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Kinetic roughening and porosity scaling in film growth with subsurface lateral aggregation
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We study surface and bulk properties of porous films produced by a model in which particles incide
perpendicularly to a substrate, interact with deposited neighbors in its trajectory, and aggregate laterally with
probability of order a at each position. The model generalizes ballisticlike models by allowing attachment to
particles below the outer surface. For small values of a, a crossover from uncorrelated deposition (UD) to
correlated growth is observed. Simulations are performed in 1+1 and 2+1 dimensions. Extrapolation of effective
exponents and comparison of roughness distributions confirm Kardar-Parisi-Zhang roughening of the outer
surface for a > 0. A scaling approach for small a predicts crossover times as a−2/3 and local height fluctuations
as a−1/3 at the crossover, independent of substrate dimension. These relations are different from all previously
studied models with crossovers from UD to correlated growth due to subsurface aggregation, which reduces
scaling exponents. The same approach predicts the porosity and average pore height scaling as a1/3 and a−1/3,
respectively, in good agreement with simulation results in 1+1 and 2+1 dimensions. These results may be useful
for modeling samples with desired porosity and long pores.
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I. INTRODUCTION

A widely studied model for growth of porous films is
ballistic deposition (BD) [1] in which the particles incide
perpendicularly to the substrate and aggregate at the first
contact with the deposit [2,3]. BD was originally proposed
to describe sedimentary rock formation [1] and was extended
to model thin film growth and related systems by considering
other aggregation mechanisms, noncollimated particle flux, or
polydispersivity of particle size [4–12]. Most works on the
ballisticlike models address the scaling features of the outer
surface of the deposits, particularly for the connections with
Kardar-Parisi-Zhang (KPZ) [13] roughening. Some works also
connect the surface growth dynamics and the bulk properties
of the porous deposits [7,14–18]. This is an essential step
for proposing models of porous materials, which have a large
variety of technological applications, frequently in the form of
thin films [19,20].

Some ballisticlike models are in a class of competitive
growth models in which uncorrelated deposition (UD) is
obtained for a certain value of a parameter and, near that
value, a crossover in kinetic roughening is observed [4,7,12].
In the simplest model, particle aggregation follows the BD
(UD) rule with probability p (1 − p). It was already studied
numerically [4,21] and with scaling approaches [22–24]. For
small p, there is an enhancement of characteristic times of
the correlated kinetics (p = 1) by a factor of p−1 and of the
outer surface roughness by a factor of p−1/2; for a recent
discussion on this topic, see Ref. [25]. These features extend
to other ballisticlike models with crossovers to UD [16] and are
related to the lateral aggregation. In case of surface relaxation
after aggregation, the exponents in those relations are larger,
corresponding to longer crossovers for small p [7,23,24].

A renewed interest in these competitive models was recently
observed with a focus on the limitations of scaling relations
or with an emphasis on the properties of porous media.
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References [26–28] discussed the deviations from the dom-
inant scaling of surface roughness at low p, which is essential
for a quantitative characterization of surface properties in a
variety of growth conditions. The effect of relaxation after
collision of incident and aggregated particles was considered
in Ref. [7] also with a focus on surface properties. References
[29,30] considered the effect of a stickness parameter on the
aggregation of the incident particles, which may attach to
neighboring particles located below the outer surface. Sim-
ulations in 1+1 dimensions produced deposits with porosity
ranging from very small values to approximately 70% and
suggested non-KPZ behavior in one of the models [29].

The first aim of this paper is to study surface and bulk
properties of the model proposed in Ref. [29] combining a
systematic analysis of simulation data and a scaling approach
for small values of the stickness parameter. From the ex-
trapolation of saturation roughness and relaxation times, we
show that the model has KPZ exponents in 1+1 dimensions.
Comparison of roughness distributions confirms KPZ scaling
in 2+1 dimensions, thus ruling out the proposal of non-
KPZ exponents. In the limit of small stickness parameter
a, the scaling approach shows that the crossover time and
the roughness scale as a−2/3 and a−1/3, respectively, for
all substrate dimensions. These results show a shortened
crossover when compared to all previously studied models
with an UD component [7,23,24], which is a consequence of
subsurface aggregation. The same approach predicts porosity
and pore height scaling as a1/3 and a−1/3, respectively. These
predictions will be confirmed numerically in 1+1 and 2+1
dimensions. The approach can be extended to the model
introduced in Ref. [30] with the same crossover exponents
due to the similar subsurface aggregation conditions.

The rest of this paper is organized as follows. In Sec. II,
we present the sticky particle deposition model. In Sec. III, we
analyze the surface roughness scaling of simulated deposits in
1+1 dimensions. In Sec. IV, we present a scaling approach
that relates surface properties to the stickness parameter
and confirm those predictions with numerical simulations. In
Sec. V, we extend the scaling approach to relate the porosity
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and the average pore height with the stickness parameter, again
with support from numerical simulations. In Sec. VI, we show
that the main results extend to 2+1 dimensions. In Sec. VII,
we summarize our results and conclusions.

II. STICKY PARTICLE DEPOSITION MODEL

In all models discussed in this paper, square particles of
size c are sequentially released on randomly chosen columns
of a one-dimensional discretized substrate of lateral size Lc

and move in a direction perpendicular to the substrate. Here, L
is the number of columns. The time interval for deposition of
one layer of atoms (L atoms) is τ . Thus, at time t , the number
of deposited layers is t/τ .

The model proposed in Ref. [29] is hereafter called sticky
particle deposition (SPD). In each site of the trajectory of the
incident particle, it interacts with particles in nearest neighbor
(NN) sites at the same layer (same height above the deposit)
and particles in next nearest neighbor (NNN) sites at the layer
immediately below it. This interaction is represented by a
probabilistic rule of aggregation at its current position.

The probability of aggregation to each neighbor is

pag = a

(r/c)n
, (1)

where a is the stickness parameter, r is the distance between the
centers of the particles (r/c = 1 for NN, r/c = √

2 for NNN),
and n is an exponent related to the nature of the interaction.
In Ref. [29], the cases of n = 2 and n = 6, respectively, were
called Coulomb-type and van der Walls-type interactions with
most results being presented for the former. Here we will
restrict the analysis to the case of n = 2 in which aggregation
to NN and NNN has probabilities a and a/2, respectively.

Figure 1 helps to understand the aggregation rules of the
SPD model and the differences from other ballisticlike models.
We first recall the rules of BD and of the next nearest neighbor
BD (BDNNN) model [5,6,31].
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FIG. 1. Illustration of the rules of particle aggregation in the SPD
model. Deposited particles are gray and black squares, the latter
indicating those particles in the outer surface. Incident particles are
indicated as squares marked A and B, and circles numbered from 1
to 7 indicate possible aggregation positions of those particles.

In BD, aggregation occurs at the first contact with a NN
occupied site: particle A at position 2, particle B at position 6 in
Fig. 1. In BDNNN, aggregation occurs at the first contact with
a NNN occupied site: position 1 for particle A and position
5 for particle B in Fig. 1. In both cases, the incident particle
interacts only with the particles at the top of each column,
which are highlighted in 1. The set of top particles is called
the outer surface of the deposit.

In the SPD model, particle A may aggregate at lattice sites
marked with circles labeled 1–4, and particle B may aggregate
at lattice sites marked with circles labeled 5–7.

First, consider the trajectory of particle A. In position 1, two
aggregation trials are executed due to the interaction with two
NNN occupied sites; the probability of aggregation in each trial
is a/2. If it does not aggregate there, it moves to the position
labeled 2 in which three aggregation trials are executed: two
for interactions with the NN at the same height (probability
a for each one) and one for interaction with the NNN in the
layer below at the left (probability a/2). If the particle does not
aggregate at position 2, then it moves to position 3 and may
aggregate there with probability a due to the interaction with
the NN at the left. If aggregation does not occur in position
3, the incident particle will permanently aggregate at position
4, which is the top of the incidence column. Relaxation to
neighboring columns is not allowed.

Now we consider the trajectory of particle B. In position 5,
two aggregation trials are executed, each one with probability
a/2 (due to interactions with two occupied NNN sites). If
the particle does not aggregate there, it moves to position
6 in which three aggregation trials are executed: two for
the interactions with the lateral NN (probability a for each
trial) and one for the interaction with the NNN in the layer
below (probability a/2). If no aggregation trial is successful
at position 6, the particle moves to position 7 and aggregates
there.

In contrast to other ballisticlike models (e.g., BD and
BDNNN), the SPD model allows subsurface aggregation. In
Fig. 1, position 3 is an example of subsurface position: It
is not allowed in BD, nor in BDNNN, nor in any model of
solid-on-solid deposition (which prescribe aggregation at the
top of each column).

In all cases, note that the interaction of an incident particle
with an aggregated one is possible in two steps: the first one
when they are NNN (larger distance), the second one when they
are NN (smaller distance). It represents two possibilities of
aggregation in the ingoing part of the trajectory of the incident
particle. If the aggregation trials are not accepted, then the
incident particle moves to a lower position. In this situation,
this particle is in an outgoing trajectory respective to those
aggregated particles. For this reason, no aggregation trial is
executed with a NNN aggregated particle in the layer above
the current position of the incident particle. For instance, when
particle A is at position 3 (third layer of the deposit), we do
not execute aggregation trials with the black NNN sites at the
fourth layer in Fig. 1.

The SPD model resembles the model introduced in Ref. [32]
and the slippery BD model proposed in Ref. [33], both
studied in three-dimensional deposits (the latter with line
seeds perpendicular to a flat inactive surface). Most of our
simulation work is in 1+1 dimensions, similar to Ref. [29],
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but in Sec. VI we show that the main results are also valid in
three-dimensional samples.

For simplicity, in the following sections we consider unit
values of the lattice constant and of the time of deposition of
a layer: c = 1, τ = 1.

III. KINETIC ROUGHENING

The outer surface roughness is defined as

W (L,t) ≡ [〈(h − h)
2〉]

1/2

, (2)

where h is the height of the top particle of each column, the
overbars indicate spatial averages, and the angular brackets
indicate configurational averages. In systems with normal
(in opposition to anomalous) scaling, the roughness follows
Family-Vicsek (FV) scaling [34] as

W (L,t) ≈ Lαf

(
t

t×

)
, (3)

where α is the roughness exponent, t× is a relaxation time, and
f is a scaling function. In long times (t � t×), f → const so
that W saturates as

Wsat ≈ ALα, (4)

where A is a model-dependent constant. The saturation time
t× scales as

t× ≈ BLz, (5)

where z is the dynamic exponent and B is another model-
dependent constant. The roughness for t 	 t× scales as

W ≈ Ctβ, (6)

with β = α/z and another model-dependent constant C.
Figure 2(a) shows the surface roughness evolution of the

SPD model for three values of a in L = 1024.
For short times, there is a crossover from an initial regime

of rapid roughness increase to a second regime in which it
increases slower. For small a, the first regime is mainly of UD
and the slope of the log10 W × log10 t plot is near 1/2. For
a > 0.1, lateral aggregation is frequent, thus the roughness at
short times is larger than that of UD [e.g., a = 0.5 in Fig. 2(a)].
It is difficult to find a pure UD regime in this case and to
estimate the crossover time with accuracy.

After this transient, the growth regime begins, with apparent
power law scaling of W [Eq. (6)]. It is difficult to distinguish
the different curves for small a in Fig. 2(a); this will be
explained by the scaling approach of Sec. IV. The slopes of
those curves are near 1/3, suggesting KPZ scaling.

At long times, there is an increase in the saturation
roughness as a decreases.

Figure 2(b) shows the saturation roughness as a function of
lattice size L for two values of a. They seem to be consistent
with the KPZ exponent α = 0.5. However, linear fits of those
plots give slopes slightly smaller than 0.5, similar to what was
found in Ref. [29]. For this reason, a systematic extrapolation
of those results is necessary to decide whether the roughness
scaling is KPZ or not. We proceed by using the same methods
of Refs. [16,31,35,36] in which roughness scaling of various
ballisticlike models was studied.

FIG. 2. (Color online) (a) Time evolution of the surface rough-
ness in the SPD model with a = 0.5 (red solid curve), a = 0.1 (green
dashed curve), and 0.025 (blue dotted curve). The dashed line has
slope 1/3 of KPZ scaling. (b) Saturation roughness as a function of
the lattice size for a = 0.5 (red squares) and 0.1 (green triangles).
The dashed line has slope 1/2 of KPZ scaling.

Effective roughness exponents are defined as

αL ≡ ln[Wsat(L)/Wsat(L/2)]

ln 2
. (7)

Assuming that the saturation roughness has scaling corrections
as

Wsat ∼ Lα(a0 + a1L
−�) [35], where a0 and a1 are

constants, we expect αL ≈ α + a2L
−�, where a2 is another

constant.
Figure 3 shows effective exponents as a function of L−�

for a = 0.5 and a = 0.1, respectively, using � = 0.52 and

FIG. 3. (Color online) Effective roughness exponents as a func-
tion of L−� for a = 0.1 (red triangles) with � = 0.72 and a = 0.5
(blue squares) with � = 0.52.
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FIG. 4. (Color online) Effective dynamical exponents as a func-
tion of 1/L for (a) a = 0.1 and (b) a = 0.5.

� = 0.72. These values of � provide the best linear fits of the
αL × L−� data for each stickness parameter. The asymptotic
(L → ∞) estimates from those fits are α = 0.496 ± 0.015 and
α = 0.51 ± 0.02, respectively.

We estimate the dynamical exponent z using the method
proposed in Ref. [36]. For each lattice size L, a characteristic
time t0 is defined as

W (t0) = kWsat, (8)

with k < 1. The FV relation (3) shows that t0 is proportional
to t× for fixed k, thus t0 ∼ Lz. Effective dynamical exponents
are defined as

zL ≡ ln[t0(L)/t0(L/2)]

ln 2
. (9)

Figures 4(a) and 4(b) show zL for a = 0.5 and a =
0.1, respectively, obtained with k = 0.8. In both cases, the
exponents oscillate near z = 1.5, suggesting that finite-size
corrections are very small.

The estimates of α and z are in very good agreement
with KPZ exponents α = 1/2 and z = 3/2, which is strong
numerical evidence that this model is in the KPZ class in 1+1
dimensions.

A universal scaling is expected in the SPD model because
there is no change in its symmetries as the stickness parameter
changes. In other words, the corresponding hydrodynamic
growth equation may have coefficients dependent on parameter
a, but the leading spatial derivatives will be the same [2,37].
Due to the lateral aggregation and consequent excess growth
velocity, KPZ scaling is expected for any a > 0.

Previous works on ballisticlike models [31,35,38–41] have
already shown that systematic extrapolation of finite-size or
finite-time data are necessary to avoid crossover effects. As
highlighted in Ref. [41], this is a consequence of the large
fluctuations in height increments, typical of those models.

Crossovers and finite-size corrections probably are the
reasons for the deviations from KPZ scaling observed in

Ref. [29]. This may also be inferred by comparison with finite-
size BD data from Ref. [35]. Reference [29] suggests α ≈ 0.42
for a = 1, whereas Ref. [35] gives effective exponents 0.40 �
αL � 0.45 for BD in the same range of L. Moreover, the
growth exponents β in lattice sizes from L = 256 to L = 1024
for a = 1, shown in Ref. [29], are very near the corresponding
estimates for BD in Ref. [35] (considering minimum linear
correlation coefficient 0.999 in the growth region).

IV. SCALING FOR SMALL STICKNESS PARAMETER

A. Scaling approach

For small a, lateral aggregation is unprobable, thus most
particles aggregate at the top of the column of incidence. At
short times, the roughness increases as [2]

WRD ≈ t1/2. (10)

After a crossover time tc, KPZ scaling appears. Our first step
is to relate tc to a for a 	 1.

A typical configuration of two neighboring columns in UD
is illustrated in Fig. 5. It has a height difference,

δh ∼ t1/2, (11)

because their heights increase without correlations. If δh is
large, then a new particle inciding at the right column in Fig. 5
may aggregate at a number of positions of order δh as indicated
by the circles. This means that the number of aggregation trials
is of order δh and the aggregation probability for each trial is
of order a. Thus, the probability of no lateral aggregation
after those trials (i.e., aggregation at the top of the column) is
Ptop ∼ (1 − a)δh. The probability that some lateral aggregation
occurs is, consequently,

Plat = 1 − Ptop ∼ 1 − (1 − a)δh ≈ a δh. (12)

The latter approximation requires Plat ∼ a δh 	 1, which will
be confirmed below.

The average time for a lateral aggregation event at a
given column is tlat ∼ 1/Plat. Lateral aggregation immediately

δh

FIG. 5. Two neighboring columns after some time of random
growth. Deposited particles are gray and black squares, the latter
indicating particles at the outer surface. The incident particle is the
empty square, and circles indicate possible aggregation positions of
this particle.
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creates correlations between the heights of neighboring
columns, thus the crossover time is tc ≈ tlat. Equations (10)
and (12) at the crossover (δh = δhc, t = tc) give

δhc ∼ t1/2
c ∼

(
1

Plat

)1/2

∼ (a δhc)−1/2. (13)

Thus, height fluctuations at the crossover scale as

δhc ∼ a−1/3, (14)

and the crossover time scales as

tc ∼ a−2/3. (15)

These results confirm that Plat ∼ a δh � a δhc 	 1 as the
approximation in Eq. (12) requires.

The amplitudes of the saturation roughness [Eq. (3)] and of
the relaxation time [Eq. (5)] scale as δhc and tc, respectively.
Following the exponent convention introduced by Horowitz
and Albano [4] and Horowitz et al. [42], we have

A ∼ a−δ, δ = 1/3, (16)

and

B ∼ a−y, y = 2/3. (17)

These results are valid in any spatial dimension because UD
properties are not dimension dependent.

The scaling exponents in Eqs. (16) and (17) differ from
those obtained in other competitive models with ballisticlike
aggregation with probability p and UD with probability 1 − p;
in those systems, δ = 1/2 and y = 1 [4,16,23]. In solid-on-
solid models with crossovers from UD to correlated growth,
the exponents are also different: δ = 1 and y = 2. The shorter
crossover of the SPD model is due to subsurface aggregation,
which provides a large number of opportunities (of order δhc)
for lateral aggregation of the incident particle (Fig. 5). On the
other hand, the relation δ = y/2 obtained in other competitive
models is also obeyed here because it is solely related to UD
scaling (see, e.g., the discussion in Ref. [25]).

B. Numerical test

We performed simulations of the SPD in L = 1024 and
small values of a, from 0.1 to 0.0125, until the steady states
(roughness saturation). The saturation roughness Wsat and the
characteristic times t0 were calculated following the same lines
of Sec. III.

Figures 6(a) and 6(b) show t0 and Wsat, respectively, as
a function of the stickness parameter a. Since they were
measured for constant L, they are expected to scale as the
amplitudes B [Eq. (5)] and A [Eq. (4)], respectively. Fits of
the data for a � 0.1 give exponents y ≈ 0.70 [Eq. (17) and
Fig. 6(a)] and δ ≈ 0.27 [Eq. (16) and Fig. 6(b)].

The estimate of y is in good agreement with the theoretical
prediction of Eq. (17). However, the estimate of δ shows
a discrepancy of ≈20% from the theoretical prediction of
Eq. (16). Note that the fits in Figs. 6(a) and 6(b) considered
0.05 � a � 0.0125, which are not very small values of a, thus
deviations are expected, particularly in the smaller exponent
(δ). Unfortunately, it is very difficult to obtain accurate
estimates for smaller values of a because relaxation times
become very large and roughness fluctuations also increase.

FIG. 6. (Color online) (a) Characteristic time t0 and (b) saturation
roughness Wsat in size L = 1024 as a function of the stickness
parameter. Solid lines are fits of the data for a � 0.05.

Using smaller system sizes is also inappropriate because it
enhances crossover effects.

Reference [29] estimated the crossover times for L = 512
and obtained tc ∼ a−0.4±0.04, which is significantly different
from the theoretical prediction in Eq. (15). However, measur-
ing reliable crossover times is a difficult task as explained in
Sec. III. On the other hand, the same work shows that the
saturation time for L = 1024 scales as a−0.7±0.03, which is in
good agreement with our estimate.

The scaling of the amplitude C in Eq. (6) can be predicted
along the same lines of Refs. [4,23,24] for other competitive
models,

C ∼ aγ , γ = δ − yβ. (18)

For the SPD model in 1+1 dimensions, we obtain γ = 1/9.
This very small exponent gives a very slow variation of C with
the stickness parameter. It explains the short distance between
the curves for different values of a in Fig. 2(a).

C. Scaling in a related model

In Ref. [30], a model similar to the SPD was introduced.
The particles incide vertically and, at each site of its trajectory
with a NN occupied site, it may aggregate with probability
p. Otherwise, the particle moves down one site. If no lateral
aggregation occurs, the particle aggregates at the top of the
column of incidence.

In Fig. 1, particle A may aggregate to positions labeled 2–4.
In positions 2 and 3, aggregation trials have probability p. If
the particle does not aggregate at one of those points, it moves
to position 4 and aggregates there. Particle B may aggregate
at position 6 with probability p, otherwise it moves to position
7 and aggregates there.

For small p, most lateral aggregation trials are rejected, thus
UD dominates. Large local height fluctuations appear, similar
to Fig. 5. The increase in the local height difference δh and the
probability of lateral aggregation Plat are given by Eqs. (11)
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and (12) with a replaced by p. Thus, the same reasoning of
Sec. IV A leads to the same scaling relations of the SPD model
with a replaced by p.

In the notation of Ref. [30], exponents α′ = 1/3 and z′ =
2/3 are predicted by our scaling approach. The numerical
estimates of that work α′ ≈ 0.25 and z′ ≈ 0.77 differ from
those predictions, probably because they were obtained by data
collapse methods that do not account for scaling corrections.

V. POROSITY AND PORE HEIGHT SCALING

For a = 1, the samples have large porosity � ≈ 70%.
When a decreases, � decreases because UD creates no holes.
Figure 7 shows regions of some samples obtained with small
stickness parameters. The porosity decrease is accompanied by
the formation of longer pores extended in the vertical direction.
This is a consequence of the increase in the height fluctuation
δhc before a lateral aggregation event [Eq. (14)].

The number of deposited layers necessary to attain a
steady state value of � is relatively small, typically on the
order of tc in Eq. (15). This is expected because pores are
narrow, even in pure BD, thus porosity depends only on short
wavelength height fluctuations, which saturate at short times
(in the absence of scaling anomaly [43]).

Our scaling approach can be used to predict the dependence
of the porosity � and the average pore height on the parameter
a as follows.

During the time interval tc between two lateral aggregation
events, the number of particles deposited at the top of a given
column is approximately tc (note that we are still using the
unit lattice constant and the unit deposition time of a layer
c = 1 and τ = 1). The size of a long pore produced by the
lateral aggregation is δhc [Eq. (14)]. Consequently, for small
a, the porosity (pore volume divided by total volume) is

FIG. 7. (Color online) Regions of size 48 × 48 (in lattice units)
of samples grown with stickness parameters (a) 0.1, (b) 0.01, (c)
0.001, and (d) 0.0001.

FIG. 8. (Color online) (a) Porosity as a function of the stickness
parameter. The solid line is a linear fit of the data for a � 0.01. (b)
Average pore height as a function of the stickness parameter. Dashed
lines have slopes −0.15 (right) and −0.28 (left).

expected to scale as

� ∼ δhc

tc + δhc

∼ a1/3. (19)

This is valid in the limit of very small a in which δhc 	 tc.
The small exponent in Eq. (19) explains why a large

decrease in a leads only to a mild reduction in porosity. This is
remarkably illustrated in Fig. 7 in which a varies three orders
of magnitude, whereas the porosity decreases from � ≈ 0.39
to 0.044, i.e., changes by a factor smaller than 10.

The porosity scaling in the SPD also differs from other com-
petitive models involving ballistic-type aggregation. Examples
are the bidisperse ballistic deposition [16] and the BD-UD
competitive model in which � ∼ p1/2 (p is the probability of
the ballisticlike component).

We simulated the SPD in size L = 1024 for small values of
a in order to measure the porosity between times tI = 5000 and
tF = 10 000. In all cases, tI is much larger than the crossover
time, and tF is much smaller than the relaxation time t×.

Figure 8(a) shows the porosity as a function of the stickness
parameter. The linear fit for 10−4 � a � 10−2 gives � ∼
a−0.33, in excellent agreement with Eq. (19). Although these
values of a are very small, the corresponding values of a1/3

and of � are not very small. Thus, scaling corrections are
particularly weak in this case.

For very small a, the pores are long and isolated as
illustrated in Fig. 7(d). The average pore height is expected
to scale as Eq. (14) because a pore is formed only when a
lateral aggregation event occurs. However, for � ∼ 0.1 or
larger, many pores occupy two or more neighboring columns.
This can be observed in Figs. 7(a)–7(c).

Here we define pore height as the vertical distance between
the aggregation position and the top of the incidence column in
any lateral aggregation event. Its average value 〈hP 〉 is taken
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over all lateral aggregation events between tI and tF in 103

different samples. For small �, pores are isolated, thus 〈hP 〉
is a reliable approximation of the average pore height and
is expected to scale as Eq. (14). For � not too small, some
pores occupy two or more neighboring columns, and all these
columns contribute to 〈hP 〉 (each one had a lateral aggregation
event).

Figure 8(b) shows 〈hP 〉 as a function of a. The slope of
that log-log plot evolves from −0.15 for 10−1 � a � 10−2 to
−0.28 for 10−3 � a � 10−4. The latter is 16% smaller than the
theoretically predicted value −1/3 [Eq. (14)], which indicates
the presence of large scaling corrections.

Reference [29] measured the porosity of samples with
0.1 � a � 1 with results in qualitative agreement with ours.
However, the low porosity scaling was not addressed there.

Reference [30] suggests that the porosity scales with p

(equivalent to a) and with the lattice size L. The latter is
expected only as vanishing corrections since porosity does
not depend on long wavelength fluctuations. This explains the
small (effective) exponents a and c obtained in that work. On
the other hand, Ref. [30] estimates the long-time scaling on
p with exponent b = 0.22, which is to be compared with the
theoretical prediction 1/3. The discrepancy is probably related
to the use of data collapse methods.

VI. SPD MODEL IN 2+1 DIMENSIONS

The aim of this section is to show that the main features
of the SPD model in 1+1 dimensions can be extended to
2+1 dimensions, namely, the KPZ roughening of the outer
surface and the porosity scaling derived by the superuniversal
approach of Sec. IV.

The aggregation rules of the SPD model have to be extended
in this case. First, NN interactions are considered in two
substrate directions with a total of four NNs in the same height.
Second, NNN interactions appear with aggregated particles in
the same height (four neighbors) and with particles at the level
immediately below (four neighbors).

Roughness scaling of ballisticlike models usually shows
large corrections [16,31,35]. An alternative to search for the
universality class of a given model is the comparison of scaled
roughness distributions of relatively small systems because
the finite-size corrections of those quantities are much smaller
[16,31].

We simulated the SPD model with a = 0.1 in substrates
of lateral size L = 256 up to the steady state (roughness

saturation). In this regime, the square roughness w2 ≡ h2 − h
2

of several configurations is measured. P (w2) is the probability
density of the square roughness of a given configuration to
lie in the range [w2,w2 + dw2]. This quantity is expected to
scale as

P (w2) = 1

σ



(
w2 − 〈w2〉

σ

)
, (20)

where σ ≡
√

〈w2
2〉 − 〈w2〉2 is the rms fluctuation of w2 and


 is a universal function [44–46].
Figure 9 shows the scaled roughness distribution of the

SPD model and the distribution of the restricted solid-on-solid
(RSOS) model [47] in substrate size L = 256. The latter

FIG. 9. (Color online) Scaled roughness distributions in the
steady states of the SPD model with a = 0.1 (squares) and of the
RSOS model (solid curve) in 2+1 dimensions with L = 256.

is a well known representative of the KPZ class, and its
roughness distributions have negligible finite-size effects [48].
The excellent collapse of the curves in Fig. 9 is striking
evidence that the SPD model also belongs to the KPZ class in
2+1 dimensions.

We also simulated the SPD model in size L = 1024 for
small values of a and measured the porosity between times
tI = 1000 and tF = 2000. We observe that the porosity is
larger than in the (1+1)-dimensional samples for the same
value of a. For instance, for a = 0.1, the porosity exceeds 50%.
This is a consequence of the larger number of interactions of
the incident particle with NN and NNN in 2+1 dimensions,
which facilitates lateral aggregation.

Figure 10 shows the porosity as a function of a for low
values of that parameter. The linear fit for 10−4 � a � 10−2

FIG. 10. (Color online) Porosity as a function of the stickness
parameter of the SPD model in 2+1 dimensions. The solid line is a
linear fit of the data for a � 0.01.
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F. D. A. AARÃO REIS PHYSICAL REVIEW E 91, 062401 (2015)

gives � ∼ a−0.32, which is also in excellent agreement with
Eq. (19). This supports the extension of the scaling approach
of Sec. IV to 2+1 dimensions.

An important consequence of this scaling approach is to
facilitate the design of samples with the desired values of
porosity and elongated pores. However, one has to take care
with the fluctuations in the value of � in the first layers of the
deposit, typically produced at t � tc.

VII. CONCLUSION

We studied surface and bulk properties of porous deposits
produced by a model proposed in Ref. [29] in substrates with
one and two dimensions. The model shows a crossover from
uncorrelated to correlated growth for small values of stickness
parameter a.

In 1+1 dimensions, a systematic analysis of simulation
data for saturation roughness and relaxation times shows that
the model belongs to the KPZ class. Finite-size corrections
explain the previous claim of deviations from KPZ scaling. In
2+1 dimensions, KPZ roughening is confirmed by comparison
of roughness distributions.

A scaling approach for small values of a is proposed to
relate the crossover time and the local height fluctuations with
that parameter giving exponents −2/3 and −1/3, respectively.
These results are consequences of the UD properties, thus
they do not depend on the spatial dimension. Numerical
results confirm these predictions. The crossover exponents are
smaller than those of other competitive models that consider
aggregation only at the outer surface [7,23,24].

The same approach predicts the porosity scaling as a1/3,
which is in good agreement with simulation results in 1+1 and
2+1 dimensions. This result is important for using the model
to produce porous samples representative of real materials.
This may also help to model samples with desired porosity
and pore height, particularly for the possibility of controlling
the scaling properties by changing the kinetics of subsurface
aggregation.
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[45] Z. Rácz and M. Plischke, Phys. Rev. E 50, 3530 (1994).
[46] T. Antal, M. Droz, G. Györgyi, and Z. Rácz, Phys. Rev. E 65,
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