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Mesoscopic Hamiltonian for the fluctuations of adsorbed Lennard-Jones liquid films
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We use Monte Carlo simulations of a Lennard-Jones fluid adsorbed on a short-range planar wall substrate to
study the fluctuations in the thickness of the wetting layer, and we get a quantitative and consistent characterization
of their mesoscopic Hamiltonian, H[ξ ]. We have observed important finite-size effects, which were hampering
the analysis of previous results obtained with smaller systems. The results presented here support an appealing
simple functional form for H[ξ ], close but not exactly equal to the theoretical nonlocal proposal made on the
basis a generic density-functional analysis by Parry and coworkers. We have analyzed systems under different
wetting conditions, as a proof of principle for a method that provides a quantitative bridge between the molecular
interactions and the phenomenology of wetting films at mesoscopic scales.
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I. INTRODUCTION

Liquid films adsorbed on solid substrates are important in
nature and they have a great number of practical applications
[1,2]. Their equilibrium mean thickness ξ̄ increases when the
vapor approaches saturation and, for systems above the wetting
temperature, the film becomes macroscopically thick at bulk
liquid-vapor coexistence. Mean-field theories [3] predict ξ̄ in
terms of an effective potential, �(ξ̄ ) = ��exc(ξ̄ )/A0, which
gives the thermodynamic grand-potential excess per unit area,
with respect to the thick liquid film.

At mesoscopic scale, thick adsorbed films develop strong
fluctuations of their local thickness ξ (R), with R = (x,y) on
the substrate plane, which are important for many applications.
Their theoretical description [4] is based on effective Hamil-
tonians H[ξ ], modeled as functionals of ξ (R), following the
capillary wave theory (CWT) for free liquid surfaces [5–8] or
from simple density-functional models [9]. In this paper we
present a fully quantitative description of H[ξ ] for a realistic
model: a Lennard-Jones fluid adsorbed on a planar wall, ana-
lyzed with the intrinsic sampling method (ISM) for the shape
of a fluctuating fluid interface [10,11]. Our results provide a
proof of principle for the method to bridge the gap between
computer simulations at molecular scale and the mesoscopic
behavior of these systems with quantitative accuracy.
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The instantaneous fluctuations of the film thickness around
its mean value ξ̄ , calculated over the whole substrate area
A0, are described as ξ (R) = ∑

q ξ̂qexp(iq · R) in terms of its
Fourier components q = (qx,qy). Assuming a perfectly flat
substrate, at temperature kbT ≡ β−1, the thermal fluctuations
give mean values 〈ξ̂q〉 = 0 for the q �= 0 Fourier components,
and the mesoscopic Hamiltonian expanded at order |ξ̂q |2,

H[ξ (R)] = A0�(ξ̄ ) + 1

2β

∑
q

�(q,ξ̄ )|ξ̂q |2 + O4(ξ̂q), (1)

has a spectrum of harmonic modes fully described by
�(q,ξ̄ ) ≡ 1/〈|ξ̂q |2〉, the (inverse) mean square amplitude for
each q and as a function of the mean film thickness ξ̄ .
The classical theory takes �class(q,ξ̄ ) ≈ βA0(�′′(ξ̄ ) + q2γLV),
from the Hamiltonian

Hclass[ξ (R)] =
∫

d2R
{
�[ξ (R)] + γLV

2
|∇ξ (R)|2

}
, (2)

where the first term describes the interaction of the wetting film
with the inert substrate, in terms of the local effective potential
�(ξ̄ ), and the second term considers the corrugations of the
film, as a free liquid-vapor surface with surface tension γLV that
multiplies the (instantaneous) increase of the area produced by
the fluctuations at the edge of the film. Curvature, (∇2ξ )2, and
higher-order terms are neglected.

There has been some controversy [9,12] over the limitations
of Eq. (2). It could be expected that for thin films the surface
tension γLV in Eq. (2) should depend on the film thickness,
so that �(q,ξ̄ ) ≈ βA0{�′′(ξ̄ ) + q2[γLV + �γ (ξ̄ )]}. Moreover,
even for very large ξ̄ [when both �′′(ξ̄ ) and �γ (ξ̄ ) vanish], the
free liquid surface is expected to have a bending energy term,
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FERNÁNDEZ, CHACÓN, MACDOWELL, AND TARAZONA PHYSICAL REVIEW E 91, 062404 (2015)

which may be described as a wave-vector-dependent function
γ LV(q) = γLV + κLVq2 + · · · .

In general, we may write

��(q,ξ̄ )

βA0
≡ �(q,ξ̄ )

βA0
− q2γ LV(q) = �′′(ξ̄ ) + q2�γ (q,ξ̄ ), (3)

where the function �γ (q,ξ̄ ) contains together all the effects
beyond the local evaluation of �[ξ (R)], in the first term of
Eq. (2) and all the thickness and wavevector dependence of
the effective surface tension at the edge of the film, beyond the
free liquid surface γ LV(q).

Within the generic form, Eq. (3), the nonlocal Hamiltonian
form used by Fisher and Jin [13] corresponds to neglect of the
q dependence, �γ (ξ̄ ,q) ≈ �γ0(ξ̄ ), and γ LV(q) ≈ γLV, so that
�FJ(q,ξ̄ ) = �′′(ξ̄ ) + q2[γLV + �γFJ(ξ̄ )]. In contrast, the fully
nonlocal theory of Parry et al. [14] includes the q dependence,
both in �γ (q,ξ̄ ) and in γ LV(q), as it comes out of the linear
response in a generic density-functional treatment [9,12].

The experimental validation [15–17] of mesoscopic Hamil-
tonian models has to discriminate these subtle effects from the
simple local Hamiltonian Eq. (2). A promising alternative is
to use computer simulations that provide full information on
the film structure at molecular level. In recent years there
has been an increase in the studies based on simulations in
order to confirm the nonlocal effects [18–20]; e.g., Pang et al.
[18] present Monte Carlo (MC) simulations in Ising models
and analyze various correlation functions of interface showing
the first evidences of nonlocal effects. The development of
approaches to sample the intrinsic surface, which represents
the instantaneous molecular frontier between the liquid and the
vapor phases [7], has opened a link between the mesoscopic
effective Hamiltonians and computer simulations for realistic
fluid models. Nonlocal effects have been found in simulations
of the free liquid surface for the Lennard-Jones (LJ) model
[21], with a correlation between the intrinsic profile and the
interfacial position that matches precisely the predictions of
the nonlocal theory [9,12].

Recently, we have applied the intrinsic sampling method
[22] to get directly �(ξ ) and �(q,ξ ) ≡ 〈|ξ̂q |2〉−1 from com-
puter simulation for liquid films, with (truncated) LJ interac-
tions, adsorbed on a planar wall. The system was deep in the
total wetting regime, so that the effective potential �(ξ ) had a
large negative slope, pushing the film toward the equilibrium
thick liquid slab. The computer simulation results, for chemical
potential at liquid-vapor coexistence, gave an excellent fit to
the pure exponential form,

�(ξ̄ ) = �0 exp(−λξ̄ ), (4)

with the amplitude �0 as the only fitting parameter, since the
inverse decay length λ was observed to be the same as in
the asymptotic decay of the density profile at the free liquid-
vapor interface [23]. This is in agreement with the density-
functional analysis for any system with truncated or short-
range interactions. Only for long-ranged interactions between
the fluid molecules [24,25] or between the wall and the fluid
[26,27] we expect that the asymptotic functional form of �(ξ̄ )
deviates from Eq. (4), but still it was surprising to observe that,
in a realistic model with strong layering effects in the density
profiles, the pure exponential decay could give such accurate

representation of �(ξ̄ ), even for very thin films of just one or
two molecular layers.

In this paper, we present simulations closer and beyond
the wetting transition, i.e., reducing the value of �0 to small
positive and negative values. From the theoretical predictions
of Parry et al. [9,12], from a simplified density-functional
model, �(ξ̄ ) should contain a second exponential term ∼e−2λξ̄ ,
and the comparison of systems at different wetting condition
could discern if the apparent lack of that term in our simulation
results was generic or fortuitous. To get a clean view of the
wall effects, we keep exactly the same LJ model (truncated
at a cutoff distance 2.5σ ) and temperature, kbT/ε = 0.75,
in the usual σ and ε parameters of the LJ model. The
inverse decay length λ = 1.55/σ , in Eq. (4) is fixed by the
liquid bulk phase. To change the wetting regime we tune the
strength of the wall-fluid interaction, relative to ε in the fluid,
with the parameter εsf/ε [see, e.g., Eq. (9) in Ref. [22]],
which we reduce from εsf/ε = 1.3 (used in our previous
simulations) to 0.81 and 0.77, just above and below the wetting
transition, that we locate at εsf/ε = 0.785 ± 0.005. We refer
the reader to the Appendix and to our previous paper [22]
for the details on the model, computer simulation, and the
methods to obtain �(ξ ) and �(q,ξ ), from the fluctuations of
the film.

The other relevant change is the size of the simulated
systems, with a ninefold increase of the substrate area and up to
N = 6750 molecules in the thickest films. The motivation for
this size increase was the strongly oscillatory structure found in
our results for ��(q,ξ̄ ), compared with the simple exponential
decay observed in �(ξ̄ ). As we had anticipated, the layering
structure observed in ��(q,ξ̄ ) was indeed a size effect. The
computational effort required to simulate large systems over
long times, to sample the slow fluctuations with low q, has
shown to be necessary to extract the correct form for the
mesoscopic Hamiltonian Eq. (1). The Appendix presents the
details of the model, system sizes, and methods of simulation
and analysis.

II. THE EFFECTIVE WALL POTENTIAL

We have used grand-canonical Monte Carlo simulations,
with a shifting constraint in the total number of particles,
to get the relative probabilities for film thickness up to 5σ .
The procedure, following the previous works of MacDowell
and Müller [28,29], was explained in our previous paper
[23], with two alternative method to determine the mean
thickness of the wetting film (see Appendix). The simplest
is the Gibbs’ dividing (GD) plane, with ξ̄ = ξN determined by
the instantaneous number of particles, the second estimation of
the mean thickness, ξ̄ = ξIS, is based on the intrinsic surface
(IS) at the edge of the layer, as given by the ISM with a
percolation analysis and the identification of the outermost
liquid layer.

The top panel of Fig. 1 presents the effective wall potentials
�(ξN ) and �(ξIS) for εsf/ε = 0.81, taking �(ξ ) = 0 for thick
film at bulk coexistence. Both methods give very similar
effective potentials and they exhibit a clear exponential
behavior [Eq. (4)] from the submonolayer range to the limit
of our resolution. The only difference with our previous
result is the change in �0(εsf/ε), from β�0(1.3)σ 2 = 1.97
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FIG. 1. (Color online) Interfacial potential �(ξ̄ ) as a function
of the mean thickness of the liquid film, for two strengths of the
wall-fluid attraction: εsf/ε = 0.81 (top) and 0.77 (bottom). The light
(green) curves use ξ̄ = ξN , from the total number of particles. The
dark (black) curves use ξ̄ = ξIS from the ISM position of the film edge.
The dashed lines show the exponential fits [Eq. (4) with λ = 1.55/σ ]
to �(ξIS).

to β�0(0.81)σ 2 = 0.049, as a signal of the approach to
the complete wetting regime. Notice that Fig. 1 presents
β�(ξ̄ )A0, i.e., the total grand-potential change associated to
the change of the film thickness over the entire system with
A0 = 100σ 2. The equilibrium configuration, at liquid-vapor
bulk coexistence, would be a very thick (macroscopic) liquid
layer, but a fluctuation that reduces the film to a monolayer
(ξ̄ ≈ σ ) in our simulation box would require only an increase
of β�� ≈ 1, making it a very probable event. In contrast,
with εsf/ε = 1.3, that fluctuation would imply β�� ≈ 40,
i.e., it would be impossible to sample it in unconstrained
grand-canonical simulations.

The bottom panel in Fig. 1 shows (in linear scale) the
effective potential for εsf/ε = 0.77. As expected for the partial
wetting regime, �(ξ̄ ) shows a minimum with β�(ξ̄ )A0 ≈
−1.3. The tail of �(ξ̄ ) is still well fitted by a pure exponential
form [Eq. (4)], with λ = 1.55/σ and β�0(0.77)σ 2 = −0.034,
and it is very similar for the two alternative definitions for the
mean thickness of the liquid film. In the submonolayer regime
the ISM breaks down, with a sharper increase in �(ξ ), since
the adsorbed film does not percolate over the substrate plane.
Using the results for the minimum of �(ξN ), the macroscopic
contact angle may be θ = cos−1(1 + �min/γLV) ≈ 0.2 rad;
i.e., in a macroscopic system any liquid film with ξ � 1σ

would be unstable (or at most metastable). A flat liquid drop
would form on the substrate, with contact angle of just 11
degrees. In our simulations, even with the larger transverse
size Lx = 30σ , the formation of those drops is frustrated by the
periodic boundary conditions, and we may sample these (finite
size-stabilized) liquid films to get �(ξ̄ ), from their relative sta-
bility in the grand-canonical ensemble, and �(q,ξ̄ ) from their
fluctuations in canonical ensemble Monte Carlo simulations.

The main conclusion of these results is that the simple
exponential decay Eq. (4), with the inverse correlation length
of the bulk liquid, describes very accurately the effective solid-
film potential, for films thicker than a molecular monolayer.
All the details of the solid-fluid interaction are reduced to the
value of �0(εsf/ε), which may be observed to become negative
as the system goes through the wetting transition. There is
no signature of the ∼e−2λξ̄ term predicted by the theoretical
analysis for the Landau-Ginsburg-Wilson density-functional
model, within the double parabola approximation [9]. Of
course, in the partial wetting regime the minimum of �(ξ̄ )
requires that a short-range repulsion stops the tendency of
Eq. (4) with �0 < 0, but its effects are limited to films in the
submonolayer range and they are determined by the form of the
short-range solid-fluid repulsion, rather than by the liquid bulk
correlation length. From the theoretical side, the predictions of
the simplified density-functional models should be understood
as the bare binding potential for the interface, while our
simulation results should give a partially renormalized version,
dressed by the fluctuations allowed by the simulation box
size, which could transform the bare exp(−2λξ̄ ) term into
a renormalized Gaussian even more difficult to observe.

Finally, the wetting transition of our system is expected to be
of first order. In a mean-field description the effective potential
would exhibit a barrier between the thin-film minimum and
the macroscopic wetting layer [4]. In a computer simulation
that barrier would be reduced with increasing size, as the
correlations are included up to larger distances, and the
accuracy of our results does not allow to resolve any signature
of it. Notice, in this respect, that (as for the εsf/ε = 0.81 case)
Fig. 1 presents β�(ξ )A0. The fluctuations of the film thickness
over the whole substrate area A0 = 100σ 2 could take it easily
from the thin-film minimum to a very thick one.

III. CW FLUCTUATIONS AT THE EDGE OF WETTING
LAYERS

We have run canonical ensemble Monte Carlo simulations,
for the three values of εsf studied in this work and the two
different cells sizes. The number of particles was chosen to
sample the relevant mean thickness of the adsorbed liquid
film. We present here ISM results, based on the surface of
the percolating cluster, and in the Appendix we compare them
with the simpler (but less accurate) representation given by the
Gibbs dividing surface. For each ξIS, we get the mean-square
fluctuations 〈|ξ̂q |2〉 for all the sampled wavevectors: qσ =
0.21, 0.6, 0.85, 1.22, and 1.9 in the larger simulation boxes,
while qσ = 0.6 is the smallest value accessible in the smaller
boxes. The ISM analysis for the free liquid-vapor interface,
with the same box sizes, was used to obtain γ LV(q) and, from
Eq. (3), the wall damping effect ��(q,ξIS) presented in Fig. 2
for qσ = 0.6, as functions of the film thickness ξIS. For other
values of q we observe similar shapes but different amplitudes,
as presented in Fig. 3 for εsf/ε = 0.81, with the larger box size.

The first interesting result is that, comparing the two first
columns in Fig. 2, we can address the question about the
oscillatory behavior of the CW damping. The behavior was
reported in our previous work, and it is reproduced here in
the simulations for lower εsf but the same simulation box
size. Less attractive walls (εsf/ε = 0.81 and 0.77) produce
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FIG. 2. (Color online) Wall damping effect on the inverse mean-square amplitude of the thickness fluctuations, ��(q,ξIS), Eq. (3), for the
wave number qσ = 0.6, with increasing thickness of the adsorbed liquid film, for the three values of the wall fluid attraction, εsf/ε = 1.3 (top),
0.81 (central), and 0.77 (bottom); and two lateral sizes of the simulation box: Lx = 10.3σ (left) and Lx = 31σ (central). Density profile (right)
of ξIS 
 4.40σ (dark color) and ξIS 
 7.72σ (light color) films for Lx 
 10.3σ (solid line) and ξIS 
 4.80σ (dark color) and ξIS 
 8.10σ (light
color) for Lx 
 31σ (dashed line).

weaker oscillations in the density profiles than in the previous
results for εsf/ε = 1.3, but relatively stronger oscillations
in ��(q,ξIS), because the strong reduction in the value of
�0 near the wetting transition makes the oscillations appear
clearer over the monotonic term �′′(ξIS) = λ2�0e

−λξIS in Eq.
(3). However, the oscillations are strongly damped in the
��(q,ξIS) results with a substrate area nine times larger than in
the original size. Notice that the density profiles are essentially
unaffected by the increase of the system’s size (Fig. 2). Only for
very thick films the larger size is reflected in a slightly broader
edge of the liquid film. Therefore, that oscillatory structure in
��(q,ξIS) and �γ (q,ξIS) should not be considered as a real
characteristics of the effective Hamiltonian H[ξ ] Eq. (1), but
as a finite-size effect that produces a pseudolayering transition
when the lateral size of the system is not large enough. We
had already hinted to that explanation [22] as we observed that

1 2 3 4 5
ξ

IS
/σ

0
0.05

0.1
0.15
0.2
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ΔΓ
(q

;ξ
IS
)σ

4 /A
0

FIG. 3. (Color online) Wall-damping effect on inverse mean-
square amplitude of the film-thickness fluctuation, ��(q,ξIS) with
increasing thickness of the adsorbed liquid film, for εsf/ε = 0.81
and larger lateral size Lx = 31σ . Circles, qσ = 0.21; squares,
qσ = 0.6; diamonds, qσ = 0.85; and triangles up, qσ = 1.22. The
full lines are the best fits to an exponential decay ��(q,ξIS) =
��0(q)exp(−1.55ξIS/σ ) for each q.

the upper envelop of the oscillatory structure showed the same
simple exponential decay as �(ξIS).

The results for all the wall attractions are very close to the
pure exponential decay ��(q,ξIS) ≈ ��0(q)e−λξIS , with an
amplitude that depends on q, Fig. 3, and is very close to the
upper envelop of the oscillatory structure obtained with the
smaller box size. Therefore, we may conclude that a single
exponential decay, as in Eq. (4), with the bulk correlation
length of the liquid, describes accurately the whole dependence
of the inverse mean-square fluctuations on the mean film
thickness. Only for εsf/ε = 1.3 the exponential behavior is
broken, at ξIS � 2.0σ , probably as the result of the very strong
wall-fluid interaction, which produces a very structured first
layer. For the highest q the results for εsf/ε = 0.81 seem also
to show some slight oscillations; however, these fluctuations
are clearly below the accuracy of our procedure.

The values for ��0(q) that give the best fits to the
exponential decay, and the error bars given by the dispersion
of ��0(q)eλξIS , over the first five values of ξIS, are presented in
Fig. 4 to show the dependence on the wavevector. According
to Eq. (3), and once we have observed that all the dependence
of H([ξ ]) with the mean film thickness is well represented by
the same exponential form, Eq. (4), we should have

��0(q,ξ )

βA0
≈ [λ2�0 + q2�γ0(q)]e−λξIS . (5)

The q �= 0 fluctuations, observed in the canonical ensemble
simulations, may be extrapolated to q = 0 where �γ0(q)
becomes irrelevant, and ��(0,ξ̄ ) = βA0�

′′(ξ̄ ) = βA0λ
2�0,

is given by our independent result �(ξ̄ ), from the relative
probabilities of each mean thickness from our grand-canonical
simulations. This consistency test is passed for the three values
of εsf . Our results for λ2�0 (filled symbols in Fig. 4) are in good
agreement with the extrapolation to q = 0 of the respective
open symbols.
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For the two systems at complete wetting, and within
our accuracy, we obtain a parabolic shape ��(q)/(βA0) ≈
λ2�0 + q2�γFJ, with the Fisher-Jin amplitude of the sur-
face tension wall-enhancement as the only free parameter:
β�γFJσ

2 = 10 ± 2.5 for εsf/ε = 1.3 and �γFJσ
2 = 0.83 ±

0.04 for εsf/ε = 0.81. These values for the wall effect on the
surface tension of the film are very relevant for the liquid films
simulated here, since they represent a significant modification,
�γFJ(ξ̄ ), over the surface tension for the free-liquid interface
βγLVσ 2 = 0.66 assumed in the classical mesoscopic Hamilto-
nian Eq. (2). On the other hand, the nonlocal effects, neglected
both in the classical and in the local Fisher-Jin Hamiltonian
models, are represented by the q dependence in γ LV(q) ≈
γLV + κLVq2 + · · · , and in �γ0(q) ≈ �γFJ + �κq2 + · · · .
From our ISM results we obtain that the free-surface bending
term βκLV ≈ 0.5 is important to predict the film-thickness
fluctuations observed in our computer simulations. However,
the possible wall-enhancement �κ is much smaller, 0 �
β�κ � 0.2 for εsf/ε = 1.3 and 0 � β�κ � 0.03 for εsf/ε =
0.81.

Therefore, mean-square fluctuations 〈|ξ̂q |2〉 of the film,
observed in our canonical Monte Carlo simulations for all
the mean film thickness ξIS, may be described in terms of:

(i) The fluctuations in the free-liquid surface, given by
γ LV(q) ≈ γLV + κLVq2, with the surface tension βγLVσ 2 =

0.66, and the ISM value for the surface bending modulus
βκLV = 0.5.

(ii) The value of �0(εsf) and the correlation length of the
liquid bulk, λ−1, to get the effective potential of the substrate
on the film [Eq. (4)].

(iii) The value of �γFJ(εsf), to describe the wall on the
effective surface tension of the film edge, and possibly a small
bending term �κ(εsf).

The nonlocal theory of Parry et al. [9,12], based on the
gradient expansion for the density-functional free energy of
the fluid, gives the asymptotic form

��(q,ξ )

βA0
= �0 (λ2 + q2)e−λξIS , (6)

i.e., �γFJ = �0. Here we have taken �0 and �γFJ as
independent free parameters, to describe the effective potential
for the mean film thickness �(ξ̄ ) with �0, and the film
thickness fluctuations with �γFJ. They are free parameters
used to describe the effects of the wall on the fluctuating
liquid film, and we find that both for εsf/ε = 1.3 (deep in the
complete wetting regime) and εsf/ε = 0.81 (at the verge of the
wetting transition), our values for �γFJ are clearly larger than
the prediction Eq. (6), �γFJ/�0 ≈ 5 and 17, for εsf/ε = 1.3
and 0.81, respectively.

From Eq. (3) there is a typical distance � =
√

�γ0/�
′′
0

that scales wavevector q to give the fluctuation damping by
the wall. For q� � 1 the dominant effect comes from the
wall-fluid potential �′′(ξ̄ ), while for q� � 1 the most relevant
effect comes from the enhancement of the surface tension at
the edge of the film �γ (q,ξ̄ ). In the square-gradient density
functional used by Parry et al. [9,12] the only length scale
in the model is given by the bulk correlation length λ−1, and
the prediction Eq. (6) amounts to take precisely �λ = 1, since
the natural dependence with q within that density-functional
model comes as λ2 + q2. However, in a molecular description
of the liquid films, far form the critical point, it is clear that
the bulk correlation length is not the only relevant length
scale. It is not surprising to find larger value, lλ 
 1.4–4, in
our realistic model, reflecting the enhancement of the surface
tension beyond the direct effect of �(ξ̄ ).

Finally, the fluctuations of the film for εsf/ε = 0.77, in
the partial wetting regime, break clearly the form of Eq.
(5). The extrapolation of the fluctuation results to q = 0
is still valid, but that value is negative. The films sampled
and presented in Fig. 2 would be unstable in a macroscopic
system, and the spring constants �(q) become negative for
low-q modes. The finite size of the simulations boxes stabilize
the films, since even with the lowest accessible wavevector
(q = 2π/Lx = 0.21/σ in the larger systems), the positive
contribution, q2 [γ LV(q) + �γ (q,ξ̄ )], compensates the neg-
ative �′′(ξ̄ ), while the q = 0 components of the fluctuations
are eliminated by the canonical ensemble constraint on the
total number of molecules. Nevertheless, the nonanalytic
dependence ��0(q) − ��0(0) ∼ q (rather than q2) for low
q, and the strongly negative value of ��0(q) for q = 1.9/σ

indicate the formation of large domains with relatively sharp
boundaries that signal the instability of the macroscopic film.
A similar behavior was observed, e.g., on Newton black films,
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which behave as a wetting system [30], due to the existence of
domains (droplets) with different sizes and widths.

IV. CONCLUDING REMARKS

In this work we have obtained a complete quantitative
characterization of the mesoscopic effective HamiltonianH[ξ ]
that describes the harmonic (quadratic order) fluctuations of
a Lennard-Jones liquid film adsorbed on a planar wall. We
use canonical and constrained grand-canonical Monte Carlo
simulations, and the ISM to get the fluctuating shape of the
outer edge of the liquid film. Our results give directly the ef-
fective potential of the wall on the liquid film �(ξ̄ ) and the
enhancement of the surface tension near the wall ��(q,ξ̄ ).
The latter, neglected by the classical effective Hamiltonian,
is clearly as important as �(ξ̄ ) for film fluctuations with
wavelength of 10 nm or shorter. Both �(ξ̄ ) and ��(q,ξ̄ ) are
observed to decay with the correlation length of the liquid
bulk, from very thin films of just one or two molecular layers.
However, that simple behavior is only observed in simulations
done in large enough systems. Previous results, showing a
more complex oscillatory structure of ��(q,ξ̄ ), similar to
that of the density profiles, were due to finite-size effects
and disappear in our larger simulated systems. The bonus
is that the whole dependence of H[ξ ] with the mean film
thickness ξ̄ is given by the inverse correlation length of bulk
liquid λ and two amplitudes �0 and �γFJ that depend on the
wall-fluid interactions. The values for these two amplitudes
may be obtained from computer simulations with less than
five molecular layers, and the exponential decay may be safely
taken to cover the full range of thicker films.

Together with the correlative ISM analysis for the free
liquid-vapor interface, we get a full characterization of H[ξ ],
which follows closely, but not completely, the predictions of
the nonlocal theory based on a density-functional analysis with
the Landau-Ginsburg-Wilson (LGW) free energy [9,12]. The
first apparent discrepancy, the lack of a second exponential
term ∼e−2λξ̄ in �(ξ̄ ), comes probably from the difference
between the bare potential predicted by any mean-field theory
and the results of the simulations, which are partially dressed
by all the fluctuations within the box size. The second differ-
ence with the theoretical LGW prediction is that in our simu-
lations we find that the characteristic length

√
�γ (q,ξ̄ )/�(ξ̄ )

is clearly larger than λ−1. That could be a limitation of the
theoretical model, since the LGW density functional lacks of
any molecular length other than λ−1, but very probably it does
not affect the qualitative analysis of the problem. The third dis-
crepancy comes in the surface-bending term, the q2 coefficient
in the expansion of γ (q), neglected by the local, nonclassical
theory of Fisher and Jin [13]. Our results indicate that this term
is small for the wall enhancement term, �γ (q,ξ̄ ) ≈ �γFJe

−λξ̄ ,
but a positive surface-bending rigidity κLV is crucial to describe
the fluctuations of the free-liquid surface. The nonlocal theory
of Parry and coworkers [12] finds that a bending term appears
from the nonlocal analysis of the LGW, but it has negative
value and γ LV(q) decays to zero at large q. Similar shape is
observed in our computer simulations if we use the Gibbs
Surface definition of the film thickness, as shown in the
Appendix. Formally, that definition for the film thickness, or
the LGW theoretical results for γ LV(q), may always be used

in the surface Hamiltonian Eqs. (1) and (3), but they would
give a rather counterintuitive view of adsorbed film, with very
large surface fluctuations at small wavelengths. However, with
different definitions for the effective surface bending from the
same model, positive values appear [31], and it is still not clear
what would be the precise form of the nonlocal effective H[ξ ]
that emanates from the LGW density functional.

In any case, for possible applications to the study of fluctuat-
ing adsorbed films at mesoscopic scale, the Hamiltonian H[ξ ]
Eq. (1) is technically equivalent to that of nonclassical density-
functional theories. What we have shown here is that such
Hamiltonians may be validated in computer simulations and
quantitatively characterized from the molecular interactions.
The route is open to link the molecular structure of thin films,
with just a few molecular layers, with the renormalization
group analysis of the film fluctuation at very large scales.
The realistic but simple model used here has to be regarded
as a proof of principle for the method. The inclusion of
long-range dispersion forces (not-truncated LJ interactions)
would provide an even more realistic view of the system
and add some new qualitative elements. These problems had
already been partially addressed with the ISM analysis of
computer simulation for the effects of the wall-fluid [26]
and in the liquid-vapor interface [24], and the route to
their study within the methodology used here appears to be
open. The method could also be applied to rough substrates
[32], allowing for a nonzero mean amplitude of the film
thickness 〈ξ̂q〉 following the corrugations of the substrate,
as well as to more complex fluids and mixtures, to address
the complex phenomenology of these important interfacial
systems.
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APPENDIX: MODEL, METHODS, AND GIBBS SURFACE
RESULTS

We simulate a LJ model fluid, with the usual parameters ε

and σ for the energy and length scales. The interactions are
truncated at a cutoff distance of 2.5σ and all our simulations are
done at the same temperature, kbT/ε ≡ (βε)−1 = 0.75. The
structureless substrate is represented by an external potential
Vsf(z) acting on the fluid particles, that depends only on their
distance to the substrate plane. We take

Vsf(z)

8πεsfσsfρlay
=

3∑
i=1

{[
1

10

(
σsf

(z − zi)

)10

− 1

4

(
σsf

(z − zi)

)4
]

−
[

1

10

(
σsf

rc

)10

− 1

4

(
σsf

rc

)4
]}

, (A1)

to represent the sum over three truncated 4-10 potential layers,
each given by the integral over a homogeneous planar density
ρlay = 1.143σ 2 of LJ interactions with σsf = 0.912σ , cut at
rc = 2.5σsf. The layers are at positions zi = 0.0,−0.65σ ,
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and −1.30σ , and the strength of the solid-fluid interaction
εsf is used to explore different wetting regimes at the same
temperature. Opposite to the substrate, the simulation cells
are closed by a purely repulsive potential at z = Lz = 50.0σ ,
and square periodic boundary conditions with length Lx are
used on the X and Y directions. We compare the results for the
lateral size of Lx = 10.457σ used in our previous work [22] for
εsf = 1.3 (and similar size Lx = 10σ for the new simulations
with εsf = 0.81 and 0.77) with those for much larger boxes,
Lx = 31.371σ for εsf = 1.3, and Lx = 30σ for εsf = 0.81 and
0.77. Adsorbed films of different thickness were simulated
using N = 160 to 900 LJ particles for εsf = 0.81ε, and 0.77ε

and N = 150 to 2000 for the smallest cell size, and N = 1080
to 4230 LJ particles for εsf = 0.81ε, and 0.77ε and N = 1350
to 6750 for the largest cell size.

The effective wall potential on the film thickness was ob-
tained from MC simulations in the grand-canonical ensemble
but with a shifting restriction on the total number of particles, to
get overlapping probability distributions that could be merged
into a single function �(ξ ). This method [28,29] provides a
good statistical sampling over the whole range of film thickness
presented in Fig. 1.

The fluctuations at the edge of the wetting films are explored
in a set of canonical MC simulations, with the mean film
thickness controlled by the total number of particles. For each
system 104 configurations, separated by 2000 MC steps, were
taken after 20 × 106 MC steps for equilibration. We used
two different methods, the GS and the ISM, to determine
the function ξ (R) = ∑

q ξ̂q exp(iq · R) that describes the film
thickness at each point R on the substrate plane. The
simplest GS representation relates the thickness ξGS(R) to
the number of particles in the system whose projection on
the substrate happen to be around position R, irrespective of
their z coordinate. That number of particles per unit area is
transformed in a local film thickness assuming that the surface
z = ξGS(R) separates a uniform density of the liquid phase
from a uniform density of the vapor phase. Therefore, the
q �= 0 Fourier components are directly given from the position
of the particles [11], as

ξ̂GS
q = 1

A0�ρLV

N∑
j=1

eiq·Rj , (A2)

and the q = 0 component is the usual Gibbs dividing plane
that gives the mean film thickness as ξ̂0 = N/(�ρLVA0) − z0,
where �ρLV is the density difference between the bulk phases,
A0 = L2

x is the substrate area, and z0 is a nominal position
for the effective wall of the substrate, irrelevant for the q �= 0
components. The drawback of this simple definition for ξ (R)
is that it assumes as thickness fluctuations any instantaneous
change in the local density of the liquid film; therefore, for
thick films 〈|ξ̂GS

q |2〉 does not decay as ∼1/(q2γLV) for large q

[as predicted by Eq. (2)], but it goes to a constant high-q limit
related to the bulk liquid compressibility. From that effect, the
GS result for γ LV(q) decays to zero for large q, as shown in the
inset of Fig. 5, and the mesoscopic Hamiltonian Eq. (1), with
this γ LV(q) in Eq. (3), would predict very large amplitudes for
fluctuations with very small wavelength.

In this work we have used the ISM as a computationally
more costly, but qualitatively more accurate, description of
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FIG. 5. (Color online) The function ��(q,ξIS)σ 4/A0 (as in
Fig. 2, but in logarithmic scale), for Lx = 31σ , εsf = 1.3ε, and two
values of the wavevector qσ = 0.21 (top) and qσ = 0.85 (bottom).
Black circles give the ISM results and gray (on line red) starts symbols
show the results of the Gibbs surface (GS) film thickness; the lines
are only to guide the eye. The inset shows the surface tension function
γ LV(q) for the liquid-vapor interface, ISM black line and GS gray (on
line red) line.

the film thickness. This method is based on the identification
of the particles at the boundary of the percolation cluster
formed by the liquid film and by a smooth interpolation
of the mathematical surface z = ξ IS(R) going through the
most external layers of molecules in the liquid film. Both the
percolation analysis and the interpolation scheme have been
optimized in the study of the free-liquid surface [33], and we
keep here the same parameters and operational procedure that
has been described in previous works [22,23].

The ISM results are presented in Figs. 2–4, and they provide
the main body of our work. Figure 5 presents the comparison
with the GS results only for two cases, qσ = 0.21 and 0.85,
in the largest simulation box, Lx = 31σ , for εsf = 1.3ε. The
decay of ��(q,ξ ) with the mean thickness of the film is
presented in logarithmic scale, instead of the linear scale
shown in Fig. 2. It is clear that the GS definition for the film
thickness is accurate and consistent with the ISM result for
the lower q, as it is in the q = 0 limit used to get �(ξ ).
However, for qσ = 0.85 the decay of ��GS(q,ξ ) for the
largest film thickness differs qualitatively from the ISM result.
The exponential decay of the ISM results may be followed
down for three decades, while the GS goes to a much larger
asymptotic value, incompatible with the theoretical prediction
Eq. (6). The amplitude of the exponential decay, avoiding that
asymptotic limit of the GS result, would have much larger error
bars than the ISM results presented in Fig. 4, and it would be
difficult to discern the functional form of ��GS

0 (q) even for its
low q expansion.

Therefore, the ISM is worth its much higher computational
cost, because it provides a definition for the local thickness
of the adsorbed film that is not affected by compressibility
fluctuations within the liquid film, that spoil the GS results
in thick films for large q. Notice that the main effect of the
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spurious inclusion of these fluctuations in 〈|ξ̂GS
q |2〉 appears in

the free liquid-vapor interface, with the qualitative difference
between the ISM and GS results for γ LV(q) shown in the inset
of Fig. 5. The raising shape of the ISM γ LV(q) provides a
natural molecular top to the spectrum of capillary fluctuations,
while the use of the GS results in the mesoscopic surface
Hamiltonian Eq. (1) would give a rather hectic image of the
liquid surface, with very large nominal corrugations at very
low wavelengths. Certainly, there is not a unique definition for

ξ (R), the mesoscopic description of the adsorbed film would
always require some operational definition of its thickness in
terms of the molecular positions, and each definition would
give different functions γ LV(q) and ��(q,ξ ) within the same
formal description [Eq. (3)]. The advantage of a better choice
to define ξ (R) is not of formal consistency, but rather of a
natural physical interpretation of the mesoscopic variables.
Unfortunately, the GS [Eq. (A2)] is a property more akin to
experimental measurements than is ISM.
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