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Mean-field microrheology of a very soft colloidal suspension: Inertia induces shear thickening
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Colloidal suspensions have arich rheology and can exhibit shear thinning as well as shear thickening. Numerical
simulations recently suggested that shear-thickening may be attributed to the inertia of the colloids, besides the
hydrodynamic interactions between them. Here, we consider the ideal limit of a dense bath of soft colloids
following an underdamped Langevin dynamics. We use a mean-field equation for the colloidal density to get an
analytical expression of the drag force felt by a probe pulled at constant velocity through the suspension. Our
results show that inertia can indeed induce shear thickening by allowing density waves to propagate through the

suspension.
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I. INTRODUCTION

Suspensions of colloids or droplets have a rich rheology
[1,2]. Whereas they can have a yield stress at volume fractions
above the glass or jamming transitions [3], they behave as
simple Newtonian fluids at moderate densities and small shear
rates. Upon increasing the shear rate, their viscosity can then
decrease (shear-thinning) or increase (shear-thickening) [4,5].

Experimentally, the suspension rheology can be investi-
gated using macrorheology or microrheology. In macrorheol-
ogy, a global shear rate y is applied, and the resulting shear
stress T is measured; the viscosity is then defined as n = 7/y
[6,7]. In microrheology, the motion of a small probe in the
medium is observed [8,9]. Notably, in active microrheology,
the probe is placed in an optical or magnetic trap and pulled
at constant velocity v (or at constant force F) through the
medium [10-14] (see Fig. 1). Measuring the drag force F on
the probe (or its average velocity v) and the corresponding drag
coefficient A = F /v, one can use the Stokes formula to deduce
the viscosity: A = 6w na,, where aj, is the radius of the probe.
These two approaches have their theoretical counterpart both in
numerical simulations ([3,15-17] for macrorheology, [18,19]
for microrheology) and analytical computations ([6,20] for
macrorheology, [21,22] for microrheology).

Shear-thinning, which is ubiquitous in experiments, is also
present in most of the analytical computations both for dilute
[21,22] and dense suspensions [20,23-27] (see Ref. [14] for a
review). It is commonly associated with the disruption of the
equilibrium microscopic structure, which gives the solution
a large viscosity. On the other hand, various forms of shear-
thickening exist and they are difficult to describe theoretically
[5,28]. While discontinuous shear-thickening may arise due
to a dynamic jamming transition [29-31], a softer, continuous
shear-thickening is induced by the formation of hydroclusters
due to the lubrication forces, which hold the particles together
[32]. However, this mechanism has a negligible effect on soft-
particles [5,22,33]: grafting polymer brushes to hard colloids
can considerably delay shear-thickening [34].

A recent numerical work addressed the role of colloids in-
ertia on the suspension rheology, neglecting the hydrodynamic
interactions, and showed that it can induce shear-thickening as
long as the system is sufficiently far from jamming [15]. In this
article, we provide an analytical derivation of this effect in the
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FIG. 1. (Color online) Illustration of the system studied: a probe
(red) is pulled at constant velocity through a dense bath of soft colloids
with inertia.

limit of very dense and soft colloids. We use microrheology
to investigate the properties of this medium: we compute the
drag force felt by a probe pulled at constant velocity through
the suspension. We obtain an analytical expression for the
drag coefficient A, which displays shear-thickening induced
by inertia.

This article is organized as follows. The model of under-
damped Langevin colloids is presented in Sec. II. A linearized
equation for the coarse-grained density field of the bath is
obtained in Sec. III. This linearized equation is used to compute
the response of the bath to the passage of the probe at constant
velocity in Sec. IV. The stationary bath density around the
probe is computed (Sec. IV A), from which the drag felt by the
probe is deduced (Sec. IV B). The analytical expressions are
computed numerically and discussed in Sec. IV C. Our results
are discussed in terms of the different timescales involved in
the problem in Sec. IV D. Finally, the effect of the mode of
driving is mentioned in Sec. IV E.

II. MODEL

We consider N colloids in a d-dimensional bath with
positions x;(¢) interacting via the pair potential V(x) and
evolving according to Langevin dynamics, which we write
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in the form
mx;(t) + Ax;(t) = F;(t) + 1;(2), (D

where m is the mass of the colloids and X is the friction
coefficient with the solvent. We can thus define the damping
time associated to the inertia of the colloids as
T = —. 2
)\s (2
fi() is the force on the particle i and 5;(¢) is the Gaussian
white noise on the particle i. The noise is completely defined
by its correlation function

(mi()n; (1)) = 2T28;8(t — 1)1, 3)

where T is the temperature (the Boltzmann constant is set to
kg = 1). The force is given by the gradient of the potential
created by the other colloids,

Fi(r) = —ZViV[xi(t)—xj(t)]- “4)
j

The volume V of the box containing the colloids is taken to
infinity, keeping the density pp = N/V constant.

A probe, which interacts with the bath colloids with the
potential V,(x), is pulled at constant velocity v, through the
suspension. The mode of driving, constant velocity instead of
constant force, is chosen because it leads to easier analytical
computations. The average velocity induced by a constant
force applied on the probe has been computed without inertia
for the bath particles in Ref. [27]. Although it has been shown
that in dilute systems without hydrodynamic interactions the
viscosity measured by imposing the velocity is twice the one
measured by imposing the force [35], there is no general
relation between the results obtained through these two modes
of driving [14].

Without loss of generality, we can set the size of the bath
colloids a, the thermal energy 7', and the friction coefficient
As to 1 (we keep the temperature explicitly in our expressions
to make the role of the temperature clear). The dimensional
counterpart of the dimensionless quantities computed below is
obtained by multiplying them by the appropriate factor of the
size of the probe a, the thermal energy kg7, and the friction
coefficient of a colloid in the solvent As.

III. LINEARIZED EQUATION FOR THE BATH DENSITY

Given the colloids positions {Ci(l‘) and velocities v;(¢), the
bath density §(x,t) and current j(x,t) are defined by

pl) =Y 8lx —xi(1)], 5)

Jee.n) =) viblx —x;(0)]. 6)

For colloids with Langevin dynamics, Eq. (1), Nakamura and
Yoshimori derived the exact equations satisfied by these two
fields [36]:

p=-V-], (7

AAT =

JJ )+_«/Tp
T

N 1, 1, N
aljz——J——pV(V*,O)—V-(—A 1, (8)
T T )
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where s is the convolution product, V x p(x,t) = f Vix —
x)p(x’,t)dx’, and 5(x,t) is a Gaussian white noise with
correlation function

G, O )Ty = 2T8(x — x)8(t — 1. )

Equations (7) and (8) are nonlinear and contain multiplica-
tive noise, which makes their analytical treatment difficult.
This situation is inextricable for the real fields, but the
equations can be linearized if one works with the coarse-
grained fields p(x,7) and j(x,?), which obey [37]

0p=-V- j? (10)

. 1.
O J = —;[J +TVp+pV(Vxp)—+/Tonl

- -T
_v.(%>. (11)

In Eq. (11), we used the random phase approximation [38] to
write the direct correlation function c(r) with the interparticle
potential, c(r) = —V(r)/ T . The random phase approximation
is justified if the pair potential is weak, which is the case that
we consider.

Following Ref. [27], we can now linearize Egs. (10) and
(11) around a large homogeneous density pg: writing

p(x.t) = po + py *p(x.1), (12)
J@.t) = py*¥(x.n), (13)

and taking the limit py — oo with poV (x) — V(x), we get
ahp=-V-9y, (14)
1
0¥ =——[¥+TVP+V(Vx¢) - VTyl.  (15)

A closed second-order equation can be obtained for the density
field,

1294 0,0 = TV + V2V d) + VTV -y, (16)

The contribution of inertia in this expression is remarkably
simple: it enters only in the first term on the left-hand side.
Without inertia, this equation reduces to the linearized Dean
equation [27].

IV. APPLICATION TO A PROBE PULLED AT CONSTANT
VELOCITY

A. Bath density around the probe

In order to assess the rheological properties of the suspen-
sion, instead of shearing the material globally as in Ref. [15],
we pull a probe particle at constant velocity v, through the
medium, as in Ref. [39].

The interaction between the probe and a particle of the bath
is given by the potential V,(x) = V,(x)/po. The effect of the
probe on the density field can be incorporated in the linearized
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equation (16) as in Ref. [27],
T2 (x,1) + 3,¢(x,1)
=TVp(x.1) + V[V d)(x.0)] + V - fj(x.1)
+ 05 PV (x — x, ()], (17)

where x (1) = vpt is the position of the probe. Conversely, the
force exerted by the bath particles on the probe is

F(t) = —py PVIV, % ¢)xp(0),0)]. (18)

We are interested in the average stationary solution for the
field in the reference frame of the particle,

¢*(x) = (p(x + vpt,1)); 19)
it satisfies
(vp - V)’ (x) — vy - Vo' (x)
= TV2*(x) + V2V % ¢* (X)) + py *V2V,(x).  (20)
In Fourier space, this equation reads
{K*[T + V(K] —iv, -k — (v, - k)*}* (k)
= —py KV, (k), 1)
leading to the solution

—py K V)

o1 = KT + V)] —ivy, -k —t(v, - k)?

(22)

Finally, the density variation Sp*(x)zpo_l/qu*(x) is, in
Fourier space,
8p" k) _ —k*Vy(k)
po KT + poV k)] —iv, -k — t(v, - k)2

(23)

B. Drag coefficient

The drag force can be expressed with the density variation
in Fourier space as

F=—p '/ / ikf)p(k)qu*(k)%, (24)
g / kk>Vy(k)? dk
O J BT +V(k)] —ivy - k — (v, - k)2 Q)
(25)

! / k(v, - )k V,(k)?
) AT V) — (v K2R+ (v, - k)2
dk

X W

(26)
Decomposing the wavevector as k = (kj,k ) according to the
velocity v, allows us to write the force as
| ki k2 Vp (k)
F==py v / 2 ¥ 212 2
{K2[T + V(k)] — t(vpky)*}? + (vpky)
dk
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The drag coefficient A is defined by F = —Av,; it reads
N ki Vp (k)? dk
pO/ {I2[T + poV ()] — T(upky )2 + (vpky)? 2m)¢
(28)
This expression is our main result. Note that this drag
coefficient is induced by the bath colloids only; the total drag
force also includes the drag induced by the solvent.

We are interested in the stationary bath density around the
probe [Eq. (23)] and the drag coefficient [Eq. (28)] in two
cases:

(i) the probe is much larger than the bath particles,

(i1) the probe is identical to the bath particles.

In case (i), the wavevectors k that contribute to the integral
in Eq. (28) are of the order k ~ 1/a, <« 1. At this scale,
the Fourier transform of the bath pair potential is almost
constant, V (k) ~ V(0) for k ~ 1 /ap. This allows us to define
the “collective” diffusion coefficient of the bath [13],

Dy = T + poV(0), (29)

which sets the relaxation time of the density field p(x,?). The
Péclet number is defined as

ayv
Pe = >,
Dyan

it compares the velocity of the probe to the relaxation of the
density field [13].
The density around the probe can then be written
Sp"k) 1 —k2V, (k)

= - 2 5
£0 Dypatn k2 — lEkH — tDbathPizkﬁ
ap ap

(30)

€1y

To rescale the lengths to the probe size a,, we introduce g =
ayk and V,(y) = Vy(a,y) [so that V,(k) = ag Vp(apk)]. With
these notations, the density around the probe reads

~ 4 ~
8p (q/ap) _ a, —qsz(lI) 32)
£0 Dyan g% — iPeq) — %Pezqﬁ’
where
a2
P
Trel = (33)
el Dyain

is the relaxation time of the field on the lengthscale of
the probe. With the appropriate normalization, this density
depends only on the Péclet number and the inertial number
T/71- This is also true for the drag coefficient, which can be
written

A

ad 2 2‘7 2 d
_ Pody [ 479" Vp(q) q (34)
(q> —

Dy ZPeq])’ + Peq] (217

C. Numerical computation

The dimension is set to d = 3 and the pair potentials are
Gaussian,

2
V(x) =eexp (—%) , (35)
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FIG. 2. (Color online) Bath density variations in the reference frame of the probe, 5p*(x) = p*(x) — po, for different values of the Péclet
number, when the probe is much larger than the bath particles and the bath particles are heavy, t/7,; = 100. The normalization constant is

N = 6p/Dbath~

2
Vo(x) = €, exp (—;7) . (36)
p

The bath density is plotted on Fig. 2 for heavy bath
particles (t/1) = 100) at different Péclet numbers. The drag
coefficient is plotted as a function of the Péclet number on
Fig. 3, for different values of the inertial number. These
curves exhibit shear-thickening and resemble those obtained
by numerical simulations in Ref. [15] [see Fig. 2(a)]. This
effect is due to inertia, as it disappears at low inertial numbers,
in accordance with the conclusions of Ref. [15]. The density
profiles differ strongly from those found in Refs. [18,21,27,35]
without inertia, or in the experiments of Refs. [12,13]. In the
experiments of Ref. [12], one can estimate 7/ (a,% /Dp) >~ 10
(Do = kgT /X is the thermal diffusion coefficient), so that
inertia should matter; however, the bath particles are hard and
the model discussed here may not apply. Inertia allows density

100 T T T
\ T/Treg = 0.1 ——
1] —
10 ——
100 ——
o 10 ¢ E
I !
o 0.1 1 10
= Pey/T/Teel
~
< 1 E
0.1 ‘ ‘
0.001 0.01 0.1 1 10

Pe = dp Vp/Dbath

FIG. 3. (Color online) Friction coefficient when the probe is
much larger than the bath particles as a function of the Péclet number
for different values of the inertial number t/t,, normalized by its
value at small Péclet number. The dots indicate the values used for the
density profiles described in the legend of Fig. 2. Inset: Normalized
friction coefficient as a function of the Péclet number rescaled by

Y% t/rreb

waves to propagate through the bath leading to the cone visible
for Pe = 0.1, 0.5 on Fig. 2.

In case (ii), the dynamics of the bath depends on the mode
k and no collective diffusion coefficient can be defined. The
bath density is plotted on Fig. 4 for ppe = 1, T = 100, and
different probe velocities; its structure is more complex than
in the case (i), because the bath is dispersive at the scale of
the colloids. The drag coefficient is plotted as a function of the
probe velocity on Fig. 5 for ppe = 1 and different inertial times
7, and on Fig. 6 for = 0.1 and different interaction strengths
po€. A shear-thickening regime emerges at large inertial times
and large interaction strengths, consistently with our finding
for point-like bath particles.

D. Timescales and scaling laws

We show that the different observed behaviors can be
rationalized by comparing the different timescales involved in
our process. We focus on case (ii) where the probe is identical
to the bath particles, a, = a = 1. Four timescales emerge in
our analysis:

(1) The inertial timescale 7; = m/A; = .

(2) The thermal diffusion timescale 7y, = ksag /T =1,

(3) The timescale associated with the density relaxation
due to pair interactions, Tpar = As/(Poape) = 1/(po€). The
denominator, poaSe, is the energy scale seen by one bath
particle. This expression differs slightly from the one given
in Ref. [15] for the viscous damping timescale (7p in Ref.
[15]), where pg =~ ap’3 and Tpair = Asag/e.

(4) The timescale associated with the motion of the
probe, 1, = a,/vp = 1/v,. In macrorheology, the character-
istic timescale of the forcing is set by the shear rate y:
Tshear — 1/ )/

At moderate density and low temperature, the suspension
undergoes a glass transition [15]. We are interested in higher
densities and temperatures, where the system still behaves
as a fluid [4043]. In this case, thermal diffusion and pair
interactions act together to relax the density; the first two terms
on the right-hand side of Eq. (16) show that the two associated
timescales 7y, and Ty are combined in one timescale Ty
related to the relaxation of the density field:

1 1
—+
Tth

Trel

=T + poe. 37

Tpair
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FIG. 4. (Color online) Bath density variations in the reference frame of the probe, p*(x)/po — 1, for different values of the probe velocity
when the bath particles are identical to the probe. The bath particles are heavy, T = 100, and ppe = 1.

Without inertia, i.e., 7; = 0, only two regimes are present
(see Fig. 5, t = 0.1): a Newtonian regime at small velocities
where 1, > T and a shear-thinning regime at large probe
velocities such that 7, < 7. The suspension shear thins
because it does not have enough time to respond to the presence
of the probe. This effect has already been evidenced in this
framework in Ref. [27] and for a probe in more general
environments in Ref. [39]. Shear-thinning is also observed
in experiments [12,13], numerical simulations [15,18], and
computations [20,21,23-26]; it is due to the disruption of
the static organization of the medium by the probe, which
occurs when the forcing timescale becomes comparable to the
relaxation timescale.

When inertia is added, expanding the denominator of the
integrand in Eq. (28) for small probe velocities leads to the
following criterion: shear-thickening is present if

(38)

This is also the condition for the mode k = 7 /a,, of the density
to oscillate and waves to develop in the wake of the probe (see
Figs. 2 and 4). This expansion gives the variation of the friction

Ti Z Trel-
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~<
1
0.01

Yo

FIG. 5. (Color online) Friction coefficient as a function of the
probe velocity when the bath particles are identical to the probe,
for different values of the inertial relaxation time t, with ppe =
1. The friction coefficient is normalized by its value at small
velocity. The dots indicate the values used for the density profiles
described in the legend of Fig. 4. Inset: Normalized friction coefficient
as a function of the probe velocity rescaled by /7.

coefficient at small velocity as

Avp) — Ay, =0) ~

vp—>0

(i _ 1) v2; (39)
Trel
this scaling law has been observed in Ref. [15], but it does
not hold when the maximal drag coefficient is approached
here. It is also different from the scaling A ~ v, obtained
by Bagnold [6], where the dissipation is dominated by the
collisions between the grains. Note that the exponent is dictated
by symmetry in our model: the drag coefficient is an even
function of vy, so that the first correction is of order v2.

A direct look at the same expression shows that the viscosity
is maximal when

Tp =/ TiTrels (40)

which corresponds to a resonance between the forcing and
the excited mode. This expression does not match the scaling
found in Ref. [15] and explained by arguments from kinetic
theory, which is 1, >~ ri3/ 4trL{4. However, Kawasaki et al.
suggest that the scaling Eq. (40) can be obtained assuming
“soft particles and collisional dissipation.”

As the inertia T increases, the shear-thickening becomes
sharper in Figs. 3 and 5. Rescaling the velocity by /T in
Eq. (28) [or the Péclet number by +/7/1 in Eq. (34)], it

10 T T T
poe = 0.1
1
10
100
)
I
<= 1
£
,(
0.1
0.1

FIG. 6. (Color online) Friction coefficient as a function of the
probe velocity when the bath particles are identical to the probe, for
different values of the interaction strength pge, with T = 0.1. The
friction coefficient is normalized by the density of the bath.
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appears that the integral diverges for 7, > /7Tl When 7 —
oo. This divergence is shown in the inset of Figs. 3 and 5; it
shows that the shear-thickening becomes discontinuous in this
limit.

At high velocities such that 7, < ./TiTwl, the drag coef-
ficient induced by the bath particles decays as ~ v=*. The
total drag force thus reduces to the drag force induced by the
solvent.

E. Constant velocity versus constant force

As pointed out above, the drag coefficient depends on the
mode of driving: constant force or constant velocity [14,35].
We show this effect in the limit of zero velocity, or zero force,
and without inertia (r = 0). The drag coefficient Eq. (28)
reduces to

_ P V(k)? dk

A'QV. ~ .
d ] 1T + VP Quy

(41)

The drag coefficient at constant force has been computed in
Ref. [27] [Eq. (79)]; at zero force, it is

_ Mo V(k)? dk

Aert. _ _ .
T d ) IT + e VAOIRT + poV (k)] 2r)

(42)

As found in Ref. [35], the drag coefficient is smaller when
measured at constant force, because of the factor 2 in front of
the temperature in the denominator of Eq. (42), which accounts
for the diffusion of the probe [27]. Interestingly, in the “dilute”
limit where pq V (k) <« T, we recover the relation Acy = 2Acs.
found in Ref. [35].
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V. CONCLUSION

We considered a suspension of colloids with inertia and
showed that the drag force on a probe pulled at constant
velocity can be computed analytically in the limit of a dense
suspension and soft colloids. The rheology of the suspension
can be deduced: shear-thickening is observed if the inertia
is large enough for density waves to propagate through the
solution, in agreement with Ref. [15]. However, some quan-
titative differences arise between these numerical simulations
and our computations in the scalings of the viscosity before
the maximum and the position of the maximum. Numerical
simulations closer to the regime that we studied, which are
beyond the scope of this paper, would help to bridge this gap.

In Ref. [27], we show that the ideal limit of a very dense
and soft suspension reproduces the tracer diffusion coefficient
computed in the dilute limit [44] and exhibits force-induced
diffusion, which has also been observed for hard particles
[23,45,46]. Adding inertia, we showed here that it repro-
duces the basic features of inertia-induced shear-thickening
reported for numerical simulations for hard particles [15].
These examples show that although the assumptions made
in the computation are restrictive, this mean-field model
can shed light on generic rheological properties of colloidal
suspensions. At this stage, when applied to systems that are
not in the theoretical range of validity, the outcome of this
model cannot be considered as quantitatively accurate.
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