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Attenuation of short strongly nonlinear stress pulses in dissipative granular chains
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Attenuation of short, strongly nonlinear stress pulses in chains of spheres and cylinders was investigated
experimentally and numerically for two ratios of their masses keeping their contacts identical. The chain with
mass ratio 0.98 supports solitary waves and another one (with mass ratio 0.55) supports nonstationary pulses,
which preserve their identity only on relatively short distances, but attenuate on longer distances because of
radiation of small amplitude tails generated by oscillating small mass particles. Pulse attenuation in experiments
in the chain with mass ratio 0.55 was faster at the same number of the particles from the entrance than in the chain
with mass ratio 0.98. It is in quantitative agreement with results of numerical calculations with effective damping
coefficient 6 kg/s. This level of damping was critical for eliminating the gap openings between particles in the
system with mass ratio 0.55 present at lower or no damping. With increase of dissipation numerical results show
that the chain with mass ratio 0.98 provides faster attenuation than the chain with mass ratio 0.55 due to the fact
that the former system supports the narrower pulse with the larger difference between velocities of neighboring
particles. The investigated chains demonstrated similar behavior at large damping coefficient 100 kg/s.
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I. INTRODUCTION

Granular chain with strongly nonlinear interaction between
elastic spherical particles [1] of the same mass presents an
example of the discrete systems with qualitatively new wave
dynamics different than behavior of chains with elastically lin-
ear or weakly nonlinear interactions between elements [2–12].
One-dimensional (1D) granular chains not precompressed by
a static force represent an example of sonic vacuum [5].
This name emphasizes that sound speed in its classical sense
is zero. Sonic vacuum or weakly precompressed granular
chains (dynamic strains being much larger than initial strains)
supports strongly nonlinear waves, which are qualitatively
different than weakly nonlinear solitary waves [2–12]. For
example, a strongly nonlinear solitary wave has a width,
which does not depend on its amplitude, unlike the width of a
weakly nonlinear solitary wave. The number of particles in this
solitary wave depends on the details of the interaction force,
for example, on the exponent in power law for interaction
force [5]. The width of the solitary wave, composed mostly
from five particles in chains of spherical beads, comes from
the force exponent 3/2 in the Hertzian interaction force. The
ratio of the solitary wave speed in sonic vacuum to the initial
sound speed is infinity, while for a weakly nonlinear solitary
wave this ratio is close to one. A strongly nonlinear solitary
wave can be considered as a quasiparticle with effective mass
∼1.4 mass of the elements in the Hertzian chain. A strongly
nonlinear solitary wave converged into a weakly nonlinear
one when the strain amplitude is close to the initial value, the
opposite transition is not valid [5].

The behavior of these waves was investigated by different
groups of researchers numerically, for example, Refs. [2,6,7],
and experimentally using gauges embedded in the particles
made from different materials [3,4,5,8–11]. High-speed pho-
tography allowing measurement of particle displacements
with a micrometer-scale resolution was used in Ref. [12].
Theoretical studies include an exact analytical solution of the
strongly nonlinear wave equation [2,5], stability of the periodic

solution in sonic vacuum [5,13], proofs of existence of the
solitary wave in discreet systems [14,15], and single-pulse
character with double exponential decay in Refs. [16–19].

Two-mass, strongly nonlinear chains (dimer systems con-
sisting of alternatively arranged particles with two different
masses) demonstrate a new very interesting behavior, which
was first presented in Ref. [5] for a relatively short chain
composed of 40 particles. In the long wave approximation
the system supports solitary waves with a characteristic space
scale L ≈ 10a, being twice that in the case of particles with
the same masses, when the mass of one particle (m1) is much
larger than the mass of another (m2) (k = m1/m2 � 1), and
both have the same diameter a.

The behavior of two-mass chains with different mass ratios
(2, 4, 16, 24, 64) has been studied numerically keeping the
chain’s macroproperties (linear density and elastic properties)
the same, and equal to the properties of the chain with equal
mass m. It was ensured by redistribution of masses between
neighboring particles under the condition 2m = m1 + m2 and
choosing the same distances between particle centers and
interaction constants for both types of chains. The force acting
on the contact of the chain with a supporting wall was used for
the comparison of pulse attenuation in different systems [5].

Numerical simulations demonstrated that initial distur-
bance [created by impact of particle with mass equal to
2.5 mass of the cell (5m)] in the chain with large mass
ratio (64) was quickly transformed into three solitarylike
waves, unlike in the chain with equal mass particles where
six clearly detectable solitons were created. This behavior
is in agreement with the discussed analytical prediction for
k � 1. The phase speeds of leading pulses in both systems
are practically identical. The time history of the light particle
was similar to the velocity profile for the neighboring heavy
particle only with amplitudes much smaller than the amplitude
of the leading pulse for the former particle. Additionally the
motion of light particles exhibits a qualitatively new feature:
high-frequency small-amplitude modulation of the velocity
profile, more pronounced with the decrease of wave amplitude.
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A new type of behavior was observed for a chain with
smaller mass ratio, despite keeping the same global properties
of the system, and impacting them by the same striker with
the same velocity. When the mass ratio for the particles in
the chain become equal to 2 or 4, there are no solitary waves
formed based on the observation of the velocity history of light
and heavy particles and force acting on the supporting wall.
In this case the light and heavy particles behave significantly
differently (see Figs. 1.18(b) and 1.18(c) in Ref. [5]). The
velocity of the light particles in the leading pulse has two
maximums followed by an oscillatory tail with amplitude
about two times smaller than the amplitude of the leading
pulse; even negative velocities were present in this oscillatory
tail. These stress waves with complex shape mostly preserve
their shape and amplitudes as they propagate along the
investigated chain with 80 particles. Therefore, on this space
scale they may be characterized as quasitationary waves.

The velocity of the heavy particles in the leading pulse is
represented by an asymmetric single peak followed by another
peak with a wider duration and smaller amplitude. These two
peaks mostly preserve their shape and amplitudes as they
propagate with different speeds along the investigated chain
with 80 particles, with an increase of space between them.
These results were later confirmed in experiments [5].

It is important that at the same macroproperties and at the
same striker impact, the systems with different mass ratios
demonstrate better mitigation properties (charged by force
acting on the supported wall) in comparison with the system
with equal masses of particle. The difference is more than
twice at optimal mass ratio, demonstrating the possibility of
optimization of the granular chains as nondissipative impact
protectors keeping their global properties the same [5].

A very important new type of behavior of stress pulses in
strongly nonlinear dimer chains excited by δ force applied
to the first particle (global properties of these chains were
not kept constant) was observed numerically in Ref. [20].
At certain discrete mass ratios of light to heavy spherical
particles (εn = 0.3428, 0.1548, 0.0901, and also at other
smaller values of εn) a true solitary wave was observed in
numerical calculations. This solitary wave propagated without
any detectable attenuation over long distances in a system
with a total number of 251 beads. Its behavior is explained
by the antiresonances in the dimer chain satisfied only for
certain values of εn. These specific quantum values of mass
ratios ensure unique behavior of particles in the wave—the
synchronization of the motion of light and heavy beads,
providing transferring of the entire energy of the pulse through
the chain. The conditions of propagating of unattenuated
compression pulse were also formulated using the asymptotic
analysis based on slow-fast time scale separation of the system
dynamics in a reasonable agreement with numerical simulation
of the discrete system [20].

At general values of ε in nondissipative chains localized
solitonlike propagating stress pulses were also observed, but
their amplitude slowly decayed with distance and they were
accompanied by oscillating tails. At values of ε different from
specific quantum values εn the light bead loses contact with
its left heavy neighbor at the end of the compression pulse,
generating oscillations. They left behind the main compression
pulse taking away its energy and resulting in its decay.

In numerical calculations the maximum attenuation of the
compression stress pulse was observed at value ε = 0.59 [20].

The maximum attenuation was confirmed in recent experi-
ments performed by Potekin et al. in a chain of 21 spheres
suspended on the rods to minimize the dissipation effects
[21]. Three chains were investigated with values of ε = 1
(homogeneous chain), and two dimer chains with ε = 0.5,
and 0.125. The homogeneous chain and dimer chain (ε =
0.125) supported solitary wave. The dimer chain with ε =
0.5 demonstrated stronger attenuated behavior of the main
pulse followed by an oscillating tail. Three different levels
of impacting forces were used to excite single pulses at the
impacted end of the chain. The experimental results agree
with numerical calculations (using damping coefficient in
the range 32–35.4 Ns/m) demonstrating an expected deep
minimum in transmitted force nearby ε = 0.5, characteristic
for a nondissipative chain.

Dissipation is present in all experiments with granular
chains. This dissipation can be due to viscoelastoplastic de-
formation of contacts [22,23], which in general has nonlinear
dependence on strains [24–26]. Another strongly nonlinear
discrete metamaterial composed from steel cylinders and
rubber o rings (with better tunability than a system with
Hertzian contacts [27–30]), demonstrated nonlinear depen-
dence of dissipation on strains and strain rates being sensitive
to loading path [31,32].

Simpler models were also used to account for the dissipative
properties of contact interaction using an approach based on
coefficients of restitution [33], viscous friction [34], or using
a standard viscous dissipation model depending only on strain
rate [21,35–36]. These approaches allowed analysis of the
unique role of dissipation on the pulse nature. For example,
at a certain dissipation level, excitation by δ force resulted in
a two-wave structure [35,36]. This dissipation model allowed
us to establish analytical conditions for the transition from
oscillatory to monotonous shock wave profiles [37,38]. In this
case the damping coefficient is a new effective parameter,
which may account for the complex nature of the dissipative
processes during contact interaction. Of course its validity
needs to be checked experimentally and may depend on
conditions of experiments and material properties.

In this paper we conducted experiments and numerical
calculations to check if two-mass chains with mass ratio (0.55),
being close to the optimal mass ratio for attenuation in a
nondissipative chain, is still the preferable attenuating system
also in the presence of dissipation. To keep the mechanism of
dissipation identical for both systems we used steel cylinders
in contact with spheres. The mass ratio was changed only
by changing the height of the cylinders, keeping spheres the
same, thus preserving the type of contact interaction between
neighboring particles unlike in the case where the diameters of
spheres were changed [20,21]. This allowed us to clarify the
role of nonlinear dispersion caused by periodic arrangement
of particles on pulse attenuation. The comparison of the
attenuating properties of these two systems was made at the
same number of particles from the impacted end and also at
the same mass of the system above particles where impulse
was detected.

In the investigated range of pulse amplitudes, the linear
viscous model with damping coefficient 6 kg/s satisfactorily
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described not only the attenuation of pulse amplitudes, but
also the transformation of their shapes in both systems. The
value of the damping coefficient was significantly smaller
than 32–35 kg/s in Ref. [21] probably due to the different
nature of contacts. A two-mass chain with mass ratio 0.55
demonstrated better performance in experiments and in nu-
merical calculations only when the damping coefficient was
below critical value. In numerical calculations with damping
coefficient above this value, the one-mass chain outperforms
the two-mass system in attenuating pulse amplitudes.

II. EXPERIMENTAL SETUP

Experiments were conducted with chains composed from
SS304 stainless steel cylinders and 440C stainless steel balls
(Fig. 1) arranged alternatively. Stainless steels SS304 and 440C
have a similar elastic properties and density. The chain was
placed vertically inside the channel made by four Al alloy
rods providing alignment of particles with minimum contacts
between them and rods for minimizing friction and dissipation.
Two different mass ratios were achieved by keeping the spheres
the same, while selecting cylinders with different heights. The
larger cylinder has a height h = 9.6 mm and a mass (mc)
of 3.77 g and the small cylinder has a height h = 5.3 mm
and a mass of 2.043 g. In both cases the spheres had a mass
(ms) 2.085 g and diameter d = 8 mm, the same as diameter
of cylinders. The cell size in this array was equal to h + d.
The mass ratio of the chain with the smaller cylinder is 0.98

(a)                                   (b)

Cylinder, 2i-1

Sensor, embedded 
into cylindrical 
particle

Impactor, 1

Sphere, 2i

Sphere, 2

Cylinder, 3

Cylinder, 2i+1

Sphere, N

Al rods to align 1-D chain 
of spheres and cylinders

Particle in the chain 
(cylinder or sphere)

FIG. 1. (Color online) Experimental setup. (a) Cylinders and
spheres aligned in 1D chain inside the holder and (b) cross-sectional
view of the assembly. Four aluminum rods hold the particles in aligned
chain. In the numerical calculations the particles inside the chain
with even numbers are spheres and particles with odd numbers are
cylinders, i = 2, 3, 4, . . . , N/2. The impactor is a separate particle
outside of chain with number 1.

corresponding to the chain, which supported solitary wave.
For the system with the larger cylinder height, the mass ratio
is 0.55, which corresponds to the most efficient attenuation
due to dispersion effects in a nondissipative chain of spheres
[20]. The waves in the systems were generated by impact of
a 440C steel ball with mass 2.085 g (less than the cell mass
equal 5.855 g and 4.128 g).

Two Piezo gauges were embedded inside cylinders at
different depths, with one gauge embedded in fourth cylinder
(used to specify the incoming pulse) and the other one inside
the cylinder placed at different depths. The Piezo gauges,
supplied by Piezo Systems Inc. were custom cut and wired;
they had the sensitivity in the range 6.8–7.1 N/V. The Piezo
gauges (RC∼537 µs), were calibrated using the impact
by PTFE sphere (mass 0.12 g) with a recorded velocities
(0.7–0.8 m/s) and based on linear momentum conservation,
which gives the value of the force integral over time from the
start of the impact to the maximum force. The signals from
the gauges were recorded using an oscilloscope, Tektronics
TDS 2014.

III. NUMERICAL CALCULATIONS

Numerical calculations of the chain behavior were based
on strongly nonlinear contact force between bodies with the
radii of contact equal to R1 and R2 described by a static Hertz
law [1] valid for elastic contact deformation

F = 4E1E2

3
[
E1

(
1 − ν2

2

) + E2
(
1 − ν2

1

)]
(

R1R2

R1 + R2

)1/2

δ3/2, (1)

where R1 and R2 are corresponding radii of the contacting
undeformed particles and their Young’s moduli (E1,E2) and
Poisson’s ratios (ν1,ν2) and δ is the change between centers of
interacting bodies due to contact deformation. The curvatures
of the surfaces of contacting neighboring particles can be
selected independently of their masses. These arrays may have
large masses of cylinders with small radii of rounded ends.
This allows change of interaction law and the properties of the
system, but keeps overall density the same.

To apply static law Eq. (1) for the dynamic contact
interaction between particles the pulse duration should be
much longer than the characteristic times of sound propagation
in the sphere and cylinders equal to their diameters, height
divided by corresponding sound speeds. The nondissipative
equations of motion for particles inside the chain oriented in
the vertical direction and thus including gravitational force are
the following

mcü2i−1 = A[{(υ2i−2,0 + υ2i−2) − (u2i−1,0 + u2i−1)}3/2
+

− {(u2i−1,0 + u2i−1) − (υ2i,0 + υ2i)}3/2
+ ] + mcg,

(2)

msϋ2i = A[{(u2i−1,0 + u2i−1) − (υ2i,0 + υ2i)}3/2
+

− {(υ2i,0 + υ2i) − (u2i+1,0 + u2i+1)}3/2
+ ] + msg,

(3)

where mc is the mass of the stainless steel cylinder and ms is
the mass of the stainless steel sphere. Displacements u2i−1,0
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and υ2i,0 represent equilibrium displacements of centers of
cylinders and spheres in the gravitationally loaded chain
calculated from positions in the initially undeformed chain.
The other displacements u2i−1, υ2i represent dynamic parts
of overall displacements during wave propagation. N is the
total number of particles (including the impactor), i = 2, 3, 4,
. . . , N/2, and even number N corresponds to the last spherical
particle contacting the wall. Even particle numbers correspond
to spherical particles in the chain and odd numbers to cylinders,
the spherical impactor is particle number 1 (see numbering
of particles in Fig. 1). The positive subscript corresponds
to the force between neighboring particles being in contact,
otherwise the interaction force is zero.

Coefficient A for contact interaction of flat surfaces of
cylinders and spheres with radius RS is equal

A = 4ECES(RS)1/2

3
[
ES

(
1 − v2

C

) + EC

(
1 − v2

S

)] . (4)

The constant A depends on the Young moduli (Ec,Es) and
Poisson’s ratios (vc,vs) of materials of interacting particles and
the radius of sphere [1].

The separate equation for the impactor (dynamic dis-
placement υ1), initially contacting the first sphere in the
gravitationally loaded chain (there is no contact deformation
between these two particles prior to the impact) is:

mimpϋ1 = −A1(υ1 − υ2)3/2
+ + mimpg,

(5)

A1 = 4EimpES(1/RS + 1/Rimp)−1/2

3
[
ES

(
1 − v2

imp

) + Eimp

(
1 − v2

S

)] ,

where A1 is corresponding to the contact of the impactor and
the first sphere having the same radii and elastic properties.

Equation for the first spherical particle in the chain
(dynamic displacement υ2) is

msϋ2 = A1(υ1 − υ2)3/2
+

−A[(υ2,0 + υ2) − (u3,0 + u3)]3/2
+ + msg. (6)

Equation for the last spherical particle (dynamic displace-
ment υN ) contacting the flat wall is

msϋN = A[(uN−1,0 + uN−1) − (υN,0 + υN )]3/2
+

−A(υN,0 + υN )3/2
+ + msg. (7)

In all experiments we observed attenuation of the pulse
amplitude. To explain this phenomenon we added the linear
viscous term (Fvis) to all contact interactions. The introduction
of effective viscosity to describe dissipation processes (fric-
tion, viscoplastic deformation) on the contacts is similar to
the one used in Refs. [21,34–38]. The resulting viscous forces
acting on the impactor, first particle, on cylinders and spheres
inside the chain, and between the last particle and the flat wall
at the deformed contacts are described by Eqs. (8)–(12) with
corresponding coefficients of viscous damping μ1 and μ,

Fvis,1 = μ1[υ̇2 − υ̇1], (8)

Fvis,2 = μ1[υ̇1 − υ̇2] + μ[u̇3 − υ̇2], (9)

Fvis,2i−1 = μ[υ̇2i−2 − 2u̇2i−1 + υ̇2i], (10)

Fvis,2i = μ[u̇2i−1 − 2υ̇2i + u̇2i+1], (11)

Fvis,N = μ[u̇N−1 − 2υ̇N ]. (12)

When the particles are separated the viscous term is
considered to be equal zero. In numerical calculations of
the dissipative chain a linear momentum was conserved with
accuracy 10−6%.

In the numerical calculation the pulse was generated by
giving an initial velocity to the impactor. Its velocity was
adjusted to provide the amplitude of the reference pulse
similar to the corresponding experimental values for adequate
comparison of its evolution at later times.

IV. RESULTS AND DISCUSSION

A. Pulse attenuation in the chain with mass ratio 0.98

In experiments a short pulse was generated by the impact
of a spherical steel particle, the same as the spherical particles
in the chain. The impactor mass was close to the half of cell
mass (ms + mc). The drop height of the striker is kept equal
to 3 cm resulting in an amplitude of the reference signals
(around 110 N) recorded by the gauge embedded into the
fourth cylinder.

The impact resulted in a single, solitary like pulse (Fig. 2).
The pulse speed (618 ± 19 m/s) was calculated using distance
between sensors and time interval between maximums of bell
shape signals using the data from the sensors embedded into
the fourth and fifth cylinders.

A reference pulse duration was equal to 55 μs based on
records from the sensor embedded into the fourth cylinder.
Based on these data the length of the pulse was equal to 2.5
cell sizes (a cell is composed from sphere and cylinder), which
is close to the expected solitary wavelength in the chain with
equal masses (five particles).

As the signal propagates through the system, the amplitude
decreases and the time width of the pulse increases, which is
clearly seen by comparison of signals corresponding to the
sensors in fourth and 21st cylinders presented in Fig. 2(b).
The pulse speed (611 ± 6 m/s) calculated based on records
of gauges embedded into the 15th and 21st cylinders was

FIG. 2. (Color online) Experimental results. Single pulse prop-
agating through a chain with the mass ratio of 0.98. (a) Signals
correspond to sensors embedded into the fourth and fifth cylinder.
(b) Signals correspond to sensors embedded into the fourth and
21st cylinder. Pulses were excited by the impact of a spherical steel
particle. The vertical scale in both figures is 20 N and zero time is
arbitrary, the curves are offset for visual clarity.
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slightly lower than a speed measured in the interval between
the fourth and fifth cylinders, due to the attenuation of the
pulse amplitude (Fig. 2). The shape of the pulse detected by
the gauge in the 21st cylinder was slightly nonsymmetrical
probably due to dissipation. The length of this pulse (based
on its speed 611 m/s and duration) was equal to 3.5 cell size,
being larger than the width of the reference pulse detected by
the sensor embedded into the fourth cylinder.

It is interesting to compare the speeds and width of the
pulses with exact analytical solution for the nondissipative
chain obtained in the long wave approximation for the chain
without static precompression. This is possible to do because
the amplitude of the pulse in the wave is much larger than
gravitational precompression. In numerical calculations we
demonstrated that the pulse shape and speed at the investigated
distances from the entrance were negligibly affected by
gravitation.

The separate numerical calculations with mass ratio 1
were performed and demonstrated insignificant difference of
properties of solitary waves under the same impact at the
investigated number of particles in comparison with the case
when mass ratio was 0.98. In the presence of gravitation a
difference in amplitudes at the 43rd particle was 0.02% in the
chains with mass ratios 1 and 0.98. Some differences in the
behavior of chains with mass ratio 1 and 0.98 were observed
at the impact by larger mass after wave propagation at long
distance from the entrance, which will be a subject of the
separate research.

If we neglect the difference between masses of spheres
and cylinders, then the speed of the solitary wave (Vs) can be
calculated using the following equation connecting parameters
of a solitary wave solution in a long wave approximation [5]

Vs = 2√
5
cξ 1/4

m =
(

16

25

)1/5

c4/5υ1/5
m , (13)

where ξm is the maximum strain equal to 2δm/(h + 2R), δm is
the maximum change of the distance between centers of the
neighboring sphere and cylinder, υm is a maximum particle
velocity in a solitary wave, and the constant c corresponds to
a nondissipative contact of the sphere and plate

c2 = E

6(1 − v2)m

√
R

2
(h + 2R)5/2. (14)

In experiments we measure force acting on the gauge
embedded inside the cylinders. The relation between the
maximum of this force and speed of solitary wave can be
satisfactory described by maximum force acting between
neighboring particles [Eq. (15)], similar to Ref. [5] with
constants adjusted for the array of cylinders with flat sides
and spheres

Vs ≈ h + 2R√
5

(
2ER1/2

3m3/2(1 − v2)

)1/3

F 1/6
m . (15)

This equation demonstrates that the speed of the solitary
wave depends on the cell size (h + 2R). It can be different
for the chains with the same masses of spherical particles and
cylinders, if the cylinders have different heights h. It should
be mentioned that the relation between the speed of a solitary
wave and the maximum force acting between particles Eq. (15)

uses only the leading approximation in a Taylor series for
relative displacements between neighboring particles in the
discrete chain and strains in the continuum limit.

The pulse speed calculated using Eq. (15) and the value of
the maximum force (108 N), recorded by the gauge embedded
in the fifth cylinder [Fig. 2(a)], is 593 ± 12 m/s, which is
close to the pulse speed (618 ± 19 m/s) in the experiments.
The speed of the pulse (547 ± 12 m/s), estimated using
Eq. (15), based on the average force amplitude (68 N) detected
by the sensors in the 15th and 21st cylinders was lower than
the average speed (611 ± 6 m/s) measured in the interval
between the 15th and 21st cylinders (based on the distance
and corresponding time interval). It should be mentioned
that Fm in Eq. (15) is the maximum force acting on the
contact between particles, but sensors are embedded inside
particles, recording the average force on the corresponding
contacts [5,39]. This average force for the solitary wave stress
pulse at low precompression is about 1.4 times smaller than
the maximum force [39], contributing to the difference in
speeds calculated from the maximum of recorded force and
time intervals. We can conclude that despite the wider pulse
length and its asymmetric shape its speed was close to the
speed of the solitary wave in the uncompressed uniform chain
despite dissipation present in the system. Thus, this system
of cylinder and spheres supports attenuated localized stress
pulses close to the solitarylike waves predicted in a long wave
approximation in agreement with previous observations in the
chains composed from spheres only.

Numerical calculations of the pulse propagating in a
discrete chain with mass ratio 0.98 were carried out for the
same system parameters. The main focus of our research was
on pulse propagation inside the system. To make appropriate
comparison with experiments (impact velocity 1.2 m/s), in
numerical calculations the velocity of the impactor (1.06 m/s)
was adjusted to reproduce the same amplitude and shape of
the reference pulse in the fourth cylinder as in experiments
and trace the evolution of this pulse as it propagates inside the
chain. Figure 3 shows the comparison between the numerical
calculations (without dissipation) and the experimental results.
It is worth mentioning that gravitational force is considered in
our numerical calculations. However, since this is a relatively
short chain, calculations without gravitational force show
similar results with the largest difference in amplitudes of
waves about 5% for the longest traveling distances investigated
in the paper.

In numerical calculations without dissipation the solitary
wave was quickly formed at the first few particles. It propa-
gated without noticeable changes in its speed (648 m/s) and
shape with the value of particle velocity in the maximum being
equal to 0.74 m/s. The speed of the solitary wave with the
same amplitude of particle velocity using analytical solution
[Eq. (13)] was equal to the same value 648 m/s. Their equal
values are in agreement with the comparison of solitary wave
speeds in a discrete chain and in analytical solution in the
continuum limit at the same amplitude of particle velocities,
the difference being less than 1% [5]. At the same time the
value of the solitary wave speed in numerical calculations
was close to the experimental value of 618 ± 19 m/s,
corresponding to the solitary wave with amplitude similar
to numerical calculations. The pulse length in numerical
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FIG. 3. (Color online) Comparison of experimental results and numerical calculations of the pulse propagating through the system, which
has a mass ratio of 0.98. Sensors are placed in the fourth, fifth, and 21st cylinders. (a) Experimental results, (b), (c) numerical calculations
(without dissipation) related to the forces in the corresponding cylinders. The vertical scale is 20 N and the curves are offset for visual clarity
and zero time is arbitrary.

calculations was equal to 2.5 cells similar to experimental
results.

Detailed comparison between analytical solution in a long
wave approximation and results of numerical simulations for
a discrete chain were discussed in Ref. [6]. Assuming that
total displacement in numerical calculations for the discrete
chain during the passage of the solitary wave is equal to
the displacement of particles derived from the exact solution
for strain, the authors found amplitude of displacement in
the latter solitary wave solution. With this value of strain
amplitude in the continuum limit the calculated speed of the
solitary wave was close to the speed in numerical calculations
within 2%. At the same amplitude of displacement the
calculated maximum of particle velocity was 12% lower than
in numerical calculations of a discrete chain. A calculated
maximum force using two terms in a Taylor series was
13% lower than in numerical calculations of a discrete chain
[6]. This correspondence of exact solution for long wave
approximation with results for a discrete chain explains the
successful use of the former solution to describe experimental
results in 1D chains made from particles of different ma-
terials where the accuracy of force measurements is about
10% [8,9,12].

It is evident that we have an attenuating solitary wave in our
experiments. To explain the observed attenuation of the pulse
in experiments the dissipation was modeled by introducing a
viscous term into all contact interactions, as described above
[Eqs. (8)–(12)]. Figure 4 shows the comparison between the

numerical calculations with dissipation (μ = μ1 = 6 kg/s)
and the experimental results.

In numerical calculations, the pulse at the 21st cylinder has
a tail with small constant positive amplitude equal to 3 N [see
insert to Fig. 4(b)], which is in qualitative agreement with the
modification of the corresponding signal shape in experiments
[Fig. 4(a)]. This is also in agreement with the influence of
viscous dissipation on the shape of short pulses, which was
investigated in Refs. [35,36].

Comparison of attenuation of the relative pulse amplitude
(Ai/A4) in experiments and numerical calculations using
damping coefficients 0, 4, and 6 kg/s is shown in Fig. 5. It
is clear that introduction of the viscous dissipation correctly
explains the signal amplitude decay. Both damping coefficients
satisfactorily describe the experimental data, and damping
coefficient 6 kg/s provides a better fit at the largest investigated
distances from the impacted end.

The decay of relative pulse amplitude due to damping as it
travels through the chain in numerical calculations (damping
factor equal 6 kg/s) and in experiments is satisfactorily de-
scribed by the exponential function with the value of exponent
equal to 0.028 (Fig. 6). Exponential decay in numerical
calculations due to plastic deformation on the contacts was
observed in the paper [23].

The dissipation in one mass chain resulted not only in
attenuation of the amplitude of the solitarylike pulse, but
also in the tail wave following this pulse, first introduced in
Refs. [35,36]. No such tail was detected in the nondissipative

FIG. 4. (Color online) Experimental results and numerical calculations of the pulse propagating through the system with mass ratio of
0.98. (a) Experimental results, sensors are placed in the fourth and 21st cylinders, (b) Numerical calculation with damping coefficient 6 kg/s
related to the forces in the corresponding cylinders. The vertical scale in (a), (b) is 20 N. The curves are offset for visual clarity and zero time
is arbitrary.
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FIG. 5. (Color online) Relative amplitude of signal at ith cylin-
ders (corresponding to different depths) with respect to the amplitude
of the reference pulse detected by the sensor in the fourth cylinder
in the chain with mass ratio 0.98, experimental data and numerical
results with different damping coefficients.

chain. This small amplitude tail at relatively close distance
from the impacted end is clearly identified in numerical
calculations shown in Fig. 7. At larger distance from the
impacted end the clear separation of the leading solitary wave
and shocklike pulse are observed in numerical calculations
(Fig. 7).

The mechanism of this two-wave pattern was provided in
Refs. [35,36]. The faster attenuation of the leading solitary
pulse is due to the larger gradients of particle velocity due
to the small space scale of this pulse (about 5 particles).
When its amplitude becomes smaller than the amplitude of
the following shock wave they start a process of convergence
resulting in an oscillating shock wave. This unique process of
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Experimental,  = 0.98
Numerical,  = 0.98,  = 6 kg/s

FIG. 6. (Color online) Attenuation in experiments (blue) and
in numerical calculations with damping coefficient 6 kg/s (red)
comparing with exponential decay.

FIG. 7. (Color online) The formation of two-wave structure (soli-
tary wave followed by shock wave) in one mass chain impacted by
sphere with velocity 1.45 m/s, damping coefficient 6 kg/s. The y axes
scale for all curves representing forces in corresponding particles (all
of them are cylinders) are offset by 10 N for clarity.

two-wave structure generated by dissipation was also observed
at a larger damping coefficient 10 kg/s and 15 kg/s. For
example, in the latter case two waves were formed at the
vicinity of the 60th cylinder and they converged approaching
the 70th cylinder. Only an oscillatory shock wave remained
at the depth corresponding to the 80th cylinder. At damping
coefficient 100 kg/s the two-wave pattern was not formed,
instead a monotonous attenuating shock wave was observed.

B. Pulse attenuation in the dimer chain with mass ratio 0.55

A pulse in the dimer chain with mass ratio 0.55 (mass
of sphere equal 2.085 g and mass of cylinder was increased
to 3.77 g) in experiments was excited by the same impactor
(mass 2.085 g) at the same velocity as in the previous chain
with mass ratio 0.98. This allows comparison of the pulse
transformation in both chains under identical conditions of
impact and contact interaction between particles. It is known
that the sphere/sphere chain with mass ratio 0.55 does not
support stationary solitary waves [20,21].

In this paper a different cylinder/sphere dimer chain is
investigated. The results of numerical calculations for the
transmission of dynamic force in these chains with fixed
contacts depending on mass ratio of particles for a chain
composed of 42 particles (21 spheres and 21 cylinders) are
shown in Figure 8. It is clear that in nondissipative chains
the value of mass ratio corresponding to the position of
global minimum is close to the values in nonfixed contacts
sphere/sphere chains [20,21].

The numerical calculations with damping coefficient 6
kg/s, introduced to explain experimental results, with the
chain having mass ratio 0.98 and the same contacts as the
dimer chain are presented in Fig. 8 also. It is clear that
dissipation shifts the position of the global minimum toward
larger values of mass ratio (0.6) in comparison with the
nondissipative chain. It should be emphasized that the change
of transmitted force in dissipative chains is not symmetric with
respect to global minimum—significantly larger reduction of
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FIG. 8. (Color online) Dependence of the force in the 21st cylin-
der normalized with respect to the force at the entrance (at fourth
cylinder) on mass ratio in nondissipative and dissipative chains with
fixed contacts. Mass of sphere was kept the same and mass of cylinder
changed keeping fixed contacts.

amplitude is observed at mass ratios in the interval 0.6–1
than in the interval 0.1–0.6. We explain this nonsymmetric
behavior by larger gradients of particle velocity between
neighboring particles in chains with smaller mass differences.
This mechanism is qualitatively similar to the difference in
attenuation between chains with mass ratios 0.98 and 0.55,
explained later.

In agreement with this prediction (Fig. 8), impact by a
stainless steel sphere with velocity 1.4 m/s did not generate
a single solitary wave in experiments (Fig. 9), unlike in the
previous case with practically equal masses of spheres and
cylinders (Fig. 2). Instead, a leading pulse was followed by
series of smaller amplitude pulses. The leading pulses captured
by the gauge imbedded in the heavier particles (cylinders)
have double peaks repeatable in all experiments. In numerical
calculations of the chain with mass ratio 0.5 leading pulses of

FIG. 9. (Color online) Experimental results. Stress pulses prop-
agating through a chain with the mass ratio 0.55, mass of cyliders
is larger than mass of spheres. (a) Signals correspond to sensors
embedded into the fourth and fifth cylinder. (b) Signals correspond
to sensors embedded into the fourth and 21st cylinder. Pulses were
excited by the impact of a spherical bead the same as the spherical
particles in the chain. The vertical scale in both figures is 20 N and
zero time is arbitrary, the curves are offset for visual clarity.

particle velocity for light particles also had two peaks, followed
by oscillating velocity profiles with negative velocities at some
moments (Fig. 1.18(b) in Ref. [5]). As the pulse propagates
inside the chain it attenuates and the amplitude difference
between these two peaks becomes smaller [Fig. 9(b)]. The
pulses following the leading double peak transformed into an
oscillatory tail later (compare signals from sensors embedded
in the fourth and fifth cylinders with signals from the sensor
in the 21st cylinder). The decrease in the pulse amplitude is
caused by the fact that this chain does not support solitary
waves and dissipation.

The speed of the leading pulse based on the experimental
data recorded by the gauges installed at the fourth and fifth
cylinders is 771 m/s. The smaller pulse speed of 712 m/s was
calculated based on gauges installed in the fourth cylinder to
the 21st cylinder. The 10% decrease in the pulse speed is due
to the attenuating pulse amplitude in the interval between the
fourth and 21st cylinders.

In numerical calculations the force acting on the gauges
imbedded into the corresponding cylinders was found by
averaging the forces acting at their contacts with neighboring
spheres similar to Ref. [39]. Figures 10(b), 10(c) present
results of numerical modeling of a nondissipative chain
related to the experimental data [Fig. 10(a)]. In numerical
calculations reference pulses (corresponding to the force in
the fourth cylinder) with amplitude similar to experiments
were generated using a lower impactor velocity (1.3 m/s)
accounting for the dissipation of the signal prior to its arrival on
the fourth cylinder in experiments (impactor velocity 1.4 m/s).

The pulses in the numerical calculations in nondissipative
chain (μ = 0 kg/s) have the double peak feature, and the
leading pulse is followed by a similar number of pulses as
in experiments. Only a small decrease of pulse amplitude
(when it propagates from the fourth to fifth cylinder) from
111–104 N, and from 111–107 N was observed in experiments
and numerical calculations, correspondingly. In numerical
calculations, pulses trailing the main double peak pulse are
clearly separated from each other [Figs. 10(b) and 10(c)],
unlike in experiments where their separation is less evident
[Figs. 9 and 10(a)]. In experiments only the second pulse is
clearly separated from the leading one in the fourth and fifth
cylinders. In numerical calculations, the speed of the leading
pulse traveling from the fourth to fifth cylinder is 733 m/s. This
speed is close to the experimental result (771 m/s). The pulses
frequency spectrums are similar in experiments and numerical
calculations.

The number of secondary pulses steadily increases as the
wave propagates deeper into the dimer system in experiments
and in numerical calculations (Figs. 9 and 10). This is
an important specific feature for a two-mass system with
investigated mass ratio because it provides a nondissipative
mechanism of pulse decay due to energy leak from the
leading pulse into an increasing number of secondary pulses
in oscillatory tails. The mechanism of formation of these
secondary pulses without gravitational loading was explained
in Ref. [20]: For a general value of mass ratio (except some
specific values) typically the light bead loses contact with
its left neighboring heavy bead retaining a small portion of
the energy of the propagating pulse and generating traveling
waves in oscillating tails. It should be mentioned that in
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FIG. 10. (Color online) Comparison of the experimental results and numerical calculations (without dissipation) of the pulse propagating
through the dimer system with mass ratio 0.55, mass of cylinders is larger than mass of spheres. (a) Experimental results; (b), (c) numerical
calculations (without dissipation) related to the forces in corresponding cylinders. The vertical scale is 20 N and the curves are offset for visual
clarity and zero time is arbitrary.

numerical calculations the shape of the leading pulses and
their amplitudes were negligibly affected by the gravitation in
the investigated chains composed of up to 50 cylinders.

At the same time the difference in behavior between
gravitationally loaded and free of precompression chains
may be very significant for longer chains. For example,
in nondissipative, noncompressed chains at relatively short
distances from the impacted end the leading double peak,
corresponding to force in the heavy particles (cylinder), is
followed by a regular sequence of localized pulses. Force in
spheres (light particle) has a single leading peak, followed
by a periodic sequence of double-peak pulses. These regular
patterns were transformed correspondingly into two clearly
separated triple-peak leading pulses in the 499th particle
(cylinder) and double peaks in the 500th particle (sphere),
followed by the chaotically oscillating trails in both cases.

In the same chains under gravitation loading (also with
mass ratio 0.55) only one leading double peak was observed
up to the distance about 400 particles. At larger distances the
sequence of single-peak pulses started to form with a slowly
attenuating leading pulse (composed from 15 particles) clearly
separated from the rest at the 900th particle.

The difference between experiments and results of nondis-
sipative numerical calculations suggests the introduction of
dissipative damping as with a chain with similar masses.
By design both chains have identical contacts. Thus, the
dissipative damping should be similar to the previous case
of the chain with mass ratio 0.98. It should be mentioned that

the dimer systems with different mass ratio, when composed
of spherical particles [20,21], could experience a different
damping on the nonfixed sphere/sphere contacts than in our
systems with fixed plane/sphere contacts.

Figure 11 shows comparison of numerical results (with
different damping coefficients) with the experimental data.

The decrease in the first peak amplitudes of the leading
pulse at the 21st cylinder in the numerical calculation from
109–59 N (with damping coefficient 4 kg/s) and from 109–
57 N (with damping coefficient 6 kg/s) are similar to the
experimental results (109–60 N).

As the signal propagates through the dissipative system,
the amplitudes of the leading double-peak pulse decrease,
while the number of following pulses increased in numerical
calculations in agreement with experiments (Fig. 11).

Figure 12 presents experimental and numerical results
with various damping coefficients related to the amplitude
attenuation of leading pulses with cylinder numbers. It is clear
that in numerical calculations the leading pulse in the chain
with mass ratio 0.55 is attenuating even without dissipation.
This is due to the fact that the investigated system with
mass ratio 0.55 does not support stationary solitary waves.
Without dissipation, the decrease of relative amplitude of the
force at the 21st cylinder is about 40% and this decay is
caused solely by dispersion. Dispersion in the pure nonlinear
system means dependence of a wave speed on wavelength
caused by mesostructure, e.g., size of the particles. Like in a
weakly nonlinear systems [the equation for the corresponding

FIG. 11. (Color online) Results of experiments and numerical calculations of the pulse propagating through the dimer system, mass of
cylinders is larger than mass of spheres. (a) experimental results (sensors are placed in the fourth and 21st cylinders), (b) and (c) results of
numerical calculations related to the forces in fourth and 21st cylinders with μ = 4 kg/s and μ = 6 kg/s, correspondingly. The vertical scale
is 20 N and the curves are offset for visual clarity, zero time is arbitrary.
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Numerical calculations, µ = 4 kg/s
Numerical calculations, µ = 0 kg/s
Experimental results

FIG. 12. (Color online) The comparison of the experimental re-
sults and data from the numerical calculations with different values of
damping coefficient in the dimer chain with mass ratio 0.55. Relative
amplitude of leading stress pulse at different depths (number of
cylinders are shown on the horizontal axes) is calculated with respect
to the amplitude of the reference pulse in the fourth cylinder. Mass
of cylinders is larger than mass of spheres.

granular chain can be found in Ref. [5], see Eq. (1.7) there]
the dispersion in strongly nonlinear systems balances strong
nonlinearity resulting in a strongly nonlinear solitary wave
unique for pure nonlinear systems in a one-mass chain or in
two-mass chains at specific values of mass ratio [20]. In two-
mass chains at arbitrary mass ratio nonlinearity is not balanced
by dispersion. In this case solitary waves are not supported by
a system resulting in pulse decay (being maximized at mass
ratio 0.59) even in nondissipative chains [20]. The difference
with a weakly nonlinear system is that in the strongly nonlinear
case the dispersion term in the corresponding wave equation
is also nonlinear (Eqs. (1.20)–(1.23) in Ref. [5]).

Numerical calculations in dissipative chains (with damping
coefficients 4 kg/s and 6 kg/s) demonstrate larger attenuation
with decrease of amplitude of about 50%. The similar atten-
uation was observed in experiments. The role of dissipation
is significant starting at the 15th cylinder; at smaller distances
its role is negligible and signal attenuation is mostly due to
dispersive effects (Fig. 12).

Based on the attenuation of the amplitudes at different
positions (Fig. 12) inside the chain we conclude that numerical
calculations with damping coefficients 6 kg/s satisfactorily
fit experimental data. This value also provided the best fit
for experimental data in a chain with mass ratio 0.98. It is
explained by the same nature of contact interaction between
the surface of the steel cylinder and sphere of the same diameter
causing the same mechanism of dissipation.

The amplitude of the pulse decays exponentially in ex-
periments and in numerical calculations as it travels through
the two-mass chain due to the combination of dispersive and
dissipative mechanisms (Fig. 13). As a result, in the two-mass
chain the exponent (0.042) is larger than in the case of mass
ratio equal to 0.98.
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Experimental,  = 0.55
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FIG. 13. (Color online) Attenuation of relative amplitude in ex-
periments (blue) and in numerical calculations with damping co-
efficient 6 kg/s (red) comparing with exponential decay. Relative
amplitude is calculated with respect to the amplitude of the reference
pulse in the fourth cylinder. Mass of cylinders is larger than mass of
spheres.

The qualitative difference between two-mass nondissipa-
tive and dissipative chains is the opening of gaps on both
sides of the 21st cylinder in the former chain as demonstarted
in Fig. 14(a) by zero forces acting on the 21st cylinder
corresponding to out of phase displacements of the 21st and
22nd spheres.

In dissipative chains at damping coefficient 6 kg/s there
are no gaps open [Fig. 14(b)] and forces acting on the 21st
cylinder are not zero though displacements of the 21st and 22nd
spheres are still out of phase. In both cases the oscillatory force
profile in the 21st cylinder is observed due to the oscillating
motion of spheres clearly seen in their displacement curves.
Increase of damping coefficient to 10 and 15 kg/s reduces
amplitudes of oscillations of spheres also without gap openings
and transforming the sequence of separated pulses into an
oscillatory tail.

The shape of the wave during the propagation of these
pulses into the larger depths (beyond the 90th cylinder)
changed into an attenuating triangular shocklike oscillatory
pulse with decreasing amplitudes of oscillations with increase
of damping coefficient to 10 and 15 kg/s.

The similar impact on dimer chains with damping coeffi-
cient 100 kg/s resulted in fast attenuating, smooth nonsymmet-
ric dispersive pulses with increasing duration and ramp time
being much shorter than the tail. At this damping coefficient
(100 kg/s) shock waves in a one-mass chain and in two-mass
chains were practically identical at similar particle numbers
with slight differences in speed propagation and amplitudes.

The two-wave structure of the attenuating pulse (lead-
ing solitarylike pulse clearly separated from the following
shocklike wave) observed at some range of distances from
the impacted end in the chain of equal masses at damping
coefficient 6 kg/s (Fig. 7) was not detected in dimer chains.
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FIG. 14. (Color online) Comparison of the forces inside 21st cylinder and out of phase displacements of neighboring spheres in numerical
calculations: (a) damping coefficient equal to zero, opening of gaps on both sides of 21st cylinder is evident at moments corresponding to zero
forces and (b) no openings of gaps at damping coefficient equal to 6 kg/s. In both cases chain with mass ratio 0.55 impacted by sphere with
velocity 1.45 m/s.

It is interesting to compare relative attenuation in a system
with mass ratio 0.55 to the system with mass ratio 0.98
(Fig. 15) at the different depths, but corresponding to the same
number of cells (dissipative contacts) for a chain with dif-

ferent damping coefficients. Though the damping coefficient
6 kg/s describes experimental data satisfactory for both chains
(Figs. 5 and 12), it is interesting to compare systems with
different mass ratio at larger damping coefficients, which may
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FIG. 15. (Color online) The attenuation of the relative pulse amplitude (with respect to the amplitude of the reference pulse in the fourth
cylinder, mass ratios 0.98 and 0.55) and change of decay efficiency in two systems with increased damping coefficient at the same contact
number in the chains at corresponding values of damping coefficients (a) 0, (b) 6 kg/s, (c) 10 kg/s, (d) 15 kg/s, and (e) 100 kg/s. Mass of
cylinders is larger than mass of spheres (2.085 g).
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correspond to the larger plastic deformation at the contacts
or to the chains immersed in liquid. The difference can be
expected because the solitary wave is not supported in the
former case (thus the localized pulse is attenuated [Fig. 15(a)]
even without dissipation losing energy into the oscillatory
tail).

At the same time attenuation due to dissipation might mask
this difference if the widths of pulses are different and contact
dissipation is the main source of attenuation. The results
are presented in Figs. 15(b)–15(d) for damping coefficients
10 kg/s and 15 kg/s, and 100 kg/s, correspondingly.

For systems with damping coefficient 6 kg/s [Fig. 15(b)],
which gives the results most close to experimental data, the
relative amplitude decrease in the system with mass ratio 0.98
(where dissipation is the only mechanism for attenuation) at
the 21st cylinder contact is about 40%. The amplitude decrease
in a system with mass ratio 0.55 at the same contact number
is higher being nearly equal to 50%. The 10% difference is
due to the presence of nonlinear dispersion (not balanced by
strong nonlinearity) in the latter system.

With the increase of damping coefficient to 10 kg/s the
amplitude decrease with increase of contact number in both
systems is very close [Fig. 15(c)]; manifesting that nonlinear

dispersion is not a major factor in decay in the chain with mass
ratio 0.55.

Further increase of the damping coefficient to 15 kg/s
demonstrates the surprising result—the attenuation in 0.98
mass ratio system becomes larger than in the two-mass system
with optimal mass ratio 0.55 [Fig. 15(d)], which provides
maximum decay in nondissipative dimer chain (Fig. 8). We
explain this phenomenon by the difference in shapes of
particle velocity profiles in investigated systems (Fig. 16).
From this figure [Fig. 16(d)] it is clear that dissipation at
the damping coefficient 15 kg/s does not result in significant
differences of pulses space scales in comparison with the case
without dissipation, only adding tails in particle velocities
whose amplitude is increasing with increase of damping
coefficient. This demonstrates that strong nonlinearity and
nonlinear dispersion caused by periodic mesostructure control
the shape of the pulses in both systems even in the presence of
dissipation.

The important difference between chains with mass ratio
0.98 and 0.55 is that the former chain supports a narrow solitary
wave composed of only five particles, with major gradients of
velocity just between two particles at the front and two particles
at the back of this wave [5]. This large difference between
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FIG. 16. (Color online) The change of particle velocities profiles in both sytems with increase of damping coefficient. The maximum of
pulse amplitude corresponds to 42nd particle (21st cylinder), odd numbers are related to spheres and even to cylinders. Numerical calculations
with damping coefficients (a) 0, (b) 6 kg/s, (c) 10 kg/s, (d) 15 kg/s, and (e) 100 kg/s. Particle velocities in system with mass ratio 0.98
(blue, open circles) and particle velocities in system with mass ratio 0.55 (red, solid circles). Mass of cylinders is larger than mass of spheres
(2.085 g).
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velocities of neighboring particles in a one-mass chain result in
larger viscous dissipative losses [Eqs. (8)–(12)] in comparison
with a two-mass chain where localized pulses (not solitary
waves) have a longer dimensions and thus a smaller gradients
of velocity between neighboring particles. This difference may
explain the reversal in impact mitigation effectiveness of these
systems with increased damping coefficients.

Moreover, two-mass chains in the discussed case (heavy
cylinders/light spheres) would be heavier at the same num-
ber of particles than one-mass chains (light cylinders/light
spheres). Thus at this level of dissipation (15 kg/s) a one-mass
chain with the same number of particles has a smaller mass
also making it a better protector against an impact pulse with
a short duration.

From comparison of pulse attenuation at damping co-
efficients 10 kg/s and 15 kg/s we can conclude that the
former value is close to the critical value corresponding to the
reverse of performance of these systems with respect to pulse
amplitude decay. This transition corresponds to the prevailing
influence of dissipation over decay caused by mesostructure
in dimer chain.

The further increase of damping coefficient to 100 kg/s
makes the pulse shape in both system very similar [nonsym-
metric triangular pulse, Fig. 16(e)] resulting in a negligible role
of nonlinear dispersion and in practically identical attenuation

in both systems [Fig. 15(e)] after a pulse traveling through the
same number of particles.

However, the systems with the same number of particles,
but with different mass ratios have different total masses. For
design purposes (for example, if mass of the protection layer
is the main design parameter, e.g., in helmets), it is interesting
to compare the attenuation of the pulses at different values
of damping coefficient in the same systems with different
mass ratios after propagation not through the same number
of particles (as in Fig. 15), but through the chains with
the same masses. The corresponding data from experiments
and numerical calculations are presented in Fig. 17, linear
approximation was used to approximate the data in Fig. 17(a)
based on data from Fig. 5 and Fig. 12.

In experiments the attenuation of signals traveling through
the length of chains having the same masses [but with
different mass ratios of particles 0.98 and 0.55 composed
of the same spheres (2.085 g) and cylinders having masses
similar to the sphere mass and heavier, correspondingly] are
quite similar [Fig. 17(a)]. In numerical calculations without
dissipation (chain with mass ratio 0.98) no attenuation of the
pulse was observed in contrast to significant attenuation in the
nondissipative chain with mass ratio 0.55, [Fig. 17(b)]. The
similar attenuation in experiments [Fig. 17(a)] in both chains
of equal masses, despite the two mechanisms of decay existing
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FIG. 17. (Color online) Relative amplitude (with respect to the amplitude of the reference pulse at the fourth cylinder) after propagation
through the chain with the same mass at different values of damping coefficient in (a) experiments and in numerical calculations with different
damping coefficients: (b) 0, (c) 6 kg/s, (d) 10 kg/s, (e) 15 kg/s, and (f) 100 kg/s. Mass of cylinders is larger than mass of spheres (2.085 g).
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in a two-mass chain (dispersion and dissipation) versus only
one mechanism in a one-mass chain (dissipation), is apparently
due to the stronger effect of dissipation in the latter system.

In numerical calculations with a damping coefficient of
6 kg/s, the respective relative amplitudes are very close to
experimental values for both chains [compare Figs. 17(a)
and 17(c)]. At the increased damping coefficients starting
from 10 kg/s, the system with mass ratio 0.98 demonstrates
faster pulse attenuation than the system with mass ratio
0.55 after traveling through the chain with the same mass
[Figs. 17(d)–17(f)]. This difference is enhanced by a smaller
number of contacts in the system with mass ratio 0.55 at the
same total mass traveled by the pulse. Though one mass chain
is also preferable for pulse mitigation given the same mass of
the chain at the damping coefficient 100 kg/s, the difference
is smaller than at lower damping coefficients 10 and 15 kg/s.
This is explained by the similar gradients of particle velocity
between elements in both chains at damping coefficient
100 kg/s [Fig. 16(e)] and by a larger number of dissipative

contacts in s one-mass chain (light cylinders/light spheres)
versus a two-mass chain (heavy cylinders/light spheres). Thus,
strongly dissipative one-mass chains will be again better for
the impact protection at the same total mass of particles than
two-mass chains with larger mass of cylinders relative to the
mass of spheres.

It is also interesting to compare the behavior of a one-mass
system with a two-mass system having the mass ratio of
particles close to optimal value 0.55 (but with reduced mass
of cylinders versus spheres) at the same striker impact. The
attenuation of the relative pulse amplitude depending on
number of traveled contacts in chains with mass ratios 0.98
and 0.55 is presented in Fig. 18. In the latter chain a mass of
cylinders is smaller than mass of spheres (2.085 g), unlike in
the previous case corresponding to Fig. 15.

Numerical calculations (Fig. 18) show that with reduced
cylinder masses and the same masses of spheres, the attenu-
ation of the relative amplitude of pulses traveled through the
same number of particles in a chain (number of contacts) is
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FIG. 18. (Color online) The attenuation of the relative pulse amplitude with respect to the amplitude of the reference pulse in the fourth
cylinder, mass ratios 0.98 and 0.55, mass of cylinders is smaller than mass of spheres (2.085 g) and change of decay efficiency in two systems
with increased damping coefficient. Relative amplitudes in numerical calculations at the same position in the chains at corresponding values of
damping coefficients (a) 6 kg/s, (b) 10 kg/s, (c) 15 kg/s, and (d) 100 kg/s.
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FIG. 19. (Color online) Relative amplitude (with respect to the amplitude of the reference pulse at the fourth cylinder) after propagation
through the chain with the same mass at different values of damping coefficient in in numerical calculations with different damping coefficients:
(a) 6 kg/s, (b) 10 kg/s, (c) 15 kg/s, and (d) 100 kg/s. Mass of cylinders is smaller than mass of spheres (2.085 g), mass ratio is 0.55.

similar to the previous case of a two-mass chain with larger
cylinder masses (Fig. 15). In this case also the one-mass system
is better in attenuating the pulse amplitude with increased
damping coefficient probably for the reason that the pulse
in a two-mass system contains a larger number of particles
and thus a smaller difference of particle velocities between
elements. At the damping coefficient 100 kg/s the difference
in attenuation is negligible when the pulse traveled the same
number of particles.

However, in the case where the optimal two-mass system
(mass ratio 0.55) has a smaller cylinder mass it also has a
smaller total mass, at the same number of contacts, than the
one-mass system composed of the same spheres and cylinders
of equal masses. For design purposes, it is interesting to
compare the attenuation of the pulses in these systems having
the same mass at different values of damping coefficients.
The corresponding results from numerical calculations are
presented in Fig. 19.

We can see that at damping coefficient 6 kg/s (close to the
value in experiments with the identical contacts) the two-mass

chain with mass of cylinders being smaller than mass of
spheres (2.085 g), mass ratio is 0.55 is significantly better
at the same chain mass. This is caused by dispersion effects in
combination with the smaller number of traveled dissipative
contacts in the one-mass chain. With increased damping
coefficient the difference in mitigation between these systems
becomes smaller due to the stronger effect of dissipation on
signal attenuation in the more narrow pulse in the one-mass
chain explained above. Thus this chain is preferable if the mass
of the attenuating system is the main design parameter, as in
helmets.

V. CONCLUSIONS

The propagation of a short pulse in dimer chains with
two different mass ratios (0.98 and 0.55) was investigated in
experiments and numerical calculations. The same striker was
used to generate short pulses in these systems to compare their
effectiveness under the same impact. Both chains had the fixed
cylinder-sphere contact, which keeps dissipative properties
(damping coefficient) of both systems identical highlighting
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the role of the radiation-based attenuation mechanism present
in the chain with mass ratio 0.55, unlike in Refs. [20,21].
The cylinder-sphere chains are more convenient with respect
to designing any mass ratios and keeping the diameters of
particles the same, which is difficult to accomplish with
sphere-sphere chains placed in the channel.

The attenuation of pulse amplitude due to dissipation was
modeled using the linear viscosity term, which qualitatively
described the observed rate of attenuation in both systems at
the same damping coefficient equal 6 kg/s. In both experiments
and corresponding numerical calculations pulses in the system
with mass ratio 0.55 attenuate faster.

The change of the dependence of the force on mass ratio
in dissipative chains with fixed contacts is not symmetric with
respect to global minimum. There is a relatively small change
of the transmitted force for small mass ratio up to the optimal
ratio 0.55, but a few times a larger change of transmitted
force was observed in the chain with small mass difference.
We explain this nonsymmetric behavior by larger gradients of
particle velocity between neighboring particles in chains with
smaller mass differences.

The introduction of viscous damping blocks the gap
opening starting at the damping ratio 6 kg/s. Thus, damping
not only dissipates energy, but also eliminates the process
of gap openings and corresponding time scales (gap opening
divided by particle velocity) characteristic for nondissipative
chains.

The input into pulse decay due to strongly nonlinear disper-
sion effects in experiments can be illustrated by comparison
between chains with the same number of identical dissipative
contacts crossed by a traveling pulse. In the system with mass
ratio 0.98, where the only active mechanism of attenuation
is dissipation, 40% amplitude decrease was observed in
experiments, unlike larger decrease (50%) in the chain with
mass ratio 0.55, being caused by both mechanisms of decay.

The influence of the value of the damping coefficient on
the relative effectiveness of these systems to mitigate identical

impact was investigated numerically in the case when mass
of cylinders was larger than mass of spheres. If these systems
have the same number of particles or the same mass traveled
by the pulse, their amplitudes in the dimer system with mass
ratio 0.55 attenuate faster than in the system with mass ratio
0.98 only when the damping coefficient is below some critical
value (below 10 kg/s).

At larger damping coefficients the system with mass ratio
0.98 mitigates the same impact better than the system with
mass ratio 0.55. The former chain in this highly dissipative
system has a smaller mass providing the same level of
attenuation as the system with mass ratio 0.55. The one-mass
system is the preferable system for the higher level of viscous
dissipation (e.g., granular chains in liquid) because it forcefully
supports the high gradients in the narrow pulse by strongly
nonlinear dispersion.

At the highest investigated level of viscous dissipation
(damping coefficient 100 kg/s) the pulses in both systems
are of similar width resulting in a similar viscous dissipation
of pulses traveling the same number of contacts.

A different behavior of two- and one-mass chains with
increase of damping ratio was observed with respect to the
shape of the propagating pulses. The one-mass chain excited by
impact of a sphere demonstrates a two-wave structure (solitary
wave plus oscillatory shock wave); this phenomena was not
observed in the two-mass chain. At the largest damping ratio
100 kg/s both chains behave in a similar way.

Numerical calculations for a different system where cylin-
der masses are smaller than masses of spheres show similar
results to the system with a larger mass of cylinders for
the same number of contacts crossed by a traveling pulse.
However, in this case the dimer system with the same total mass
has a larger number of dissipative contacts enhancing pulse
attenuation at all values of investigated damping coefficients.
These results help to select the appropriate mesostructure
and dissipative properties of the strongly nonlinear discrete
systems for protection barriers.
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