations. We have also identified an
important symmetry in the Gaussian curvature associated with
a given nematic pattern on an initially flat sheet, namely, that
the orthogonal dual of a given pattern generates the exact
opposite Gaussian curvature at every point. This observation
has an important practical implication for experimentalists,
who can produce a sheet whose Gaussian curvature distribution
is the exact opposite of a given patterned sheet by simply
adding π/2 rad to the nematic alignment angle associated
with the given sheet. If the viability of producing switchable
nematic surfaces using such patterns is confirmed, one may
begin to effectively combine more elaborate smooth director
fields and topological defects to devise a variety of powerful
shaping mechanisms for use in a wide range of potential
applications.
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