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Fluidization of a horizontally driven granular monolayer
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We consider the transition of a horizontally vibrated monodisperse granular monolayer between its condensed
state and its three-dimensional gaseous state as a function of the vibration parameters, amplitude, and frequency
as well as particle number density. The transition is characterized by an abrupt change of the dynamical state
which leaves its fingerprints in several measurable quantities including dissipation rate, sound emission, and a
gap size which characterizes the sloshing motion of the material. The transition and its pronounced hysteresis is
explained through the energy due to the collective motion of the particles relative to the container.
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I. INTRODUCTION

Granular material confined in a rectangular container and
shaken horizontally under the influence of gravity adopts
different dynamical states, depending on the parameters of
the oscillation, amplitude, A, and angular frequency, ω.

For deep layers we see essentially two different types of
dynamic behavior: for weak forcing (small � ≡ Aω2), the
granulate adopts a solid state where the particles follow the
motion of the container. For more intense forcing, the material
near the free surface dilates and performs a sloshing motion
while the lower part remains in a dense state characterized by
slow convection rolls [1]. For increasing forcing, indicated by
a characteristic value �s→f , there is a sharp transition between
the solid state and the fluid state. When the system is in the
fluid state, lowering � leads to a backward transition which
takes place at �f →s < �s→f , that is, there is a pronounced
hysteresis [1–3]. This hysteresis can be explained by the fact
that for the onset of flow static friction between the grains
must be overcome, whereas once flowing the grains remain
in motion, that is, they interact via dynamical friction [1]
such that the more dilute case is easier to sustain [2].
The convective flow in deep horizontally shaken systems
reveals a complex structure [1,4] and was the subject of
intensive research [5–11]. The transition between solid and
fluid states was also seen in (quasi) two-dimensional (2D) ex-
periments [12] and simulations [4,12–14] but no hysteresis was
found.

The situation is different for a submonolayer of monodis-
perse spheres subjected to horizontal vibrations, which is
addressed in this article. Here we observe two different types
of solid-gas transitions depending on the system parameters
such as filling fraction, dissipative particle properties, and the
parameters of vibration. Even for weak forcing, the particles
move with respect to the container except for a narrow range
where the driving is too small to overcome rolling friction of
the particles. We distinguish three different dynamical states:
(a) a two-dimensional gaslike state where the particles move
incoherently in the entire container by undergoing occasional
collisions; (b) a state where the particles still move in contact
with the floor (that is, in two dimensions) but part of the
system is found in a condensed (frequently crystalline) state;
and (c) a state of high energy which we call a three-dimensional
(3D) where the particles experience violent collisions and the
system expands in the third dimension.

For the nonhysteretic transition a↔b [15,16], there is no
critical value of � since the amount of energy transferred from
the walls to the particles is unimportant for the dynamical
state of the gas [16,17], provided it is large enough to
overcome the small resistance due to rolling friction [18].
Instead, the transition can be understood as a kind of resonance
effect relating the filling fraction and the amplitude of the
vibration [16,19–21]. The mechanism of the transition a↔
b resembles the formation of densely packed regions in
submonolayer systems driven by a vibrating wall [22], where
the dense region appears distant from this wall [23].

While the transition a↔b is well described in the literature,
the transition b↔c being the subject of the present article
was not described in the literature so far. Obviously, unlike
a↔b, b→c must be related to the input of energy to the
system as it requires energy to lift the particles to expand in
vertical direction and, thus, constitute a 3D system. On the
reverse, c→b, when reducing the supply of energy, a 3D
gas of particles can transform into a 2D condensate. We will
show that the transition b↔c corresponds to an abrupt change
of the system’s dynamical state. We present a model based
on energetic arguments which fully explains the experimental
observations, regarding the transition b↔c and its hysteresis
in dependence on the parameters of driving, amplitude, and
frequency, up to quantitative agreement.

II. SETUP

A polycarbonate box of size (Lx × Ly × Lz) = (97.8 ×
51.4 × 52.2) mm3 is filled with monodisperse steel balls of
diameter, d = (4.00 ± 0.02) mm, and subjected to horizontal
sinusoidal oscillations (see Fig. 1). The box is attached to a
strain gauge which in turn is driven by a computer controlled
electromechanical actuator, thus, allowing one to measure the
force exerted by the actuator onto the box at 10 kHz sample
rate. The deviation of the time-dependent box position from the
set sinusoidal motion was checked using a Hall-effect based
position encoder (resolution 20 μm) and found negligibly
small.

Particular attention is payed to the filling of the box: For
explanation, we assume the submonolayer being vibrated in
horizontal direction at constant frequency, ω, and increasing
amplitude, A. For small A, the system is found in the
gaslike state a. The transition a↔b takes place independent
of frequency, at a certain critical amplitude, Aa↔b being a
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FIG. 1. (Color online) Experimental setup shown for the system
in solid state (a) and 3D-gaseous state (b), at the time of reversal of
the stroke, when the gap size, lg, is maximal. A top view of the system
in condensed state is shown in (c) (in false colors for better visibility).

decreasing function of the filling rate [21]. The other transition
to state c we consider here, is related to the energy of the
system, that is (for given ω), the transition depends on A, too.
In order to study the transition b↔c we chose the filling rate
such that the transition a↔b occurs at a very small value of
Aa↔b, thus, a↔b and b↔c are well separated. Consequently,
for all values of A relevant here, the system is never in state
a but in a (imperfect) crystalline state. Figure 1(c) shows a
top view of the system filled with N = 336 particles, that is,
in condensed state the filling rate is 92.6% of the hexagonal
packing such that the particles are loosely packed but the gas
state is suppressed.

III. TRANSITION FOR FIXED FREQUENCY OR FIXED
AMPLITUDE

Let us first consider the system at fixed frequency, ω =
18.85 s−1 = 3 Hz × 2π , and A = 1 mm, where the particles
follow synchronously the motion of the box (state b). In-
creasing the amplitude in steps of 1 mm, at Ab→c ≈ 17 mm
we observe a transition where the hexagonal packing is
broken and the granulate extends to the third dimension,
thus assuming a gaseous state. After reaching Amax = 40 mm,
the amplitude is reduced, again in steps of 1 mm and at
Ac→b ≈ 9 mm the system returns back to the condensed state.
Performing independent sweeps we found the transition points
well reproducible. A pronounced hysteresis was observed,
Ac→b < Ab→c. For a more quantitative description of the
transition, we evaluate the data obtained from the strain gauge
to compute the energy dissipation rate,

η ≡
∫
T

ẋ(t)F (t)dt

4NmA2ω2
(1)

by integrating the force between the box and the driver, F (t),
obtained from the strain gauge over the period T = 2π/ω,
where ẋ(t) is the velocity of the box. The state-independent
normalization factor (see [21]) contains the total mass of the
granulate, Nm = 89.7 g. For each value of A we recorded data
for 22 s. To avoid transient behavior, after switching to a new
value of A, we waited for 60 periods before recording data.

Figure 2(a) shows the dissipation rate, η, as a function of
the amplitude, A, at constant frequency, ω = 18.85 s−1. The
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FIG. 2. (Color online) Characterization of the solid-fluid transi-
tion, b↔c, by means of the dissipation rate, η [see Eq. (1)]. (a)
Dissipation rate as a function of amplitude, η(A), for fixed frequency,
ω = 18.85 s−1. (b) Dissipation rate as a function of frequency, η(ω),
for fixed amplitude, A = 15 mm. Error bars show the standard
deviation of independent measurements. Red triangle up symbols
indicate increasing amplitude (b→c); green triangle down symbols
stand for decreasing amplitude (c→b). Vertical dashed lines labeled
A–D correspond to the labels shown in Fig. 3.

error bars show the variance over the 22 s of measurement.
Sharp jumps characterize the hysteretic transition. When in
solid state, the material behaves essentially like a passive ad-
ditional mass attached to the box which does not significantly
contribute to the total dissipation of the system, thus η � 0.
In contrast, in fluidized state the particles undergo violent
dissipative collisions with one another and with the container
walls. The lost mechanical energy is resupplied to the system
by the driver and measurable via Eq. (1) using the exerted
force, F (t). Note that the characteristic dependence of the
energy dissipation rate on the dynamic state of the granulate
was shown before for the gas-solid transition in the absence of
gravity and can be fully understood for this case [19–21].

Complementary to η(A), Fig. 2(b) shows the dissipation
rate as a function of frequency, η(ω) for fixed amplitude,
A = 15 mm, showing similar characteristics regarding the
transition and the hysteresis.

IV. CHARACTERIZATION IN FULL PARAMETER SPACE

So far, we considered the transition for a particular fre-
quency, ω = 2π × 3 Hz or for fixed amplitude, A = 15 mm,
showing that the transition b↔c depends on both parameters
of driving, A and ω, which is consistent with argument given
above indicating that the transition is related to energy. This
is different from the transition a↔b which is independent of
frequency [21]. Figure 3 characterizes the transition b↔c and
its hysteresis for the full space of parameters. To obtain the
figure, for each value of ω we swept A = (1,2,3, . . . ,40) mm
where each amplitude was kept constant for 60 s. Red symbols
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FIG. 3. (Color online) The transition b → c (red, triangle up)
and c → b (green, triangle down) in parameter space (A,ω). The
dashed lines are the solution of our model and indicate that both
transitions take place at critical values of the kinetic energy. The range
of hysteretic behavior appears gray shaded. The vertical dotted line
marks ω = 2π × 3 Hz corresponding to Fig. 2(a). For this frequency,
the insets show snapshots at the end of the left stroke close to the
transition amplitudes marked A–D here and in Fig. 2: A, condensed
metastable state; B, stable fluidized state; C, metastable fluidized
state; D, stable condensed state. The horizontal dotted line marks the
particular value, A = 15 mm, used in Fig. 2(b). For A and 1/ω both
small (marked region), where A ∼ lg, the transitions a↔b and b↔c

interfere.

mark Ab→c indicated by the energy dissipation criterion [see
Fig. 2(b)]. Subsequently, the amplitude was swept again,
A = (40,39, . . . ,1) mm, and the transition point, Ac→b, is
shown by green symbols. The particular values of A and ω

used for Fig. 2 are shown by dotted lines.
The transition b↔c leaves its fingerprints in at least two

more measurable quantities, namely, in the sound emission
and the gap size, lg, which was introduced in [6] to describe
the dynamical state of a horizontally shaken granulate. The
characterization of the transition by means of these values as
functions of amplitude and frequency agrees almost perfectly
with the analysis based on the dissipation rate, η, and will be
discussed elsewhere.

V. MODEL

A necessary condition for the solid-fluid transition is that
particles gain enough energy to leave the monolayer, such that
the granulate can expand in vertical direction. Let us consider
the coherent motion of the monolayer in the sinusoidally
vibrated container, x(tc) = A sin (ωtc) [24]. The extension of
this block is Lx − lsg where lsg ≈ 0.8 mm is the gap size in
the solid state [see Fig. 1(c)]. The block leaves the wall at
the inward stroke at time t = 0 when the velocity is maximal,
|v| = Aω. From equating the time-dependent positions of the
wall and the block, we obtain the time, tc, of the collision with
the opposite wall:

ωtc = sin(ωtc) + lg/A. (2)

We expand this expression to third order around ωtc = 0, solve
for ωtc, and insert into ẋ = Aω cos(ωt) to obtain the relative
velocity between the container wall and the block at the time
when the impact takes place,

�v = Aω(1 − cos[(6lg/A)1/3]), (3)

which evaluates to �v ≈ 0.066 m/s for A = Ab→c ≈ 17 mm,
ω = 18.85 s−1, and lg ≈ 0.8 mm. As can be seen in Fig. 1(c),
the system forms straight rows consisting of 24 particles each.
If all spheres in such a row are pushing like a single particle
of greater mass against the wall their combined energy allows
one to eventually lift one particle. In this way, if all Nx = 24
particles fitting in one row in the direction of shaking would
coherently collide with the wall, the necessary velocity to lift
a single particle by its diameter is

√
2gd/Nx ≈ 0.06 m/s,

that is, the energetic argument explains the transition at
Ab→c ≈ 17 mm, observed in the experiment. When the first
particles leave the lowest layer, the gap size increases and,
consequently, �v increases rapidly (e.g., �v ≈ 0.12 m/s for
lg = 2 mm) and more particles become airborne, eventually
leading to a burstlike fluidization transition. Note that the
increase of the necessary velocity due to the reduction of Nx

is small as compared to the increase of �v given by Eq. (3)
due to the increase of the gap size, lg , when a particle becomes
airborne.

To obtain a lower estimate for Ac→b when lowering the
amplitude, coming from a fluidized state, we compare the
kinetic energy of the collision at maximum possible relative
velocity, 2Aω, with the energy needed to lift a particle by
its diameter. The estimate, Ac→b > ω−1√gd/2 ≈ 7.4 mm for
the lower limit agrees with the experimental value, Ac→b ≈
9 mm. Thus, the energetic argument explains the hysteresis,
and provides a good estimate for Ab→c and a valid lower limit
for Ac→b. As further indication for the energy argument to
explain the hysteresis, in Fig. 4 we show η(A), similar as in
Fig. 2(a) but for lower particle number density, that is, for
224 particles forming a 2

3 submonolayer. Because of the larger
initial gap size, lg, following the discussion above, we expect
a fluidization at smaller Ab→c and the mechanism leading
to a burstlike transition suppressed, being the reason for the
hysteresis of the transition b↔c. Indeed, for a submonolayer,
the transition occurs gradually and the hysteresis is suppressed.
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FIG. 4. (Color online) Energy dissipation rate of a 2
3 submono-

layer. All other parameters as for Fig. 2. In agreement with the energy
argument for the explanation of the hysteresis, here the transition
b↔c occurs gradually (no bursts). Consequently, no hysteresis is
found.
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VI. CONCLUSION

When a granular (sub-)monolayer is subjected to horizontal
vibrations, three different states are observed, depending on the
parameters of driving. While the transition between the 2D gas
state and the condensed state, occurring at a critical amplitude
but independently of frequency, is well described in the liter-
ature, here we discuss the transition between the condensed
state and a 3D gas state: For fixed frequency, by slowly varying
the amplitude of the oscillation, we observe an abrupt change
of the system’s dynamical state where the system expands to
the vertical dimension. We find a well defined hysteresis of the
transition which can be explained by considering the energy of
the collective motion of the particles relative to the container.
Looking to the full parameter space, (A,ω), we find both
transitions forward and backward on lines where A ∼ ω−1

also indicating that the transitions occur at critical energies. We
present a corresponding model description, based on energetic
arguments, which describes both the transition and its hystere-
sis up to good quantitative agreement with the experimental
results. Reducing the particle number density to a 2

3 submono-
layer, the transition occurs gradually and the hysteresis van-
ishes, which is also in agreement with the model description.
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[14] C. Salueña, T. Pöschel, and S. E. Esipov, Phys. Rev. E 59, 4422
(1999).

[15] G. Straßburger, A. Betat, M. A. Scherer, and I. Rehberg, in
Workshop on Traffic and Granular Flow, edited by D. E. Wolf,
M. Schreckenberg, and A. Bachem (World Scientific, Singapore,
1995), pp. 329–334.

[16] F. F. Chung, S.-S. Liaw, and M. C. Ho, Granular Matter 12, 369
(2010).

[17] G. Straßburger and I. Rehberg, Phys. Rev. E 62, 2517 (2000).
[18] For very low driving, when the rolling friction cannot be

neglected as compared to sliding, self-organized stripelike
patterns may appear [15, 25, 26].

[19] M. N. Bannerman, J. E. Kollmer, A. Sack, M. Heckel, P. Mueller,
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