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Self-organized shocks in the sedimentation of a granular gas
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A granular gas in gravity heated from below develops a certain stationary density profile. When the heating
is switched off, the granular gas collapses. We investigate the process of sedimentation using computational
hydrodynamics, based on the Jenkins-Richman theory, and find that the process is significantly more complex
than generally acknowledged. In particular, during its evolution, the system passes several stages which reveal
distinct spatial regions of inertial (supersonic) and diffusive (subsonic) dynamics. During the supersonic stages,
characterized by Mach > 1, the system develops supersonic shocks which are followed by a steep front of the
hydrodynamic fields of temperature and density, traveling upward.
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I. INTRODUCTION

Granular gases, that is, ensembles of macroscopic particles
with internal degrees of freedom interacting by binary colli-
sions, are intensively studied since they reveal a rather exotic
behavior as compared to molecular gases, originating from
the dissipative nature of particle collisions (see [1], and many
references therein). In particular, the dynamics of granular
gases as well as more dense granular systems is frequently
characterized by supersonic behavior. While the supersonic
nature of rapid granular flows is known for long time (see,
e.g., [2], and references therein), it was shown that supersonic
behavior may appear also in force-free systems as a result of
self-organized dynamics [3]. Later, Tan and Goldhirsch [4]
showed that supersonic behavior is not an exotic state but
dynamical granular systems are nearly always supersonic,
that is, it is a typical state of granular matter. There is much
recent progress regarding the supersonic properties of granular
matter, including shocks, theoretically [5–9], numerically
[10–17], and experimentally [7–9,18–24]; however, surpris-
ingly little is known about the spatiotemporal relation between
the field of Mach number influenced by temperature and
density and the dynamics of supersonic shocks in granular
systems [25–27].

While since the pioneering study by McNamara and
Young [28] the collapse of a free granular gas undoubtedly
pertains to the most extensively studied nonstationary granular
phenomena, the important issue of collapse occurring under
external forcing has, on the other hand, seldom been addressed.
A simple experimentally feasible example of such a process
consists in the sedimentation of a granular gas under the
action of gravity. To persist under conditions of gravity,
granular gases need the external support of energy to balance
the loss of energy due to dissipative collisions. While in
experiments energy is frequently supplied via vibration of
the confinement or parts of it, theoretical approaches often
consider a heated wall, i.e., a solid boundary reemitting
incoming particles with a velocity sampled from a distribution
corresponding to the temperature of the wall. A granular gas
under gravity heated from below exhibits a nonmonotonous
stationary density profile [29,30], in contrast to the barometric
profile in molecular gases. The corresponding temperature
profile decays with height, due to dissipative collisions.

Starting from this stationary state, in this paper we investi-
gate the evolution of the system when we switch off the supply
of energy and the granular gas sediments under the action of
gravity.

Such a process was first considered by Volfson et al. [31]
who found by numerical integration of hydrodynamic equa-
tions and particle simulations that the energy of the gas drops
to zero in finite time, E ∼ (tc − t)2. This behavior is surprising
as it resembles a single particle in gravity: Starting at velocity
v0, the velocity after the kth impact is εkv0 where ε is the
coefficient of restitution. The kth impact takes place at time

tk =
k−1∑
n=0

2v0

g
εn = 2v0

g

1 − εk

1 − ε
= 2v0

g(1 − ε)

(
1 − vk

v0

)
. (1)

Solving for vk and dropping the index we obtain

v = g

2
(1 − ε)(tc − t) with tc ≡ 2v0

g(1 − ε)
. (2)

Therefore, energy decays like E ∼ (tc − t)2, which is the same
functional form as found for the granular gas. From this result
it may be concluded that the sedimentation of the granular
gas is the same way as independently moving particles, that
is, the interaction of particles seems to be unimportant for the
functional form of the decay of energy.

Later in [32], Son et al. investigated the same prob-
lem experimentally, leaving a previously vibrated granular
gas to condense under the action of gravity. They con-
firmed E ≈ (tc − t)β ; however, β = 3.1 . . . 6.1 was found.
Son et al.measured the hydrodynamic fields of density,
temperature, and vertical velocity and identified two distinct
stages in the process of sedimentation, separated by a steep
increase of temperature which they call a settling shock. In
order to explain the differences between the energy decay laws
found from hydrodynamic theory [31] and in experiments [32],
Kachuck and Voth [33] performed particle simulations for a
wide parameter range to reproduce the results of [32].

Using numerical hydrodynamics analysis, in the present
paper we show that the process of sedimentation is more
complex than generally acknowledged. In particular, the
sedimentation process comprises several stages, where only
the last one is the (diffusive) scaling regime with the critical
time, tc, identified in [31,32]. This behavior is preceded by
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a sequence of shock front scenarios whose spatiotemporal
appearance is attributed to the field of Mach number and
its relation to the fields of density and temperature. While
the term “shock” was used also in [31,32] to characterize
a steep gradient of the fields of density or temperature,
here we show that the term shock applies in its genuine
meaning, that is, as a boundary between diffusive and inertial
dynamics characterized by the appearance of supersonic flow.
Surprisingly, the spacial and temporal appearance of these true
shocks does not agree with the effects termed shock in [31,32].

II. HYDRODYNAMIC DESCRIPTION

Consider a granular gas of smooth inelastic hard disks of
mass m and diameter σ colliding with a constant coefficient
of restitution ε. The hydrodynamic fields of number density,
n(�r,t), flow velocity, �u(�r,t), and temperature, T (�r,t), obey the
balance equations [34]

∂n

∂t
+ �∇ · (n�u) = 0,

ρ

(
∂ �u
∂t

+ �u · �∇ �u
)

= −�∇ · P̂ + ρ �g, (3)

n

(
∂T

∂t
+ �u · �∇T

)
= −∇ · �q − P̂ : �∇�u − ζnT ,

where ρ = mn, �g, P̂ , �q, and ζ denote mass density, gravity,
pressure, heat flux, and cooling rate due to dissipative
collisions, respectively. The constitutive relations for pressure
and heat flux are

Pij = pδij − η(∂jui + ∂iuj − δij
�∇ · �u) − γ δij

�∇ · �u,
(4)�q = −κ �∇T

with p, η, γ , and κ standing for hydrostatic pressure, shear and
bulk viscosity, and thermal conductivity. Their explicit forms
are provided by the Jenkins-Richman theory [34]:

p = 4
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where φ = nπσ 2/4 is the packing fraction, G(φ) = φχ (φ),
and χ (φ) is the pair correlation function [35] with the random
close packing fraction for disks, φmax = 0.82.

During the sedimentation, the system shows simultaneously
regions of low and high density, therefore, the solution of the
compressible Navier-Stokes equations, Eq. (3), is a numerical
challenge requiring a highly precise but numerically expensive
weighted essentially nonoscillatory (WENO) scheme [36–38]
which was shown to deliver reliable results for rather similar
systems [26]. During the sedimentation, with progressing time
the top region of the system would reach zero density while the
sediment at the bottom approaches dense packing. Numerical
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FIG. 1. (Color online) Stationary profiles of packing fraction,
φ(y), and temperature, T (y), of a granular system heated from below,
T0 = 106, establishing the initial conditions of the sedimentation.
Height is given in units of σ .

hydrodynamics codes cannot handle these limits, therefore
our code restricts density to 0.0001 � φ � 0.9999φmax while
preserving the total mass.

For later use, we define the (local) speed of sound,

c2
s = ∂p

∂n
+ p

n2

∂p

∂T
, (6)

for the (local) hydrostatic pressure, p [see Eq. (5)].
When the system is supplied with energy from below

through a thermal wall at temperature T0, it adopts a stationary
state with characteristic profiles of packing fraction and
temperature [30] which is the initial state of the sedimentation
process starting at time t = 0 when the heating is switched
off. From this moment on we assume adiabatic boundary
conditions (zero heat flux) at the bottom. At the top, density
vanishes due to gravity, implying zero heat flux as well.
Consequently the loss of energy in the course of time is
exclusively due to inelasticity of the particle collisions. The
amount of granular material was chosen such that the height of
the sediment at t → ∞ is 20 layers of particles. Figure 1 shows
the initial state for the system specified by box size Lx = 50σ

(periodic boundary conditions) and Ly = 300σ , coefficient of
restitution ε = 0.98, total mass equivalent N = 1044 particles
at random close packing, φmax, and T0 = 106.

III. DECAY OF ENERGY

Let us first look to the evolution of the total energy,
Fig. 2, revealing a complex behavior which may be attributed
to different stages of the gas discussed in detail below.
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FIG. 2. (Color online) Total energy as a function of time for
different values of the initial bottom plate temperature, T0. Dashed
lines indicate the stages of the sedimentation process.
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Remarkably, in scaled time, t ′ ≡ t/
√

T0/g2, with increasing
T0 the curves approach a generic line, that is, for T0 � 107

they virtually collapse [39]. This scaling allows us to describe
the process of sedimentation independently of the value of T0.

IV. STAGES OF THE SEDIMENTATION PROCESS

We simulate the process using the parameters specified
above. It was checked that the results do not qualitatively differ
for other choices, except for the coefficient of restitution which
will be discussed below. Figure 3 shows the evolution of the
fields of density, velocity, temperature, and Mach ≡ |�v|/cs ,
after switching off the supply of energy. Starting from the
initial condition, Fig. 1, after a very short transient during
which the particles accelerate in gravity, the gas immediately
expands [Fig. 3(a)], somewhat counterintuitively (see below).
During the first stage of its evolution, �t ′1, the material is hot
and loose, dissipating the energy contained in the lower part
of the system, and actually increasing in density everywhere
except for a small expanding region which corresponds to
the area where the first shock wave emerges at �t ′2. The
latter manifests itself through the formation of a supersonic
region accompanied by a density front moving downward
(Fig. 4), corresponding to the fall of the material having
expanded above the transition region. Indeed, in the second
stage, �t ′2, the material deposits in the lower part while the
upper part is cold enough to become supersonic and shock
waves may emerge. Here and in the subsequent figures, red
symbols indicate the vertical position where Mach = 1: For
larger height, the regime is inertial; here supersonic shock
waves propagate while for smaller height, diffusion dominates.
For times when no symbol is drawn, the regime is diffusive
everywhere. Thus, in �t ′2, a loose and supersonic granular
layer collides at the bottom where the deposit starts to form.
The energy of the collision is partly propagated upward in
the form of a shock wave associated with an abrupt increase
of temperature [Fig. 3(c)], causing expansion of the upper
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FIG. 3. (Color online) Evolution of the hydrodynamic fields. Red
circles indicate the vertical location where Mach=1. Scale of the
vertical axis is the same for all graphs (here given only for Mach).
Height is given in units of σ .
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FIG. 4. (Color online) Location of the maximal slope of the
temperature and density profiles, as a function of time. Circles indicate
Mach=1. Height is given in units of σ .

part which takes place in �t ′3. Subsequently, in �t ′4 we see
a second sedimentation phase involving previously expanded
material in coexistence with a condensed phase below 20σ

in height. Again, the material accelerates downward due to
gravity, and eventually becomes supersonic. In this stage, the
sediment at the bottom is already immobilized, that is, its
energy has virtually disappeared. Consequently, the energy of
the emerging shock leads only to a very weak expansion and
sedimentation cycle following in �t ′5, much less pronounced
as it involves much less material close to the surface. The
energy of the material is almost entirely dissipated by the
sediment such that no further expansion-sedimentation cycles
can emerge. By varying the parameters of the simulations,
except ε, we could not observe more than two intervals of
supersonic behavior (see below). Finally, �t ′6 is the stage of
residual deposition: the bottom layer is already compacted
and motion throughout the system is scarce; here the transport
mechanism is essentially diffusive. This is the domain of the
scaling regime reported in [31], where the material is almost at
rest, such that thermal conduction is the dominant heat transfer
mechanism, that is, the regime is clearly subsonic.

The described scenario corresponds to the experimental
results reported in [32]. Indeed, if we compare the distinct
regions sketched in Fig. 3 we distinguish essentially the same
areas as in [32], except that the second inertial regime cannot
be appreciated in the experiments since the first rebound is
already weak due to the dissipative sediment.

Figure 3(b) which depicts the areas having positive macro-
scopic velocities, indicates that during �t ′1, the system is
separated into two parts moving in opposite directions, the
lowest part settling downward, increasing the density at the
bottom plate, while the upper region of the gas moves upward.
This is due to the fact that in the transition area, the pressure
increases faster than in the rest of the system: This area indeed
corresponds to the maximal density of the initial condition
(Fig. 1), rendering the pressure more sensitive to density
changes. Similarly, during the second expansion phase �t ′3, the
material is separated between an upper part moving upward
and a lower moving downward (the transition region being
again the area where the shock forms during �t ′4), but the
latter is actually very small: This part corresponds to almost
settled sediment; therefore, while for �t ′2 the particles collide
with the adiabatic bottom, for �t ′3 the particles collide with
a very dissipative sediment dissipating all incoming energy
rapidly. In other words, at time between �t ′2 and �t ′3 the floor
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FIG. 5. (Color online) Decay of the total energy for different
coefficient of restitution (T0 = 107).

of the system changes quickly from adiabatic (zero heat flux) to
conducting (large heat flux), which in turn suppresses further
rebound.

Figure 3(d) indicates that the region of Mach � 1 spreads
over a large part of the system during the first inertial period.
In contrast, during the second inertial period, Mach � 1 only
for a small vertical interval such that the shock wave can travel
only a small vertical distance.

The correlation between the steep slopes of the hydro-
dynamic fields and the transition between subsonic and
supersonic regions can be clearly seen in Fig. 4, where the
locations of the transition are plotted together with the maxima
of the gradients of density and temperature. Both shock fronts
are accompanied by jumps in the hydrodynamic fields.

V. COEFFICIENT OF RESTITUTION

The scenario in scaled time, t ′, is essentially independent of
the system parameters, except for the coefficient of restitution
which was chosen ε = 0.98 so far. In experiments, Son

et al. [32] used glass spheres with ε = 0.98 and ε = 0.92
for interparticle collisions and particle and plate collisions,
respectively, finally considering ε = 0.95 for the whole system
in their comparison with theory. Therefore, we performed
simulations for the same interval (Fig. 5). While we identify
similar stages for all ε considered, the curves appear stretched
for small inelasticity. Moreover, for ε � 0.95, the second
plateau disappears. Consequently, for ε � 0.95, we see only
one shock wave pulse, similar to the experiments by Son
et al. [32].

VI. CONCLUSIONS

We investigated the sedimentation of a granular cloud using
computational hydrodynamics, based on the Jenkins-Richman
theory, and find that the process is significantly more complex
than generally acknowledged. In particular, during its evo-
lution, the system passes several stages which reveal distinct
spatial regions of inertial (supersonic) and diffusive (subsonic)
dynamics. In scaled time, the evolution is independent of initial
conditions for large enough temperature of the bottom plate.
During the supersonic stages, characterized by Mach > 1, the
system develops supersonic shocks which are followed by
sharp profiles of the hydrodynamic fields of temperature and
density. Whereas these sharp profiles have been reported in
the literature before based on theoretical and experimental
work, the appearance of supersonic shocks was not mentioned
before. Also in agreement with earlier findings, for more
dissipative material (ε � 0.95) the shock dynamics consists
of a single phase.
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