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Glassy dynamics of athermal self-propelled particles: Computer simulations
and a nonequilibrium microscopic theory
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We combine computer simulations and analytical theory to investigate the glassy dynamics in dense assemblies
of athermal particles evolving under the sole influence of self-propulsion. Our simulations reveal that when the
persistence time of the self-propulsion is increased, the local structure becomes more pronounced, whereas the
long-time dynamics first accelerates and then slows down. We explain these surprising findings by constructing a
nonequilibrium microscopic theory that yields nontrivial predictions for the glassy dynamics. These predictions
are in qualitative agreement with the simulations and reveal the importance of steady-state correlations of the
local velocities to the nonequilibrium dynamics of dense self-propelled particles.
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I. INTRODUCTION

The application of statistical mechanical methods to the
dynamics of individual motile objects started shortly [1]
after Einstein’s work on Brownian motion [2]. Recently,
the collective behavior of systems consisting of interacting
self-propelled particles attracted interest [3,4]. An important
motivation for studying “active” systems is to understand spec-
tacular dynamics observed in assemblies of living systems,
such as coherent motion [5,6]. A more fundamental motivation
stems from the nonequilibrium nature of active systems that are
driven by internal, nonthermal self-propulsion forces, which
represents a difficult challenge for statistical physics. The
behavior of such systems may defy our equilibrium-based
physical intuition, as demonstrated by large-scale collective
motion in persistent hard-disk systems [7], and the emergence
of dynamic clustering [8,9], phase separation [9–11], and
nonequilibrium equation of state [12–14] in repulsive self-
propelled particles.

Active particles may also exhibit behavior similar to that
found in equilibrium systems, such as crystallization [15].
This behavior suggests that, like thermal systems [16], dense
active systems could possibly be supercooled and exhibit
glassy dynamics; as recently argued theoretically on the
basis of a simple driven glassy model [17]. This study was
followed by numerical investigations of active particles with
hard-core [18,19] or continuous [20,21] interactions. Active
glassy dynamics was observed, but when compared with
thermal systems, the onset of glassy behavior was always
pushed toward higher densities and lower temperatures. When
self-propulsion is progressively added to an otherwise thermal
system, it was noted that the local structure becomes less
pronounced [18,21]. Such change in local structure suggests
both a simple physical explanation for the shift of the onset
of glassy behavior and that a straightforward extension of
mode-coupling theory [22] can describe this shift [17,23].

Here we present a simulational and theoretical study of the
structure and glassy dynamics of a more complex system in
which self-propulsion is the only source of motion. We study
self-propelled particles interacting with a continuous potential
(differently from Refs. [18,19]) and without thermal Brownian
motion (differently from Refs. [15,18,20]). Thus, our model

is “athermal” [19,24], and the degree of nonequilibrium is
quantified by the persistence time τp of the self-propulsion.
As τp increases at a constant effective temperature, we find
that the structure of the system becomes more pronounced,
whereas the dynamics initially speeds up and then slows down,
showing that in our model the shift of the glassy dynamics
with self-propulsion is not simply the direct consequence of
the changing microstructure [21,23].

To elucidate these findings we develop a microscopic
theory that accounts for the nonequilibrium nature of athermal
self-propelled systems. We are aware of no other approach
where many-body interactions are taken into account at the
microscopic level. The theory is constructed from the steady
state structure factor and the steady state correlations of the
velocities. The latter correlations are nontrivial only for self-
propelled systems with a finite persistence time and are central
to explain the opposite, and seemingly contradictory, evolution
of the structure and dynamics in dense active materials.

II. MODEL ACTIVE SYSTEM

We study a system of interacting self-propelled particles in
a viscous medium. We model self-propulsion as an internal
driving force evolving according to the Ornstein-Uhlenbeck
[25] process:

ṙi = ξ−1
0 [Fi + fi] , (1)

ḟi = −τ−1
p fi + ηi . (2)

In Eq. (1), ri is the position of particle i, ξ0 the friction
coefficient of an isolated particle, Fi is the force acting on par-
ticle i originating from interactions, Fi = −∑

j �=i ∇iV (rij ),
and fi is the self-propulsion acting on particle i. In Eq. (2),
τp is the persistence time of the self-propulsion and ηi is
an internal Gaussian noise with zero mean and variance
〈ηi(t)ηj (t ′)〉noise = 2Df Iδij δ(t − t ′), where 〈. . . 〉noise denotes
averaging over the noise distribution, Df is the noise strength,
and I is the unit tensor. Without interactions, Eqs. (1) and (2)
produce a persistent random walk with a self-diffusion coeffi-
cient D0 = Df τ 2

p/ξ 2
0 , which defines the single-particle effec-

tive temperature: Teff = D0ξ0 = Df τ 2
p/ξ0 [26]. It is convenient
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to choose as three independent control parameters the number
density ρ (which is kept fixed), the effective temperature Teff,
and the persistence time τp. The persistence time quantifies the
degree of nonequilibrium; when τp → 0 our system becomes
equivalent to a Brownian system at temperature T = Teff.
Including additional thermal noise would add a fourth control
parameter to the model. Finally, we should mention that
recently an approximate mapping has been derived [27]
between our model and the standard active Brownian particles
model [28].

III. COMPUTER SIMULATION STUDY

To compare the glassy behavior of the self-propelled system
with that of a well-studied thermal system, we simulated
the Kob-Andersen (KA) binary mixture [29]. All quantities
presented pertain to the large particles, which comprise 80%
of the mixture. The results are presented in reduced units [30]
at the well-studied density ρ = 1.2. In Figs. 1(a)– 1(c) we show
the dependence of the structure and dynamics when moving
away from equilibrium by increasing the persistence time of
the self-propulsion at constant Teff = 0.5 [31]. At T = 0.5 the
thermal KA system exhibits glassy dynamics. In Figs. 1(a) and
1(c), we see that the pair correlation g(r) of the active fluid
becomes more structured at all length scales with increasing
τp. In equilibrium, such behavior is usually accompanied
by slower dynamics. Surprisingly, Figs. 1(b) and 1(c) show
that the nonequilibrium dynamics exhibits a nonmonotonic
dependence on τp, which allows one to define an “optimal”
value for τp. Describing the contrasting dependencies of
structure and dynamics is a theoretical challenge since most
microscopic glass theories predict the dynamics on the basis of
the pair structure [16,32]. A reentrant behavior of the dynamics
in driven glassy dynamics is typically not observed [17–21].
In Figs. 1(e) and 1(f) we show that, if the persistence time is
chosen at its optimal value, the dependence of the dynamics
of the self-propelled system on Teff is weaker than that of
the thermal Brownian system on T . In particular, we can
study the self-propelled system at Teff = 0.4, whereas it is
challenging to simulate the thermal system below T ≈ 0.43.
The opposite is true for longer persistence times, where the
dependence of the dynamics of the self-propelled system on
Teff becomes significantly more pronounced than that of the
thermal Brownian system.

IV. THEORY

We now outline a microscopic theory for the time de-
pendence of the collective intermediate scattering function,
F (q; t), of our model active system [33],

F (q; t) = N−1〈n(q)e�tn(−q)〉. (3)

In Eq. (3), N is the number of particles, n(q) = ∑
j e−iq·rj

is the Fourier transform of the microscopic density, and � is
the N -particle evolution operator that can be derived from the
equations of motion [Eqs. (1) and (2)]:

� = −ξ−1
0

∑
i

∇i · (fi + Fi) +
∑

i

∂

∂fi
·
(

τ−1
p fi + Df

∂

∂fi

)
.

(4)
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FIG. 1. (Color online) Evolution of the structure and dynamics
with the persistence time τp at Teff = 0.5 [(a)–(c)] and comparison
of dynamics in active systems with τp = 2 × 10−3 and Brownian
systems at T = Teff [(d)–(f)]. In panels (a) and (b) solid lines
correspond to τp = 0 (equivalent to a thermal system at T = 0.5),
and the dashed and dot-dashed lines correspond to τp = 2 × 10−3

and 2 × 10−2, respectively. In panel (a) we show the pair distribution
function g(r); the curves are shifted vertically for clarity. In panel
(b) we show the self-intermediate scattering function Fs(q; t) =
〈eiq·(rj (t)−rj (0))〉 for q = 7.25. In panel (c) we show the relaxation time,
τα (circles) and the peak value of g(r) (triangles). The relaxation
time is defined as Fs(q; τα) = e−1. In panels (d) and (e) solid
lines correspond to active systems at Teff = 1, 0.6, 0.45, and 0.4,
and dashed lines correspond to equilibrium systems at T = 1, 0.6,
and 0.45 (from left to right). In panel (d) we show mean-square
displacement 〈δr2(t)〉 = 〈(rj (t) − rj (0))2〉, and in panel (e) we show
Fs(q; t). In panel (f) circles represent τα , squares represent the
inverse self-diffusion coefficient, 0.1/D of active (closed symbols)
and thermal (open symbols) systems.

Finally, 〈. . . 〉 in Eq. (3) denotes an average over a steady-state
distribution of positions and self-propulsions; the steady-state
distribution stands to the right of the quantity being averaged,
and all operators act on it too. In our approach, we first integrate
out the self-propulsions and then we use the projection operator
method, and a mode-coupling-like approximation to derive an
approximate equation of motion for F (q; t).

To begin, we briefly discuss the case of noninteracting
particles. In this case one could start from the Laplace
transform of Eq. (3) with the evolution operator similar to
Eq. (4) but without interactions. In the simplest approximation,
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after integration over self-propulsions one gets

F (q; z) = N−1〈n(q)
[
z − �eff

free(z)
]−1

n(−q)
〉
r, (5)

where �eff
free(z) = ξ−2

0

∑
i ∇i(z + τ−1

p )−1Df τp · ∇i and 〈. . . 〉r
denotes the steady-state average over particles positions.
According to �eff

free(z), particle motion is ballistic at short times
and diffusive at long times, with the long-time self-diffusion
coefficient D0 discussed above.

For interacting particles, the integration over self-
propulsions is more complicated due to nontrivial correlations
between positions and self-propulsions (already present for a
single self-propelled particle in an external potential [26]). As
we show in Appendix A, the final result is a formula analogous
to Eq. (5) but with the following evolution operator:

�eff(z) = ξ−2
0

∑
i,j

∇i · (
z + τ−1

p

)−1

× (〈fifj 〉lss − 〈fi〉lss〈fj 〉lss) · [−Feff
j + ∇j

]
. (6)

Here, 〈. . . 〉lss is an average over the conditional steady-
state distribution of self-propulsions, P ss

N (r1,f1, . . . ,rN,fN )/
P ss

N (r1, . . . ,rN ), where the superscript “ss” stands for “steady
state.” Furthermore, Feff

j = ∇j ln P ss
N (r1, . . . ,rN ) is the ef-

fective force acting on particle j in the steady state. The
most important physical assumption used in the derivation of
Eq. (6) is the absence of systematic currents in the steady
state; see Appendix A. We expect the persistence time to
be renormalized by the interactions; the presence of the bare
persistence time in Eq. (6) represents an approximation.

We now use the projection operator method and arrive at
the following memory function equation:

∂2
t F (q; t) + τ−1

p ∂tF (q; t)

= −ω‖(q)q2

S(q)
F (q; t) −

∫ t

0
dt ′M irr(q; t − t ′)∂t ′F (q; t ′). (7)

Here, S(q) = 〈n(q)n(−q)〉 is the steady-state structure factor,
ω‖(q) = (Nξ 2

0 )−1〈|q̂ · ∑
i(fi + Fi)e−iq·ri |2〉 quantifies corre-

lations of the velocities of individual particles [34], and
M irr(q; t) is the irreducible memory function. The presence
of the second time derivative in Eq. (7) reflects the ballistic
nature of the short-time motion. A comparison of Eq. (7) with
the analogous equation for an underdamped thermal system
suggests interpreting τpω‖(q)/S(q) as a short-time collective
diffusion coefficient. Since this coefficient involves ω‖(q),
even in the absence of the memory function we need two
static correlation functions to predict the dynamics, S(q) and
ω‖(q). Whereas the emergence of velocity correlations can be
generically expected far from equilibrium, the specific role
they play for self-propelled systems is nontrivial and was not
identified before.

The main approximation of our theory is a factorization
approximation for the memory function to close the dynamical
equations. This is analogous to the mode-coupling approxima-
tion [22]. As we show in Appendix B, using the factorization
approximation and an approximation for the steady-state
vertex function, we arrive at the following expression for the
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FIG. 2. (Color online) Structure (a, b) and dynamics (c) obtained
from simulations and predicted by the theory (d) for various τp at
Teff = 0.9 in the one-component LJ system. (a) Pair distribution
function g(r); the curves are shifted vertically for clarity; τp =
0, 2 × 10−3, and 2 × 10−2 (bottom to top). In panel (b) thick lines
represent ω‖(q)/ω‖(∞) and thin lines represent S(k) at τp = 2 × 10−4

(solid) and 2 × 10−2 (dashed). The inset in panel (b) shows the
persistence time dependence of ω‖(∞)τp . In panel (c) we show τα

(circles, left axis) and the peak value of g(r) (triangles, right axis),
obtained from simulations. In panel (d) we show τα (circles) and the
inverse self-diffusion coefficient, 0.1/D (squares) predicted by the
theory.

memory function:

M irr(q; t) = ρω‖(q)

2

∫
dq1dq2

(2π )3
δ(q − q1 − q2){q̂ · [q1C(q1)

+ q2C(q2)]}2F (q1; t)F (q2; t). (8)

Equation (8) has a structure similar to the memory function
of the mode-coupling theory, but it involves a new function
C(q) [which replaces the direct correlation function c(q) in the
mode-coupling M irr(q; t)],

ρC(q) = 1 − ω‖(q)

ω‖(∞)S(q)
, (9)

where ω‖(∞) = (3Nξ 2
0 )−1〈∑i(fi + Fi)2〉. Equations (7)–(9)

are closed and can be solved if static steady-state functions
S(q) and ω‖(q) are available. To test the theory quantitatively,
we used the static information obtained directly from simu-
lations. Using the KA system would require formulating and
solving our theory for a binary mixture. Instead, we performed
additional simulations of a one-component Lennard-Jones (LJ)
system of self-propelled particles [35]. We measured S(q)
and ω‖(q) and used them to solve Eqs. (7)–(9) numerically
to compare the dynamics predicted by the theory with the
numerical results. We focus on the observed nonmonotonic
evolution of the dynamics with the persistence time because it
represents a demanding test of the theory.
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In Figs. 2(a)–2(c) we show the dependence of g(r), S(q),
and ω‖(q)/ω‖(∞) of the self-propelled LJ system on the
persistence time τp at constant Teff = 0.9 (this is the lowest Teff

at which we were able to simulate our one-component system
without observing spontaneous ordering). Again, the structure
becomes progressively more pronounced as τp increases.
Concurrently, correlations of particle velocities also develop,
as revealed by ω‖(q)/ω‖(∞). Finally, the quantity ω‖(∞)τp,
which is a measure of local mobility in the interacting
self-propelled system, decreases.

Because it incorporates these different trends, our theory
is able to account for the nonmonotonic dependence of the
dynamics on the persistence time. In particular, with increasing
τp both S(q) and ω‖(q) grow for q around 2π/σ and as a result
C(q) gets smaller than c(q), which is the likely source of the
speed-up in the dynamics. At larger τp decreasing ω‖(∞)τp

and increasingly more pronounced local structure seem to
prevail upon the increase in velocity correlations resulting in
the slowing down in the dynamics. In Figs. 2(c) and 2(d), we
show the dynamics predicted by the theory and obtained from
simulations, respectively. Clearly, our theory qualitatively
predicts the nonmonotonic dependence of the dynamics on the
persistence time, suggesting that including nonequilibrium ve-
locity correlations ω‖(q) in the theory is of major importance.
Mode-coupling theories overestimate the slowing down of the
dynamics [22], and this explains why our theory predicts a
more pronounced nonmonotonic effect than in the simula-
tions. Describing quantitatively glassy dynamics at thermal
equilibrium is a notoriously difficult and open challenge [16].
Therefore, quantitative agreement should not be expected in
the far from equilibrium context of self-propelled particles.

Various kinds of generalizations of mode-coupling theory
for driven glassy fluids have been proposed [17,23,36–39].
In particular, Ref. [23] developed a theory for active Brow-
nian particles, where self-propulsion is added to a thermal
Brownian system, but this work differs from our approach on
important aspects. First, correlations between positions and
self-propulsions were neglected in Ref. [23]. Technically, this
amounts to replacing the local steady-state average in Eq. (6)
by the average over the distribution of self-propulsions. As a
result, (〈fifj 〉lss − 〈fi〉lss〈fj 〉lss) gets replaced by Df τpδij I , and
the steady-state correlation function ω‖(q), which we have
shown to play a central role, does not appear. Second, in
our derivation we use projection operators defined in terms
of the steady-state distribution, whereas Ref. [23] uses the
equilibrium distribution. As a result, the memory function
derived in Ref. [23] is the same as in the equilibrium mode-
coupling theory while ours is different. Because we consider
an intrinsically nonequilibrium system, there is no equilibrium
distribution that we could use. Physically, the steady-state
distribution seems more natural since we are describing
fluctuations in the steady state. An obvious disadvantage of
our choice is that we have to obtain the steady-state correlation
functions, S(q) and ω‖(q), from simulations.

V. SUMMARY

Using computer simulations and tools from liquid-state
theory we developed and analyzed an athermal system
of interacting self-propelled particles. We showed that the

microscopic structure and long-time dynamics evolve non-
trivially with the degree of nonequilibrium, which challenges
equilibrium theories for dense fluids. We presented a theory for
the collective dynamics of an active many-body system that can
qualitatively capture these phenomena. In particular, the speed
up of the dynamics of the active fluid was linked to emerging
steady-state correlations of the velocities, an object with no
relevant equilibrium counterpart. In future work, we will
numerically characterize the approach to the glass transition in
more detail for such nonequilibrium conditions. On the theory
side, we will analyze the nature of the “nonequilibrium glass
transition” [17] predicted by our theory. We shall also compare
the dynamics predicted by the theory with that obtained from
simulations at larger degrees of supercooling, and the relation
between the ergodicity-breaking temperature predicted by
our theory with the transition temperature obtained from
simulations. To perform detailed quantitative comparisons, we
will need to generalize the present results to binary mixtures.
More generally, our work paves the way for developing a
general, microscopic understanding of the glassy dynamics
of active materials when different interparticle interactions,
self-propulsion mechanisms, and possibly thermal noise are at
play.
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APPENDIX A: DERIVATION OF EFFECTIVE EVOLUTION
OPERATOR �eff(z)

In Appendix A we present an outline of a derivation of the
effective N -particle evolution operator �eff(z), Eq. (6). There
are three main assumptions used in this derivation. First, we
assume that systematic currents vanish in the steady state of our
system. Second, we assume a separation of timescales for the
structural relaxation and the relaxation of the self-propulsions.
Third, we approximate the dynamics in the space orthogonal
to the local equilibrium distribution of self-propulsions by the
free relaxation of the self-propulsions.

Equations of motion [Eqs. (1) and (2)] are equivalent
to the following evolution equation for the N -particle joint
distribution of positions and self-propulsions,

∂tPN (r1,f1, . . . ,rN,fN ; t) = �PN (r1,f1, . . . ,rN,fN ; t), (A1)

where � is the N -particle evolution operator given by Eq. (4).
We assume that the evolution Eq. (A1) has a steady-state

solution P ss
N (r1,f1, . . . ,rN,fN ), and thus

�P ss
N (r1,f1, . . . ,rN,fN ) = 0. (A2)

In the main text and in the following we use brackets 〈. . . 〉
to denote averaging over the joint steady-state distribution of
positions and self-propulsions, P ss

N (r1,f1, . . . ,rN,fN ).
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From the joint steady-state distribution we can obtain a
steady-state distribution of positions, P ss

N (r1, . . . ,rN ),

P ss
N (r1, . . . ,rN ) =

∫
df1 . . . dfNP ss

N (r1,f1, . . . ,rN,fN ). (A3)

In the main text and in the following we use brackets 〈. . . 〉r to
denote averaging over a steady-state distribution of positions,
P ss

N (r1, . . . ,rN ).
We assume that in the steady-state there are no systematic

currents. To make this statement more precise we first
define the current density by integrating Eq. (A1) over self-
propulsions to get the following continuity equation:

∂tPN (r1, . . . ,rN ; t) = −
∑

i

∇i · ji(r1, . . . ,rN ; t), (A4)

where PN (r1, . . . ,rN ; t) is the N -particle distribution of
positions,

PN (r1, . . . ,rN ; t) =
∫

df1 . . . dfNPN (r1,f1, . . . ,rN,fN ; t),

(A5)
and ji(r1, . . . ,rN ; t) is the current density of particle i,

ji(r1, . . . ,rN ; t) = ξ−1
0

∫
df1 . . . dfN (Fi + fi)

×PN (r1,f1, . . . ,rN,fN ; t). (A6)

Our assumption of the absence of systematic currents in the
steady state is implemented as follows:

ξ−1
0

∫
df1 . . . dfN [Fi + fi] P ss

N (r1,f1, . . . ,rN,fN ) = 0. (A7)

The above equality implies that the local steady-state average
of the self-propulsion is equal to the negative of the force,
〈fi〉lss = −Fi , where the local steady-state average is defined as

〈. . . 〉lss = 1

P ss
N (r1, . . . ,rN )

×
∫

df1 . . . dfN . . . P ss
N (r1,f1, . . . ,rN,fN ). (A8)

We assume that the self-propulsions relax faster than the
positions of the particles. This assumption is applicable for
strongly interacting systems where structural relaxation is
slowing down, whereas the evolution of the self-propulsions
stays, by definition, independent of intermolecular interac-
tions. The separation of the timescales for the structural
and self-propulsions relaxations allows us to derive an ap-
proximate equation of motion for the distribution of particle
positions.

We define the projection operator on a local equilibrium-
like distribution (i.e., on a distribution in which self-
propulsions have a steady-state distribution for a given sample
of positions):

PlssPN (r1,f1, . . . ,rN,fN ; t)

= P ss
N (r1,f1, . . . ,rN,fN )

P ss
N (r1, . . . ,rN )

∫
df1 . . . dfN

×PN (r1,f1, . . . ,rN,fN ; t)

= P ss
N (r1,f1, . . . ,rN,fN )

P ss
N (r1, . . . ,rN )

PN (r1, . . . ,rN ; t). (A9)

Next, we define the orthogonal projection, Qlss =
I − Plss, and write down equations of motion for
PlssPN (r1,f1, . . . ,rN,fN ; t) and QlssPN (r1,f1, . . . ,rN,fN ; t):

∂tPlssPN (r1,f1, . . . ,rN,fN ; t)

= Plss�PlssPN (r1,f1, . . . ,rN,fN ; t)

+Plss�QlssPN (r1,f1, . . . ,rN,fN ; t), (A10)

∂tQlssPN (r1,f1, . . . ,rN,fN ; t)

= Qlss�PlssPN (r1,f1, . . . ,rN,fN ; t)

+Qlss�QlssPN (r1,f1, . . . ,rN,fN ; t). (A11)

Since our final goal is to calculate the intermediate
scattering function given by Eq. (3), we can assume
that QlssPN (r1,f1, . . . ,rN,fN ; t = 0) = 0. Then we can solve
Eqs. (A10) and (A11) for the Laplace transform, LT , of
∂tPlssPN (r1,f1, . . . ,rN,fN ; t), which is given by

LT [∂tPlssPN (r1,f1, . . . ,rN,fN ; t)](z) =
[
Plss�Plss + Plss�Qlss

1

z − Qlss�Qlss
Qlss�Plss

]
PlssPN (r1,f1, . . . ,rN,fN ; z).

(A12)

Using the assumption that systematic currents vanish in the steady state, Eq. (A7), one can show that the first term inside the
brackets on the right-hand-side of Eq. (A12) vanishes. Furthermore, one can show that

Qlss�PlssPN (z) = −ξ−1
0

∑
i

(fi − 〈fi〉lss) P ss
N (r1,f1, . . . ,rN,fN ) ·

[
∇i

PN (r1, . . . ,rN ; z)

P ss
N (r1, . . . ,rN )

]
(A13)

and

Plss�Qlss . . . = −P ss
N (r1,f1, . . . ,rN,fN )

P ss
N (r1, . . . ,rN )

ξ−1
0

∑
i

∇i ·
∫

df1 . . . dfN (fi − 〈fi〉lss) . . . (A14)

We note thatQlss�Qlss describes evolution in the space orthogonal to the local steady-state space. We assume that this evolution
is entirely due to the free relaxation of the self-propulsions. Specifically, we assume that Qlss�Qlss can be approximated by∑N

i=1
∂

∂fi
(τ−1

p fi + Df
∂

∂fi
). We note that this approximation physically means that the relaxation rate of the self-propulsions is not

renormalized by the interparticle interactions. Combining the last approximation with Eqs. (A13) and (A14) we get the following
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approximate equality:

Plss�Qlss (z − Qlss�Qlss)
−1 Qlss�PlssPN (r1,f1, . . . ,rN,fN ; z)

≈ P ss
N (r1,f1, . . . ,rN,fN )

P ss
N (r1, . . . ,rN )

ξ−2
0

∑
i

∇i ·
∫

df1 . . . dfN (fi − 〈fi〉lss)

⎡
⎣z −

N∑
j=1

∂

∂fj

(
τ−1
p fj + Df

∂

∂fj

)⎤
⎦

−1

×
∑

l

(fl − 〈fl〉lss) P ss
N (r1,f1, . . . ,rN,fN ) ·

[
∇l

PN (r1, . . . ,rN ; z)

P ss
N (r1, . . . ,rN )

]
. (A15)

Now, we expand [z − ∑N
i=1

∂
∂fi

(τ−1
p fi + Df

∂
∂fi

)]−1 and integrate by parts. Finally, we integrate both sides of the resulting equation
over self-propulsions and get the following expression for the Laplace transform of ∂tPN (r1, . . . ,rN ; t):

LT [∂tPN (r1, . . . ,rN ; t)](z) = ξ−2
0

∑
i,j

∇i · (
z + τ−1

p

)−1
(〈fifj 〉lss − 〈fi〉lss〈fj 〉lss) · [−Feff

j + ∇j

]
PN (r1, . . . ,rN ; z). (A16)

The right-hand-side of Eq. (A16) defines the effective evolution operator �eff(z) given by Eq. (6).

APPENDIX B: DERIVATION OF AN APPROXIMATE EVOLUTION EQUATION FOR F(q; t)

Here we present an outline of a derivation of an approximate evolution equation for the intermediate scattering function
F (q; t), Eqs. (7)–(9). The framework of the derivation is based on that of the derivation of the mode-coupling theory: first, the
Laplace transform of the time derivative of F (q; t) is expressed in terms of the frequency matrix and the reducible [40,41] memory
matrix. Next, the reducible memory matrix is expressed in terms of the irreducible one. Finally, an approximate expression for
the irreducible memory matrix in terms of the intermediate scattering functions is derived.

The Laplace transform of the intermediate scattering function defined in Eq. (3) reads

F (q; z) = N−1〈n(q)(z − �)−1n(−q)〉
= N−1〈n(q)[z − �eff(z)]−1n(−q)〉r, (B1)

where n(q) = ∑
j e−iq·rj is the Fourier transform of the microscopic density and in the second equality we used the effective

evolution operator derived in the previous Appendix.
To derive an approximate evolution equation for intermediate scattering function F (q; t) we first define a projection operator

on the microscopic density:

Pn = . . . n(−q)〉r 〈n(q)n(−q)〉−1
r 〈n(q) . . . . (B2)

We should emphasize that projection operator Pn is defined in terms of the steady-state distribution, unlike in the approach of
Farage and Brader [23]. Next, we use the identity

1

z − �eff(z)
= 1

z − �eff(z)Qn

+ 1

z − �eff(z)Qn

�eff(z)P 1

z − �eff(z)
, (B3)

where Qn is the projection on the space orthogonal to that spanned by the microscopic density, Qn = I − Pn, to rewrite the
Laplace transform of the time derivative of NF (q; t) as follows

LT [∂tNF (q; t)](z) =
〈
n(q)�eff(z)

1

z − �eff(z)
n(−q)

〉
r
=

〈
n(q)�eff(z)Pn

1

z − �eff(z)
n(−q)

〉
r

+
〈
n(q)�eff(z)Qn

1

z − �eff(z)
n(−q)

〉
r
= 〈

n(q)�eff(z)n(−q)
〉
r 〈n(q)n(−q)〉−1

r

〈
n(q)

1

z − �eff(z)
n(−q)

〉
r

+
〈
n(q)�eff(z)Qn

1

z − Qn�eff(z)Qn

Qn�
eff(z)n(−q)

〉
r
〈n(q)n(−q)〉−1

r

〈
n(q)

1

z − �eff(z)
n(−q)

〉
r
. (B4)

We identify the analog of the frequency matrix, H(q; z),

〈n(q)�eff(z)n(−q)〉r = −q · 〈∑i,j (〈fifj 〉lss − 〈fi〉lss〈fj 〉lss)e−iq·(ri−rj )〉r · q

ξ 2
0

(
z + τ−1

p

) = −q2N
ω‖(q)(

z + τ−1
p

) = −q2NH(q; z), (B5)

062304-6



GLASSY DYNAMICS OF ATHERMAL SELF-PROPELLED . . . PHYSICAL REVIEW E 91, 062304 (2015)

where ω‖(q) is the function quantifying correlations of the velocities of individual particles that was introduced below Eq. (7),

ω‖(q) = 1

Nξ 2
0

q̂ ·
〈∑

i,j

(〈fifj 〉lss − 〈fi〉lss〈fj 〉lss)e
−iq·(ri−rj )

〉
r

· q̂

≡ q̂ ·
〈∑

i,j

(fi + Fi)(fj + Fj )e−iq·(ri−rj )
〉

· q̂. (B6)

Note that 〈〈. . . 〉lss〉r = 〈. . . 〉. Furthermore, we identify the analog of the reducible [40,41] memory matrix, M(q; z),〈
n(q)�eff(z)Qn

1

z − Qn�eff(z)Qn

Qn�
eff(z)n(−q)

〉
r

=
[
ξ 4

0

(
z + τ−1

p

)2
]−1

q ·
〈∑

i,j

e−iq·ri (〈fifj 〉lss − 〈fi〉lss〈fj 〉lss) · [−∇j + Fss
j

]
Qn

1

z − Qn�eff(z)Qn

× Qn

∑
l,m

∇l · (〈flfm〉lss − 〈fl〉lss 〈fm〉lss) eiq·rm

〉
r

· q = q2NM(q; z). (B7)

Following the procedure used previously to derive the mode-coupling theory for Brownian systems we introduce irreducible
memory matrix Mirr(q; z), which is given by the expression analogous to Eq. (B7) but with the projected evolution operator
Qn�

eff(z)Qn replaced by irreducible evolution operator �irr(z) [40–42]. The relation between M(q; z) and Mirr(q; z) reads

M(q; z) = Mirr(q; z) − Mirr(q; z)H−1(q; z)M(q; z). (B8)

Combining Eqs. (B4) and (B5) and Eqs. (B7) and (B8) we can write the Laplace transform of the time derivative of the
intermediate scattering function in the following way:

LT [∂tF (q; t)](z) = −q2H(q; z)[1 + Mirr(q; z)/H(q; z)]−1F (q; z)/S(q), (B9)

where S(q) is the steady-state structure factor, S(q) = N−1〈n(−q)n(q)〉r. In turn, Eq. (B9) can be rewritten as[
z + τ−1

p + (
z + τ−1

p

)2 Mirr(q; z)/ω‖(q)
]
[zF (q; z) − F (q; t = 0)] = −[ω‖(q)q2/S(q)]F (q; z). (B10)

Equation (B10) transformed back to the time domain reproduces Eq. (7). In particular, the inverse Laplace transform of
(z + τ−1

p )2Mirr(q; z)/ω‖(q) is equal to the irreducible memory function M irr(q; t) that enters into Eq. (7).
To proceed we derive an approximate expression for the irreducible memory function M irr(q; t) in terms of the intermediate

scattering functions. To this end we first follow the steps of the derivation of the mode-coupling theory [41] and replace projection
operators Qn in M irr(q; t) by projections on density pairs, and next factorize both steady-state and time-dependent four-point
correlations. As a result we get the following approximate expression for M irr(q; t):

M irr(q; t) ≈ 1

Nξ 4
0 ω‖(q)

∑
q1,...,q8

q̂ ·
〈∑

i,j

e−iq·ri (〈fifj 〉lss − 〈fi〉lss〈fj 〉lss) · [−∇j + Fss
j

]
Qnn2(−q1, − q2)

〉
r

×δq1q3δq2q4 + δq1q4δq2q3

N2S(q1)S(q2)
N2F (q3; t)F (q4; t)

(
δq3q5δq4q6 + δq3q6δq4q5

)

×δq5q7δq6q8 + δq5q8δq6q7

N2S(q5)S(q6)

〈
n2(q7,q8)Qn

∑
k,l

∇k · (〈fkfl〉lss − 〈fk〉lss 〈fl〉lss) eiq·rl

〉
r

· q̂. (B11)

Next, we approximate the vertex functions. The justification for the form of this last approximation will be discussed elsewhere.
Here we present the approximate expression for the left vertex,

ξ−2
0 q̂ ·

〈∑
i,j

e−iq·ri (〈fifj 〉lss − 〈fi〉lss〈fj 〉lss) · [−∇j + Fss
j

]
Qnn2(−q1, − q2)

〉
r

≈ −iq · q1N

(
ω‖(q)

1

ω‖(∞)
ω‖(q1)S(q2) − ω‖(q)S(q1)S(q2)

)
δq,q1+q2

− iq · q2N

(
ω‖(q)

1

ω‖(∞)
ω‖(q2)S(q1) − ω‖(q)S(q1)S(q2)

)
δq,q1+q2 , (B12)

where ω‖(∞) = limq→∞ ω‖(q) ≡ (3Nξ 2
0 )−1〈∑i(fi + Fi)2〉.

Finally, we use Eq. (9) and an analogous approximation for the right vertex in Eq. (B11) and, after taking the thermodynamic
limit, we obtain Eqs. (8) and (9).
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